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Abstract: Continuous elevation surfaces, which are commonly referred to as Digital Elevation Models (DEM), are vital 
sources of information in flood modelling. Due to the multitude of interpolation techniques available to create 
DEMs, there is a need to identify the best suited interpolation techniques to represent a localised hydrological 
environment. This study investigated the accuracies of commonly applied interpolation techniques including 
Inverse Distance Weighting (IDW), Nearest Neighbour (NN), Kriging, Spline and Topo to Raster 
interpolation techniques as applied to a 5-m interval elevation contours as a precursor to simulate a flood zone 
in the Roodepoort region in Johannesburg, South Africa. A 50 cm resolution DEM derived from aerial Light 
Detection and Ranging (LiDAR) point cloud was used as a reference to compare the five interpolations 
techniques. The Topo to Raster results were not significantly different from the reference data (P = 0.79 at 
95% confidence level), where elevation values were on average underestimated by 0.93 m. In contrast, the 
spline interpolation showed the highest significant difference from the reference data (P = 0.00 at 95% 
confidence level), with an average underestimation of the elevation by 69.84 m.  Outlier identification using 
standardized residual analysis flagged significant elevation outliers that were produced in the interpolation 
process, and it was noted that most of the outliers across all techniques coincide with areas that showed 
frequent topographical changes. Specifically, the largest significant differences using the Topo to Raster 
technique were overestimations of the elevation that occur in the upstream section of the tributary. The Spline 
technique in contrast showed significant underestimations of the elevation throughout the river system. 
Overall, the results indicate that the Topo to Raster technique is preferred to accurately represent the 
topography around a river system of the study area. 

1 INTRODUCTION 

Flooding is a globally occurring phenomenon that 
causes property loss and casualties all around the 
world (Teng et al., 2017). A flood is characterised by 
an overflow of water that submerges land that would 
usually be dry which is often referred to as the flood 
inundation area (Merz and Blöschl, 2008). The extent 
to which a given river will flood to is commonly 
referred to as a flood-line (the maximum extent of the 
flood inundation area) and is related to the effect that 
a specific volume of water has on a hydrological 
system through rainfall events (Nkwunonwo et al., 
2020). The statistical likelihood of a rainfall volume 
is commonly translated to 10-Year, 50-Year and a 
100-Year, and a flood event (Smithers, 2012). As part 
of South Africa’s Council for Scientific and Industrial 

Research’s (CSIR) Guidelines for Human Settlement, 
Planning and Design (CSIR, 1999), no urban 
development should be allowed in the demarcated 50-
year flood-line extent. The requirement itself 
originates from the National Building Regulation and 
Building Standards Act of South Africa (Act 103 of 
1997) and is solely based on safety considerations. 
The establishment of the flood-line extents therefore 
play a crucial role in any development along a river. 

In deterministic computer aided techniques of 
demarcating a flood-line, one of the most important 
aspects is the input elevation data that defines the 
geometry of the river and its surrounding basin 
(Saksena & Merwade, 2015). Flood-line mapping 
often produces results that vary with different sources 
of elevation data. The outputs are affected by the 
vertical accuracy which is determined by the 
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topography of the region and the spatial resolution of 
the elevation data (Li et al., 2010). In addition, the 
importance of interpolation algorithm accuracy is 
recognised as an integral component in representing 
the topography in numerical form (Chaplot et al., 
2006). If interpolation forms an integral component 
of defining topography, and the topography forms an 
important part of the flood-line process, it can be 
inferred that the interpolation procedure of elevation 
data plays an important role in the development of 
flood-line extents. 

For elevation data to be accurately incorporated 
into the flood-line modelling process, there needs to 
be spatial continuity in the elevation dataset by 
creating a raster surface referred to as a Digital 
Elevation Model (DEM). DEMs are derived through 
the process of interpolation, which refers to the 
prediction of a series of unknown values located 
between a limited number of sample points (Manuel, 
2004). Interpolation techniques, of which numerous 
techniques are available, are commonly used for 
geographic data that are represented as points or lines 
having elevation information. These techniques are 
commonly grouped into local/global, 
deterministic/geostatistical and exact/approximate 
classes (Erdogan, 2009). Local methods of 
interpolation include the Inverse Distance Weighting 
(IDW) and the Nearest Neighbour (NN) technique. 
Geostatistical methods of interpolation include the 
kriging method, which uses the spatial location of 
data points rather than relying on the elevation 
attribute values alone (Arun, 2013). The spline 
(sometimes referred to as rubber sheet) method is 
mathematical in nature and takes the form of a cubic 
equation whereby each known data point has a cubic 
equation where all splines pass through (Robinson & 
Metternicht, 2003).  

