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Abstract:

Data conflation refers to the superposition data produced by diverse processes resulting in complex, combined

data objects. We define the data deconflation problem as the challenge of identifying and separating these
complex data objects into their individual, constituent objects. Solutions to classical deconflation problems
(e.g., the Cocktail Party Problem) use established linear algebra techniques, but it is not clear that those
solutions are extendable to broader classes of conflated data objects. This paper surveys both classical and
emerging data deconflation problems, as well as presenting an approach towards a general solution utilizing
deep reinforcement learning and generative adversarial networks.

1 INTRODUCTION

The proliferation of Internet-connected devices has
led to a flood of complex, conflated data objects from
which we can glean a wealth of useful information.
For example, distributed sensor networks—critical
to large-scale Internet of Things (IoT) systems—
continually report real-time data that may be repre-
sentative of co-located individuals (Wan et al., 2016).
Similarly, data reported by medical wearables may be
contaminated by patient movements or external in-
fluences, or report excess noise due to insufficiently
tuned sensors (Tariq et al., 2018). Those conflated
data objects must first be separated into their con-
stituent components before any meaningful analysis
can be conducted.

Recent advances in deep learning have led to
breakthroughs in many classification, recognition,
and decision-making tasks; however those results
have been limited to tame datasets and performance
in relatively benign environments. As a purely mo-
tivational example, consider the conflated illustration
in Figure 1. While even a human child can identify at
least one of the constituent objects (seen individually
in Figure 2) in this conflated image, a MATLAB im-
plementation of the well-known Alexnet Object Clas-
sifier (Krizhevsky et al., 2012; MathWorks, 2020) is
unable to identify any object and returns the following
probabilities:
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Figure 1: Multiple images have been conflated in such a
way that state-of-the-art classifiers cannot identify a single
constituent image.

The current known solutions to data deconflation
problems rely on well-established linear algebra tech-
niques, but it is not at all clear that these techniques
can be generally extended. For instance, behavioral
tracking tasks will often generate non-additive su-
perpositions and categorical data that is neither real-
valued nor sampled from a uniform spatial or tempo-
ral grid. As illustrated by Alexnet’s inability to clas-
sify any of the constituent images in Figure 1, even
current deep learning networks are unlikely to provide
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Table 1: Alexnet probabilities for Figure 1.

Category | Probability
jigsaw puzzle | 0.2270
wreck 0.1252
mud turtle 0.1249
loggerhead 0.0842
terrapin 0.0566

(b) Otter

i

(c) School Bus

(d) Giant Panda

Figure 2: The constituent images that were conflated in Fig-
ure 1. Alexnet classifies the subject of these individual im-
ages with high probability.

a satisfactory, more generalized solution to the data
deconflation problem. (Tangentially, consider Good-
fellow et al.’s (Goodfellow et al., 2014b), demonstra-
tion that even the addition of seemingly imperceptible
noise can lead to misclassifications.)

To that end, we present our vision for a solution
to the data deconflation problem which can be be ex-
tended to tasks which are beyond currently-known so-
lutions. We believe that a promising approach to the
general deconflation problem can be based on itera-
tions between estimating what signal component or
element is contributed by what process (accomplished
by using a trained deep reinforcement network) and
filtering done by using a generative network seeded
by small signal samples.

Contribution and Organization. Our primary
contribution in this paper is the proposal of what we
believe to be a general solution to the data decon-
flation problem, iteratively using deep reinforcement
learning and generative adversarial networks, not only
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during training but also in the deconflation and clas-
sification phase. As far we are aware, there is no gen-
eral solution for deconflation problems dealing with
non-additive superpositions or categorical valued data
objects, as often occur in spatial tracking and behav-
ioral deconflation problems.

The remainder of this paper is organized as fol-
lows: many deconflation problems, including the
cocktail party problem, and their solutions are de-
scribed in Section 2. Our approach to a general solu-
tion to the data deconflation problem is given in Sec-
tion 3, and concluding remarks are given in Section
4.

2 BACKGROUND AND RELATED
WORK

We begin by presenting a brief survey of current so-
lutions to deconflation problems, as well as reinforce-
ment learning and generative adversarial networks.

2.1 Blind Source Separation

Blind source separation (BSS) is the process of sep-
arating unknown signals that have been mixed in an
unknown way (Kofidis, 2016). Specifically, a mixture

u(n) =¥ (a(n),v(n),n)

mixes N source signals

a(n) = [a1(n),az2(n),....an(n)]",

and K noise signals

v(n) = i (n),v2 (), ve ()]

by a mixing system ¥ (-,-,-), which yields

u(n) = [u(n),uz(n), ...,uka(n)]T

BSS problems have long been an active research topic
in both analog and digital signal processing, with nu-
merous demonstrated solutions (O’ grady et al., 2005;
Comon and Jutten, 2010). BSS problems are vector
representative and additive, which means that there
are a number of solutions that utilize established lin-
ear algebra techniques. Techniques utilized in classi-
cal BSS solutions include singular value decomposi-
tions, principal component analysis, sparsity enforce-
ment, or other dimensionality reduction methods. For
instance, the Joint Approximation Diagonalization of
Eigen-matrices algorithm has been implemented to
accomplish BSS for both image (Hughes, 2015a) and
audio (Hughes, 2015b) samples.
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2.1.1 The Cocktail Party Problem