Different interpolation techniques applied to the 
same set of elevation data can result in varying DEM 
outputs (Arun, 2013). There is therefore a need to 
evaluate the suitability and accuracy of these 
interpolation techniques for a specific data and 
purpose. Erdogan (2009) investigated the relative 
accuracy of various interpolation algorithms for an 
area with high topographical variance in Turkey. The 
research evaluated various deterministic interpolation 
algorithms against a baseline survey grade dataset. 
The best results were obtained using the thin plate 
spline algorithm, a derivative of the spline algorithm 
itself. Zimmerman et al. (1999) compared the outputs 
of the IDW versus the kriging methodology and 
showed that the kriging method was able to adjust 
itself to the spatial variability of the data and by doing 
so, yielded better estimation of altitude for unknown 

sample points. In contrast, Aguilar et al. (2005) 
presented research from their study area in Almeria, 
Spain, that indicated that the IDW method was 
marginally better than the accuracy from the kriging 
model output.  

In 1984, Mark was the first to propose an 
algorithm for automatically delineating a drainage 
network from DEM data for specific applications in 
hydrological modelling (Mark, 1984). This study 
gave rise to the need for hydrological correction 
algorithms in the DEM interpolation process which 
includes the development of the Australian National 
University Digital DEM (ANUDEM), known as the 
Topo to Raster feature in ArcGIS, to generate 
elevation models that are hydrologically conducive to 
network extraction (Callow et al., 2007). The 
ANUDEM method creates an interpolated surface 
that preserves the critical geometry components 
required to define a hydrological system which 
includes ridgelines and stream networks (Arun, 
2013).  Pavlova (2017) presented research conducted 
in the Omsk region in Russia which evaluated the 
outputs from IDW, Kriging, Topo To Raster, Spline, 
Nearest Neighbour (NN) and the Triangulated 
Irregular Network (TIN) techniques. The findings 
indicated that on relatively flat areas, the best results 
were obtained using the Spline and IDW techniques. 
In a contrasting environment, Salekin et al.  (2018) 
conducted research into utilising Global Navigation 
Satellite Systems (GNSS) as a data source to generate 
a DEM in a landscape with a large degree of 
topographical variation in Marlborough, New 
Zealand. The GNSS data were used in various 
interpolation techniques including NN, Topo to 
Raster and IDW techniques. The quantitative research 
showed that the Topo to Raster technique showed the 
most accurate DEM results, while the IDW showed 
the least accurate results.  

Chaplot et al. (2006) investigated the suitability of 
various interpolation techniques across a 
mountainous region in Laos and undulating 
landscapes in France. The recommendations 
following the results of the study indicated that the 
accuracy of the various interpolation techniques 
needs to be tested in terms of their applicability to 
multiple resolution data (Chaplot et al., 2006). Many 
studies have been focused on modelling and 
identifying the spatial distribution of errors associated 
with DEM’s in order to remove DEM errors (Aguilar 
et al., 2010; Hu et al., 2009; Stal et al., 2012).  

The above studies show that the accuracy of 
interpolated elevation is affected by the topography 
of the area of interest and the interpolation techniques 
used to create the continuous surface. assessment, 
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with different interpolation techniques being more 
and less effective in varying landscapes. In South 
Africa, the Chief Directorate for National Geospatial 
Institute (NGI) produces a 5 m resolution elevation 
dataset that can be used by the public for different 
purposes. There is a significant gap in assessing the 
accuracy of the various interpolation outputs based on 
the NGI dataset against survey-grade elevation data 
sources. The limitations associated with the 
application of the 5 m resolution NGI dataset needs 
to be understood in terms of the identification of 
spatial distribution errors and the circumstances that 
lead to these errors. This study therefore aims to 
compare various interpolation techniques to derive a 
DEM data for the eventual development of flood-
lines using the 5 m NGI elevation contours in the 
Roodepoort region in Johannesburg, South Africa. 
The specific objectives of the study are to (1) compare 
various interpolation techniques conducted on the 
NGI elevation data source which includes the IDW, 
NN, Kriging, Spline and Topo to Raster techniques 
and (2) identify limitations associated with the 
interpolation accuracy of the NGI dataset. The 
performances of the interpolators will be evaluated 
using a high-resolution Light Detection and Ranging 
(LiDAR) derived DEM. It is expected that the 
comparisons of the various interpolators will 
contribute to hydrological modelling in South Africa 
by listing recommendations and limitations of the 
application of specific interpolation techniques to the 
5 m NGI data source for DEM outputs. 

2 METHODS 

2.1 Study Area 

The study area focuses on a 5-kilometre length of a 
river that is a tributary of the Wilgespruit River, 
between Willowbrook and Strubens Valley in 
Roodepoort, Johannesburg (Figure 1). The channel 
width ranges from between 5 and 20 m over the length 
of the study area and flows seasonally between 
October and March (Climate-data.org, 2019). The 
study area is composed of an urban residential 
composition, which is amongst the highest affected 
land-use classes affected by the effects of flooding 
(Davis-Reddy et al., 2017). 

The Roodepoort region receives approximately 
610 mm of rain per year, with the majority occurring 
during the summer months from November to 
February (Climate-data.org, 2019). The region is 
classified as warm and temperate according to the 
Köppen and Geiger climate classification (Conradie, 

2012). The warmest months by average temperature 
are between November and February. 

 

Figure 1: Research Area - Tributary of the Wilgespruit 
River, displayed in true colour Red-Greed-Blue (RGB) 
band combination. 

2.2 Data 

2.2.1 5 m Chief Directorate National 
Geospatial Contours 

The 5 m-resolution contour dataset from the DRDLR 
is generated by the Intergraph Dual Mass Camera 
(DMC) which captures stereo imagery at a GSD of 
0.5 m (NGI, 2018). The NGI also contracts service 
providers with similar cameras to acquire data owing 
to the scale of the operation. Currently, the NGI aims 
to capture 40% of the country every 3 years and the 
remaining areas every 5 years. The dataset included 
in this research is the 5 m contour dataset (referred to 
as the NGI dataset), which was last updated 8 
December 2009, for the study area.  

The 5 m resolution contour dataset has the largest 
spatial coverage compared with more recent high-
resolution survey campaigns that have been 
commissioned by the City of Johannesburg (COJ) 
Municipality. While higher resolution (that is, to 
smaller GSD) datasets are available for metropolitan 
areas in South Africa, sites that fall outside of the 
metropolitan area demarcations are at best covered by 
the 5 m contour offering. As such, the 5 m NGI 
dataset is a popular choice among specialists who 
seek to apply topographical elements to their 
respective studies. 

2.2.2 Light Detection and Ranging Point 
Cloud 

The LiDAR data for the study area was obtained from 
the COJ Municipality Corporate Geo-informatics 
Department. LiDAR is a popular method of surveying 
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that uses an active remote sensing system composed 
of at least three sensors, the Inertial Measurement 
Unit (IMU), the Global Positioning System (GPS) 
and the laser scanner (Csanyi & Toth, 2007). A target 
is illuminated by a light source through a laser beam 
and the time taken for the reflected beam to return to 
the sensor allows for the calculation of survey-grade 
measurements relating to the linear position of the 
target from the sensor (Vosselman, 2003). 
Advancements in optical and computing technologies 
have seen the emergence of LiDAR as a rapid and 
accurate terrain mapping tool (Lohani & Ghosh, 
2017). The COJ municipality region distributes an 
aerial-based LiDAR data that is acquired by a 
contracted service provider every three years. The 
data sourced for this study was acquired in June 2012. 

The native format for the LiDAR data includes 
American Standard Code for Information Interchange 
(ASCII)-based text files that contain information 
relating to each point’s location and elevation, which 
collectively form a point cloud. The LiDAR point 
clouds used in the present study had a point density 
of 0.2 points per square meter with an approximate 
average spacing between neighbouring points of 2 m. 
Therefore, LiDAR is acknowledged for its survey-
grade level of accuracy (Vosselman, 2003; Lohani & 
Ghosh, 2017). The horizontal accuracy of the LiDAR 
data had a 0.048 m root mean square error (RMSE), 
and a vertical accuracy of 0.32 m RMSE as verified 
using a network of seven ground control points. The 
points were classified into ground and non-ground 
points by the data supplier, with the ground points 
representing the physical ground level, while the non-
ground points represented all features above ground 
including vegetation and structures. The ground 
points were used in the present study to serve as the 
baseline dataset to evaluate the relative accuracy of 
the different interpolation techniques applied to the 5 
m elevation contour dataset. 

2.3 Analysis 

To produce continuous digital representations of a 
surface, interpolation techniques were derived to 
calculate unknown values that lie between known 
values. In this study, five interpolation techniques 
conducted on the 5 m resolution NGI dataset were 
compared, namely IDW, NN, kriging, spline, and 
Topo to Raster algorithms.   

IDW is a non-linear, deterministic interpolation 
technique that computes a weighted average of a 
value from sample points in close vicinity to 
determine the value of non-sampled points (Robinson 
& Metternicht, 2003). The IDW principle was first 

presented by Shepard (1968) for improved efficiency 
of the central processing unit time. Today, the IDW 
process is one of the most widely applied methods of 
interpolation in the hydrological environment. The 
IDW principle assumes that values which are close 
together are more alike than values that are further 
away. To calculate the value of an unknown point at 
a location, the weighted average of the surrounding 
known values is calculated and assigned to the 
unknown point. Known values that are closer to the 
location of the unknown point are given a higher 
weighting ranking in the calculation, and therefore 
have a larger influence on the determination of the 
unknown value, opposed to known values that are 
further away. Definitions of the neighbouring radius 
for the calculation and the power function 
representing the inverse distance relationship 
between the points are critical parametres for this 
interpolation method. The formula for the IDW 

interpolation is defined as  𝑍 ൌ
∑ ௭

ಿ
సభ .ௗ

ష

∑ ௗ
షಿ

సభ
 , where 𝑍 

= value of variable Z in point I; 𝑍 = the sample in 
point I; 𝑑 = distance to the sampled point from the 
unknown point; N = coefficient that defines the 
weight that will be based on the inverted distance 
function; n = total number of predictions allowed for 
each validation (Shepard, 1968). 