Perhaps the most well-known BSS problem is the
Cocktail Party Problem (CPP) (Cherry, 1953), that is
the human ability to selectively focus attention on a
single voice in a noisy environment. In a typical for-
mulation, an attendee at a cocktail party hears their
name spoken by an unknown person outside of their
vision and they attempt to identify that person. The
CPP has been extended to visual data as well as audi-
tory. Shapiro et al., showed that people have an ability
to recognize their own name in otherwise unattended
information (Shapiro et al., 1997).

Haykin and Chen (Haykin and Chen, 2005) frame
the problem in terms of understanding how the human
brain solves this problem and determining whether it
is possible to build a machine that can satisfactorily
solve it. Their survey of computational approaches
detail solutions via (7) independent component analy-
sis (ICA) and general BSS approaches, (if) temporal
binding and oscillatory correlation, and (iii) cortronic
networks. They note that while ICA and BSS solu-
tions enjoy decades of support in literature, the ap-
proach is not analogous to actual biological solutions.
On the other hand, approaches (ii) and (iii) are in-
spired by biological processes but rely on the assump-
tion of some prior knowledge (e.g., the language be-
ing spoken).

Qian et al. (Qian et al., 2018) survey more recent
approaches to the CPP (including deep learning-based
solutions). They highlight many impressive results,
while pointing out limitations that are analogous to
the current solutions’ shortcomings mentioned in Sec-
tion 1. For instance, they highlight greater improve-
ments in recognition for mixed-gender speech than
for same-gender speech; inferring that same-gender
speech tracing is a more difficult task.

2.2 Process Query Systems

Process Query Systems (PQS) (Cybenko and Berk,
2007) are a more recent solution to deconflation prob-
lems that are especially well suited to networked sys-
tems, where extracting meaningful information is par-
ticularly challenging. By paying attention to process
descriptions, PQS are able to solve complex informa-
tion retrieval tasks within the network. Specifically,
PQS take input from arbitrary nodes in a network and
build hypotheses about observed events that answer a
user’s process queries. Multiple hypotheses and mod-
els are used to separate observed events, optimally
matching them with ongoing processes, and identify-
ing process states.

PQS have been applied to tasks in network admin-
istration, including security monitoring (Berk et al.,
2003; Berk and Fox, 2005), covert channel detection
(Giani et al., 2005), and autonomic server monitoring
(Roblee et al., 2005). Additionally, PQS have been
used for vehicle tracking using acoustic sensor net-
works (Berk et al., 2003).

While PQS provide a more general solution to
tasks that are beyond the capabilities of BSS and clas-
sical deconflation solutions, they are not a general so-
lution. A PQS requires a priori models for underly-
ing processes, as well as heuristics for estimating the
number of processes, when those processes begin and
end, and track assignments.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a field of machine
learning that seeks to understand, automate, and op-
timize goal-directed decision making (Sutton and
Barto, 2018). Deep Reinforcement Learning (DRL)
(Frangois-Lavet et al., 2018) involves harnessing the
power of deep neural networks for RL tasks and has
led to groundbreaking results, including super-human
results in gameplay.

In spite of the successes in relatively tame and op-
timized environments, RL and DRL face a multitude
of challenges in adoption for real-world tasks (Dulac-
Arnold et al., 2019). One such challenge which has
recently seen breakthrough results is the credit assign-
ment problem where there are delays between agent
actions and rewards (Hung et al., 2019). Specifically,
Hung et al. developed an agent memory function that
credits past actions and enables them to solve pre-
viously intractable problems. Deep Reinforcement
Relevance Networks (He et al., 2016) and Dialog
State Tracking and Management (Zhao and Eskenazi,
2016) have shown phenomenal success in state track-
ing and credit assignment in natural language.

2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014a) are a deep learning framework
where two deep neural networks, a generator and a
discriminator, are simultaneously trained against each
other. Specifically, the discriminator is trained to de-
tect real from synthetic data (e.g., differentiating an
authentic image versus a synthetic image of a human
face (Tariq et al., 2018)) while the generator is trained
to generate authentic “looking” synthetic data from a
low-dimension seed.

In order to take a low-dimensional data seed and
generate synthetic data capable of fooling the discrim-
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inator, GANs must effectively impute missing data.
Lee et al. (Lee et al., 2019), developed a GAN which
converts image imputation into a multi-domain trans-
lation task, enabling a single generator and discrim-
inator to successfully estimate missing image data.
Following on successes in image data imputation,
GANs are being utilized for time series data impu-
tation. Time series data from many sensor networks
have an average missing data rate of around 80% and
the imputation of that missing data is critical to any
analysis efforts. Luo et al. (Luo et al., 2018) im-
plemented a gated recurrent unit (GRU), modified to
model temporal irregularity, into their GAN architec-
ture. Furthermore, they developed a loss function that
provides a fitness measure for imputed values. Zhang
etal. (Zhangetal., 2021) incorporate real data forcing
and an encoder network into their GAN architecture
to create imputed synthetic data that performs well in
numerous downstream tasks.