The NN Interpolation model is based on the 
Sibson interpolation model, where values are 
assigned to un-sampled points based on the 
construction of Thiessen polygons which work 
together to form areas of overlap (Sibson, 1980). The 
polygons are formed across all known values 
surrounding the unknown value by connecting all 
common values into a network of Thiessen polygons 
which represent all known values. A new Thiessen 
polygon is then generated over the unknown value, 
and the proportion of the overlap between this new 
polygon versus the network of intersecting polygons 
previously generated define the weighting system to 
be used. The formula used for the NN interpolation is 
identical to IDW, with the only difference coming 
from the method used to calculate the weightings. The 
NN interpolation formula is defined as 𝑍ሶሺ𝑢ሻ ൌ
∑ λሺuሻ  ൈ z୧

ே
ୀଵ , where λ୧ሺuሻ ൌ

ୟ୰ୣୟ ୡ୭୬୲୰୧ୠ୳୲ୣୢ ୠ୷ ୭୪୷୭୬ ୧

୭୲ୟ୪ ୟ୰ୣୟ ୭ ୮୭୪୷୭୬
 and u = (x,y) location of 

query point (Rukundo & Cao, 2012). 

Kriging is a stochastic local interpolation 
technique that computes the value of non-sampled 
points in a similar way to IDW, with the exception 
that there is more control on the weighting system that 
determines unknown values based on distance 
(Robinson & Metternicht, 2003). The kriging model 
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was developed by Danie Krige, who formed the basis 
of what would later be called the kriging process in 
1951 through research presented in the Journal of the 
Chemical, Metallurgical and Mining Society of South 
Africa in the 1960s (Cellmer, 2014). Krige (1951) 
applied the kriging technique to survey two gold 
mines to understand resource estimation based on 
borehole data. An ordinary kriging equation is 
defined as 𝑍ሺ𝑠ሻ  ൌ  ∑ λ zሺs୧ሻ


ୀଵ , where, λ = weights 

assigned to each known value, where all weights sum 
to a unity which enables unbiased estimations which 
are defined as ∑ λ୧


ୀଵ ൌ  1 . The matrix equation 

calculating the weights is defined as C = 𝐴ିଵ ൈ 𝑏 
,where 𝐴  = matrix of semi-variance between the 
known values; 𝑏 = estimated semi-variances between 
the known values and unknown value, represented by 
a vector (Krige, 1951; Krige, 1952). 

The spline interpolation is a piecewise polynomial 
interpolation method that creates a smooth raster 
surface from the known sample points using a 2-D 
minimum curve technique (Robinson & Metternicht, 
2003). The resulting surface passes through all known 
sample points. The spline method is mathematical in 
nature and takes the form of a cubic equation whereby 
each known data point has a cubic equation through 
which all splines pass (Robinson & Metternicht, 
2003). Jenkins (1927) and Schoenberg (1946) can be 
credited with the origins of the spline method of 
interpolation. The spline cubic equation is defined as 
𝑆ሺ𝑥, 𝑦ሻ ൌ 𝑇 ሺ𝑥, 𝑦ሻ  ∑ 𝜆𝑅ሺ𝑟ሻ

ୀଵ , where 𝑗 = 
1,2,… 𝑁 , 𝑁  is the number of points, 𝜆  are the 
coefficients found by the linear equation solution and 
𝑟 is the distance from the point (x,y) to the 𝑗௧ point 
(Meijering, 2002). 

ANUDEM is based on a program developed to 
ANUDEM is based on a program developed to 
interpolate elevation values across a topographical 
surface by Hutchinson (1988). The algorithm 
generates elevation models that are hydrologically 
conducive to network extraction (Callow et al., 
2007). In the 1980s, a study done by Mark (1984) 
proposed an algorithm for automatically delineating a 
drainage network from DEM data. This study gave 
rise to the need for hydrological correction algorithms 
in the DEM interpolation process which includes the 
development of the ANUDEM. This interpolation 
technique provides a compromise between local 
interpolation methods such as IDW and global 
interpolation methods such as kriging, by allowing 
the resultant DEM values to follow abrupt changes in 
terrain which include streams, ridges and cliffs, thus 
preserving topographical continuity (Pavlova, 2017). 
The Topo to Raster interpolation is the only algorithm 
featured in ArcGIS that is preferentially applied to 

contour datasets. The Topo to Raster interpolation is 
defined by the equation 𝐽ଵሺ𝑓ሻ ൌ ሺ𝑓௫ 

ଶ  𝑓௬
ଶሻ𝑑𝑥𝑑𝑦, 

where 𝐽ଵ is known as a local interpolation technique 
that is well-suited for features with a better resolution. 
Then 𝐽ଶሺ𝑓ሻ ൌ ሺ𝑓௫௫ 

ଶ  𝑓௫௬
ଶ  𝑓௬௬

ଶ ሻ𝑑𝑥𝑑𝑦, where 𝐽ଶ is 
known to create unrealistically flat surfaces as 
commonly seen by global interpolation techniques. 
Hutchinson's ANUDEM program revolves around a 
compromise between 𝐽ଵ𝑎𝑛𝑑𝐽ଶ  as follows: 𝐽ሺ𝑓ሻ ൌ
 0.5 ൈ ℎିଶ𝐽ଵሺ𝑓ሻ  𝐽ଶሺ𝑓ሻ , where ℎ  is the spatial 
resolution of the output surface model (Hutchinson, 
1988). 

2.4 Accuracy Assessment 

A buffer measuring 100 m was created around the 
river’s centreline. Points were then generated at 100 
m intervals along the extent of the buffer, from which 
LiDAR elevations were extracted within a 5 m 
average distance from each point, resulting in a total 
of 103 LiDAR spot elevations. Figure 2 shows the 
positions of the spot elevation points, plotted against 
a 2018 WorldView-2 derived satellite image that is 
rendered in red, green and blue (RGB). These 
elevation values, along with their X and Y positions, 
represent the most accurate remotely sensed dataset 
available for this study and were therefore used as 
reference data to compare the different surfaces 
created using the five interpolators applied to the 5 m 
contour data. While a field-collected differential real-
time kinematic GPS system will provide the highest 
level of accuracy, the intention of the research 
presented is to utilise practical and readily available 
datasets, such as the COJ distributed LiDAR. 
Elevation values of the five interpolated surfaces 
were extracted at each of the above-mentioned 
LiDAR spot elevation locations. The T-test and 
residual analysis was used to compare the 
interpolated surfaces against the baseline LiDAR 
elevation values. 

2.4.1 Comparing the Output Elevations of 
the Interpolated DEMs against the 
Reference LiDAR Elevations 

The T-test is a statistical procedure that is commonly 
used when investigating the relationship between 
variables by comparing the means on the dependent 
variables against the baseline or independent variable 
(Green & Salkind, 2012). The T-test was chosen due 
to the flood extent comparisons involved at each 
measurement station, where more than one dependent 
set of results is be compared to the baseline LiDAR 
flood-line extents. The P-value from the T-test output 
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is used to assess the degree of difference between the 
means of the interpolation elevation versus the 
baseline LiDAR elevation. The applied T-test 
formula is a generalisation of a two-sample T-test 
(Ostertagova & Ostertag, 2013) and is defined as 𝐹 ൌ
 
ெ ௦௨ ௧௪ ௨௦ ሺெௌீሻ

ோ௦ௗ௨ ெ ௌ௨ሺோெௌሻ
  where 𝑀𝑆𝐺 ൌ

 
∑ ቆ


మ


ቇି ீమ/ೖ

సభ

ିଵ
  and 𝑅𝑀𝑆 ൌ  

∑ ∑ ೕ
మି ∑ ሺ


మ


ሻೖ

సభ

ೕసభ  ೖ

సభ

ି
, 

where 𝑌 is the observation distances from the stream 
centreline for each output, 𝑇 is the sum of each group 
of distances from the stream centreline, G is the total 
of all observations being compared for the variance 
(model output being assessed versus baseline LiDAR 
output), 𝑛 is the number of observations in group i 
and n is the total number of observations being 
analysed for the variance. The T-test and associated 
P-values were calculated using Microsoft Excel 
(Microsoft Corporation, 2019). 

 

Figure 2: Location of observations for analysis, displayed 
in true colour RGB band combination. 

2.4.2 Identification of Outliers from the 
Interpolated DEMs against the LiDAR 
Reference Data 

Analysis of residuals forms part of a regression 
analysis which is designed to assess model adequacy 
(Martin et al., 2017). Regressions are typically 
applied to assess the accuracy of a predicted model 
against actual values (Martin et al., 2017). Because 
the research purpose is accuracy assessment, as 
opposed to model fitting, regression analysis was not 
chosen as an accuracy assessment tool in this 
research. However, components of the regression 
analysis remain useful tools in location-based 
analytics, such as the residual analysis which allows 
for reference to a specific observation and its 
associated spatial location. Residuals are defined as 
the vertical distance ሺ𝑟 ) between the observed 

measurement and the predicted measurement (𝑟  = 
𝑦 െ 𝑦ො. ሻ, represented by a linear regression line. In 
this research, the observed distance (𝑦) represents the 
linear regression from the baseline LiDAR elevation 
while the predicted measurement (𝑦ො) represents the 
vertical elevation difference between the 
interpolation surface being assessed (Topo to Raster, 
kriging, NN, IDW, spline). 