3 OUR APPROACH TO A
GENERAL DATA
DECONFLATION SOLUTION

We have now defined BSS and surveyed existing so-
lutions, thus we first propose a generalization of the
BSS problem before we present our vision for a gen-
eral solution.

3.1 From BSS to General Data
Deconflation

Data can be conflated in space (e.g., Figure 1), time,
and semantics as well as in any combinations of these
dimensions. The most common manifestation of the
multi-target tracking problem can be both spatial (as
arises in occlusion) and temporal (as in track assign-
ment). Pattern of life analyses have to deal with con-
flated semantics in which, for example, a commuter
combines a trip to work with an in-person meeting on
the commuter train.

Simple data is data (or a process) coming from a
single source. Complex or conflated data consists of
interwoven simple data objects coming from multi-
ple sources. Solutions to BSS of complex data re-
quire vector respresentable inputs, but it is not ap-
parent that this is broadly possible for general sepa-
ration tasks. Rather than vector representations, we
therefore propose to represent simple data as a state
machine (Schneider, 1990) and complex data as state
machine synthesis (Ginsburg, 1959).
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Our state machine representation for conflated
data is presented in Figure 3. We claim that an ob-
served event sequence (i.e., complex data) is the syn-
thesis of an unknown multiplicity of simple data ob-
jects. The Data Deconflation Problem is a general-
ization of the BSS Problem (Section 2.1): given an
observed event sequence, which simple data objects
are responsible for specific observed events? Further-
more, many separation solutions assume some a pri-
ori knowledge—whether a language spoken, some un-
derlying processes, beginning and ending parameters,
etc.—so we would like to be able to deconflate com-
plex data without any assumed background knowl-
edge.

Observed event sequence:
....abcbbbaaaababbabcccbdddbebdbabebabe....

P AL AN N T

—_ 4 4
A Hypothesis Lo AN I —
ST

Catalog of
Processes/Models Tracks

Figure 3: A state machine representation of conflated data
objects or processes.

3.2 A General Solution to the Data
Deconflation Problem

The approach that we describe below proposes to
solve hard deconflation problems by the extension
and application of DRL and GANs. We believe that
a general solution to the deconvolution problem can
be achieved by iterating between estimates of which
signal component or element is contributed by which
process (accomplished by DRL) and filtering done
by using generative networks seeded by small signal
samples.

To illustrate this iterative process, refer back to
Figure 1. We might be estimating a classification
based on a small sample portion of the image and
then completing the small portion for that class using
a generative model (e.g., sampling a small part of the
school bus and using that sample to generate a more
complete school bus image). We might then alter-
nately filter in and out the generated constituent image
to either isolate it and confirm identification or elimi-
nate it to allow focusing on other objects. Though we
are speculating about how a human might solve this
particular problem, it is a reasonable starting point for
investigating this difficult problem.

Our approach to the deconflation problem takes
place over two phases. In the first phase we use GANs
to model potential simple data objects based on ob-
served complex data. Once simple data models have
been generated, we will use DRL to approximate la-
beled complex data training sets by processes of inter-
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Figure 4: Our training process for deconflating complex data.

leaving and repetition of models. Once we have cre-
ated an approximation of observed complex data, we
use deep neural networks that have been trained to de-
convolve complex data. Both phases of this approach
are illustrated in Figure 4. This process is analogous
to learning to play a game—the observed complex data
sequence is the game state and label assignments are
the player moves.

4 CONCLUSION

The adoption and emerging ubiquity of Internet-
connected devices is leading us to a digital environ-
ment that is full of complex data streams that must
be correctly deconflated in order to conduct mean-
ingful analysis. While much of this data can be ad-
equately separated through traditional BSS solutions,
a non-trivial amount of this complex data is not vector
representable and thus requires new deconflation so-
lutions. In this paper we have described complex data
objects that cannot be deconflated by current BSS so-
lutions, and for which we have proposed a more gen-
eral data deconflation problem. Furthermore, we have
presented our vision for a general solution to the data
deconflation problem that extends recent advances in
DRL and GANS.

We are currently working on an initial proof-of-
concept implementation. Other ongoing work on this

effort includes a rigorous generalization of the data
conflation process from vector representations to state
machine representation (Section 3.1). We are also
designing experiments to determine the appropriate
structures for recurrent and/or convolutional neural
networks to learn minimal simple data object mod-
els. Once we have demonstrated results with estab-
lished with complex spatio-temporal data, we will ex-
tend our approach to non-spatio-temporal data, such
as semantic conflations that might appear in pattern
of life tracking.
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