Outlier identifications in data have been applied 
successfully through the usage of standardised 
residuals (Sousa et al., 2012; Miller, 1993, Salekin et 
al., 2018) and are defined by the formula 𝑟௦ୀ 

 

௦
 , 

where the standardised residual (𝑟௦ ) is the residual 
value (𝑟) divided by its standard deviation (𝑠ሻ. At a 
95% confidence level, it is expected that 95% of the 
data falls within 2 standard deviations of the mean 
(Sousa et al., 2012). Data points falling lower than -2 
and higher than 2 on the standardised residual plot 
will therefore represent outliers. The incorporation of 
a standardised residual analysis allows for the 
identification of interpolated elevation output 
observations that are significantly different to the 
baseline LiDAR elevation values, which in turn 
allows for a spatial expression of the results observed. 

The methodology starts with the running of the 
various interpolation procedures. As the focus of the 
assessment is on the influence of interpolation 
techniques on hydrological modelling environments, 
a streamflow analysis was run on the baseline LiDAR 
dataset, from which a 100 m buffer was generated. 
LiDAR points were then selected using proximity 
analyses at every 100 m interval along the extent of 
the buffer. Interpolated elevation values were then 
extracted from each interpolation process at each 
LiDAR elevation point every 100 m along the buffer 
zone. All GIS-based processing procedures were 
conducted using ArcGIS (ESRI, 2019). The 
interpolated elevation observations were then 
compared against the LiDAR elevations using a T-
test and residual analysis in Microsoft Excel 
(Microsoft Corporation, 2019). 

A buffer measuring 100 m was created around the 
river’s centreline. Points were then generated at 100 
m intervals along the extent of the buffer, from which 
LiDAR elevations were extracted within a 5 m 
average distance from each point, resulting in a total 
of 103 LiDAR spot elevations. These elevation 
values, along with their X and Y positions, represent 
the most accurate remotely sensed dataset available 
for this study and were therefore used as reference 
data to compare the different surfaces created using 
the five interpolators applied to the 5 m contour data. 
While a field-collected differential real-time 
kinematic GPS system will provide the highest level 
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of accuracy, the intention of the research presented is 
to utilise practical and readily available datasets, such 
as the COJ distributed LiDAR. Elevation values of 
the five interpolated surfaces were extracted at each 
of the above-mentioned LiDAR spot elevation 
locations. The T-test and residual analysis was used 
to compare the interpolated surfaces against the 
baseline LiDAR elevation values. 

3 RESULTS 

3.1 Differences between Interpolated 
Elevations and LiDAR Elevations 

The T-test presented in this section yields information 
on the degree of variance between the elevation 
values obtained from each interpolation against the 
baseline LiDAR elevation values. The T-test was run 
at an alpha = 5%. The outputs from the T-test for the 
various interpolation algorithms are presented in 
Table 1 which has been sorted from most accurate to 
least accurate. 

The Topo To Raster interpolation had the highest 
correlation with the baseline LiDAR elevation with a 
P value of 0.75. The lowest P value obtained indicates 
a relatively strong correlation to the LiDAR baseline 
elevations when compared against the other 
interpolation techniques. The mean value from the 
Topo to Raster techniques elevation values are close 
to the mean value of the LiDAR elevations (1553.99), 
with the Topo To Raster interpolation generally 
underestimating the elevation by 1.10 m. 

The T-test results indicate NN to have the second 
highest correlation to the baseline LiDAR elevation 
with P value of 0.78. The P value indicates a relatively 
good correlation to the LiDAR baseline elevations 
when compared against the other interpolation 
techniques. The mean value from the NN techniques 
elevation values are close to the mean value of the 
LiDAR elevations (1553.99), with the NN 
interpolation generally underestimating the elevation 
by 0.96 m. The Kriging T-test results show this 
technique to marginally be the third most accurate 
interpolator with results similar to the NN technique 
with a P value of 0.79. The IDW T-test results are 
within close range of the Kriging and NN 
interpolators, showing a relatively good correlation to 
the baseline LiDAR elevations with P value of 0.79. 
Both Kriging and IDW mean outputs indicate a 
general underestimation of the elevation by 0.95 m 
and 0.93 m respectively in relation to the LiDAR 
mean value. 

The spline T-test results show the highest variance 
to the baseline LiDAR by far with a P value of 0.00. 
The negligible P value and highest mean deviation 
from the LiDAR elevation with a general 
overestimation of -69.84 m indicate that the spline 
interpolation technique is unsuitable for deriving a 
suitable DEM from the NGI 5 m dataset.  

Table 1: T-test results across all interpolation techniques 
results. Each interpolation was compared against the 
LiDAR mean elevation of 1553.9 m. 

Interpolation 
Technique 

Mean Elevation 
(Meters above 
mean sea level) 

Mean 
Difference 
between 
LiDAR and 
Interpolator 
(meter) 

*P Value 

Topo To Raster 
(ANUDEM) 1553.06

 
0.93 

0.754

NN 1553.04

0.95 

0.787

Kriging 1553.04

0.95 

0.787

IDW 1552.89

1.10 

0.791

Spline 1623.83
-69.84 

0.000

*P value was measured using 95% confidence level 

3.2 Identification of Outliers from the 
Interpolated DEMs Relative to the 
LiDAR Data 

The plotted residual results are presented for each 
interpolation technique in Figure 3. The results 
graphically illustrate the outliers of significance that 
can be related to a spatial location, which forms a 
platform for the subsequent discussion around the 
results seen. Residuals of Topo to Raster, NN, IDW 
and kriging share a similar distribution throughout the 
plot. The spline residual plot results resemble the 
same general distribution as the other interpolators 
but appear to have larger variances along the residual 
plot. 

The Topo to Raster, NN, kriging and IDW 
residual points all show a dependent positive 
correlation to the LiDAR elevations with a wave-
form trend about the Y-axis. Elevations of 1500–1540 
m and 1560–1600 m show a general underestimation 
of elevation values by the Topo to Raster 
interpolation. For elevation values of 1540–1560 m, 
the Topo to Raster interpolation overestimates the 
elevations. Highly significant outliers occur at higher 
elevation values at around 1600 m. The IDW and 
kriging interpolation outputs have similar 
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standardised residual plots, while the Topo to Raster 
and NN interpolation outputs share similarities in 
their standardised residual plots. The spline 
interpolation residual points also show a general 
dependent positive correlation to the LiDAR 
elevations, but in comparison to the other 
interpolators, the spline results have a larger residual 
variance. Larger underestimations in elevation values 
are seen at 1530–1550 m, with the same general 
observation of higher overestimations of elevations at 
1600 m. 

 

Figure 3: Combined standardised residuals across all 
interpolation techniques with significant outliers identified 
with labels. 

Table 2 shows the name and location of the 
elevation values that were identified through the 
residual plot shown in Figure 3. Observations 13, 14, 
21, 23 and 24 show overestimations of the elevation 
across all interpolation techniques except for the 
spline technique. Observation 19 shows 
underestimations of elevation in the kriging and IDW 
technique while observations 69, 70, 71 and 75 show 
underestimations of the elevation only in the spline 
technique. 

Table 2: Significant outliers Identified from standardised 
residual plot analysis. 

 

Figure 4 shows the identified locations of the 
significant residual outliers in the upper section of the 
tributary (Locations 11, 13, 14, 19, 21, 23 and 24). 
The downstream section of the tributary shows a 
higher correlation between the LiDAR elevation and 

interpolated algorithms that are within a 95% 
confidence level of vertical elevation difference. A 
large concentration of outliers can be seen in the 
upstream section of the tributary, where 5 of the 6 
observation outliers identified are overestimations of 
elevation. The remainder of residual outliers 
identified (69, 70, 71 and 75) are all identified from 
the spline interpolation with significant elevation 
deviations (all 13 m under the LiDAR elevation). 

 
Figure 4: Identified standardised residual outlier locations, 
displayed in true colour RGB band combination. 

4 DISCUSSION 

The results obtained in the interpolation output 
compared against the reference LiDAR data indicate 
that the Topo to Raster interpolation technique yields 
marginally more accurate DEM surfaces than the 
other interpolators, based on the T-test. The Topo to 
Raster results agree with existing bodies of research 
(Arun, 2013; Salekin et al., 2018) indicating that the 
Topo to Raster technique preserves critical 
components of the hydrological environment and by 
doing so, is the most accurate under these conditions. 
The spline interpolation technique was the most 
inaccurate and is unsuitable for the application on the 
5 m NGI dataset to create a DEM. These results from 
the spline methodology are inconsistent with findings 
from Erdogan (2009) and Pavlova (2017) who found 
that the spline methodology yielded marginally more 
accurate results in comparison to other interpolations 
assessed. It must, however, be noted that Erdogan 
(2009) utilised a thin-plate spline algorithm which is 
a derivative of the original spline technique; this was 
not used in the research presented here, and Pavlova’s 
(2017) findings are representative of an area with low 
topographical variations. All other interpolation 
techniques assessed in the results presented as part of 
this research show good applicability with marginal 
differences in variation to the baseline LiDAR.  

Topo To Raster  NN  Kriging  IDW  Splin

Standardised 
Residual 

Distance 
to LiDAR 
Elevation 

Standardised 
Residual 

Distance 
to LiDAR 
Elevation 

Standardised 
Residual 

Distance 
to LiDAR 
Elevation 

Standardised 
Residual 

Distance 
to LiDAR 
Elevation 

Standardised 
Residual 

2.14  5.20  2.02  4.91  2.30  5.74  2.29  5.75  0.62

4.39  10.63  4.46  10.83  4.24  10.60  4.22  10.60  1.71

‐1.61  ‐3.90  ‐1.61  ‐3.90  ‐2.16  ‐5.41  ‐2.17  ‐5.44  0.17

2.73  6.62  2.67  6.49  2.15  5.37  1.95  4.89  1.42

2.45  5.93  2.62  6.35  1.82  4.56  1.81  4.55  1.10

2.52  6.12  2.44  5.91  2.74  6.86  2.73  6.85  1.14

‐0.69  ‐1.67  ‐1.18  ‐2.86  ‐1.51  ‐3.77  ‐1.49  ‐3.74  ‐2.17

‐1.06  ‐2.57  ‐1.13  ‐2.74  ‐0.13  ‐0.32  ‐0.12  ‐0.29  ‐2.07

‐1.38  ‐3.34  ‐1.17  ‐2.84  ‐0.80  ‐2.00  ‐0.78  ‐1.97  ‐2.14

0.07  0.17  ‐0.51  ‐1.24  ‐0.54  ‐1.34  ‐0.52  ‐1.31  ‐2.09
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Spatial representations of the outliers as identified 
from the residual analysis reveal a large concentration 
of points to the upper part of the tributary which fall 
on a garden refuse site (Figure 4). Due to the 
differences in the temporal acquisition of the data, the 
garden refuse site would have undergone 
topographical changes to its the baseline LiDAR 
(acquired in June 2012) compared to NGI (acquired 
in December 2009). Figure 5 illustrates the 
progression of the area, identified as the Weltevreden 
Park PickitUp garden refusal site, between 2006 and 
2019 which shows the visible changes in topography 
over 13 years. Changes in the surface topography 
across this site over time have a direct influence on 
the elevation values observed during the LiDAR and 
NGI data acquisitions. These elevation value 
differences are prominent in the residual analysis, 
which shows a large concentration of residuals with a 
variance larger than 5 m in and around the refuse site. 
The residual interpretation further indicates the spline 
interpolation’s output is unsuitable for accurate DEM 
interpolation from the 5 m NGI data source. 

 

Figure 5: PickitUp garden refuse site surface changes: 
2006-2019, displayed in true colour RGB band 
combination. 

The differences in elevation values between the 
NGI versus the LiDAR data reveals large differences 
in elevation values in the refuse site region, located in 
the upper section of the tributary (Figure 2.7). The 
NGI surface along this section is almost constantly 
below the LiDAR surface which shows clear 
definitions of a dump feature (Figure 2.8). This is 
indicative of changes in the surface between the 
acquisition of the 5 m NGI dataset (December 2009) 
and the LiDAR dataset (June 2012) which is 
statistically shown with the underestimation of the 
elevation values with the 5 m NGI dataset. The profile 
comparisons show a high degree of variance with 
regards to topographic changes that have occurred 
over the dumpsite, highlighting differences in 
temporal resolution as shown in Figure 6. 

 

Figure 6: Profile comparisons for LiDAR (Left) versus NGI 
(Right) along A-B. 

5 CONCLUSION 

The findings of this study indicate that the Topo to 
Raster interpolation technique is the most favourable 
for the 5 m contour data of the localised study area. 
The results also indicate that while the application of 
the Topo to Raster technique yielded the most 
accurate results, the NN, kriging and IDW techniques 
were close to the Topo to Raster technique. These 
results imply that the application of the NN, kriging 
and IDW interpolation techniques to the 5 m NGI 
dataset will yield DEMs with similar vertical 
accuracy. 

While the results indicate that the Topo to Raster 
technique is the most accurate, it must be 
acknowledged that certain interpolation techniques 
are likely to yield the most favourable results in the 
environments for which they were originally 
developed. The Topo to Raster interpolation 
algorithm was specifically formulated for its 
application in hydrological environments 
(Hutchinson, 1988), while the geostatistical method 
evaluated in this research (kriging) and local methods 
(NN and IDW) are limited by the resolution and 
spread of data (Al Mashagbah et al., 2012). Research 
into the interpolation technique to be applied and its 
favourability to different spatial distributions of data 
should always be taken into account when 
interpolating elevation datasets (Cellmer, 2014). Due 
to advancements in technology and information, it is 
also likely that the defining geometry (point, line or 
polygon) of the elevation data sources may change 
from line-based contour elevations to point-cloud 
elevation formats, which will also play a significant 
role in determining the ideal interpolation technique 
to apply. 

The results presented in this research are specific 
to the application on the freely and nationally 
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distributed South African NGI contour dataset. The 
residual analysis indicated substantial differences in 
elevation between areas for the reference LiDAR and 
NGI datasets, which is attributed to differences in 
temporal resolution. As access to spatial information 
in South Africa increases in association with 
advancements in survey techniques, future 
assessments should be performed on the most 
temporally relevant data available. The findings 
indicate that while the usage of lower spatial 
resolution datasets such as the 5 m data used in the 
present study may be acceptable in terms of RMSE, 
the need for access to more temporally relevant 
datasets is crucial to accurately represent 
topographical information for an area.  
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