

Derivation of Logical Aspects in Praxeme from ReLEL Models

Rapatsalahy Miary Andrianjaka1, Razafimahatratra Hajarisena1, Ilie Mihaela2 Mahatody Thomas1,
Ilie Sorin2 and Razafindrakoto Nicolas Raft3

1Laboratory for Mathematical and Computer Applied to the Development Systems, University of Fianarantsoa,
Fianarantsoa, Madagascar

2Dept. of Computers and Information Technology, University of Craiova, Craiova, Romania
3Laboratory of Multidisciplinary Applied Research, University of Antananarivo, Antananarivo, Madagascar

Keywords: Service-Oriented-Architecture, Model-Driven-Architecture, Requirements Model, Praxeme Methodology,
Universe of Discours, ATL, ReLEL, UML Modeling.

Abstract: The Praxeme methodology for enterprise architecture combines MDA (Model Driven Architecture) and SOA
(Service Oriented Architecture) approaches by structuring the information system with a basic unit called the
logical service. To capture the complexity of the system, it separates the facets of the company into a
homogeneous set called aspects. The eLEL (elaborate Lexicon Extended Language) requirement model
groups together the terms used by the company with their precise definition which makes it well suite to be
integrated into the initial phase of Praxeme called the intentional aspect. From this aspect, eLEL can derive
business logic services for the logical aspect of Praxeme. The logical aspect of Praxeme plays an important
intermediary role between the enterprise and IT. It offers the possibility of describing the computer system in
terms independent of technology. However, business logic services obtained from eLEL are not exploitable
as skeletons of code of an object-oriented application, which is the next phase of Praxeme called the software
aspect. For this reason we chose to use the ReLEL (Restructuring extended Lexical elaborate Language)
requirement model for the initial phase of Praxeme, the intentional aspect. ReLEL is a terminology database
and has very precise information about the conceptual representation of an information system. For this
reason, we were able to create an automated derivation process using ATL (ATLAS Transformation
Language) that uses the intentional aspect represented with ReLEL, to obtain the semantic and logical aspects
of Praxeme. To validate our approach, we evaluated the performance of the two different methods on the
same case study. The performance show our proposed approach is superior to eLEL, the most recent
comparable requirements model. ReLEL offers 92% accuracy on the generated logic model in the logical
aspect of the Praxeme methodology compared to eLEL which offers just 61.3%.

1 INTRODUCTION

The development of a company’s information system
is a complex task (Boussis & Nader, 2012). Among
the greatest difficulty it encounters is describing the
synergy of expertise and interactions that the
company requires for normal operation (Vauquier,
2006). Therefore, the Praxeme methodology is
essential to overcome this obstacle. Praxeme shares a
common framework for accommodating skills and
their articulation (Vauquier, 2006). The Praxeme
methodology provides a framework of representation
for the topology of the enterprise system. This system
is categorized in seven aspects, each of which is
represented by a particular UML model (Rumbaugh
et al., 1999) and (Razafindramintsa et al., 2017). This
paper deals in particulary with the three representative
aspects of enterprise architecture : i) the intentional

aspect, ii) semantic aspect (Rapatsalahy et al., 2020) as
well as ii) the logical aspect of the Praxeme
methodology (Razafindramintsa et al., 2017). The
intentional aspect containes the detailed user
requirements of the enterprise. (Biard et al., 2013)
states that the intentional aspect of Praxeme must be
expressed in a language close to natural language so
that it is understood by all. Thus, there is the need for
a lexicon called natural language oriented requirements
model to represent it. Since the ReLEL requirement
model is a terminology database and has very precise
information about the conceptual representation of a
system (Rapatsalahy et al., 2019,2020), the main
contributions in this paper are based on four very
distinct points. First, we instantiate the ReLEL
requirement model in Praxeme to represent the
intentional aspect of the methodology. Then we
defined transformation rules to derive the semantic

Andrianjaka, R., Hajarisena, R., Mihaela, I., Thomas, M., Sorin, I. and Raft, R.
Derivation of Logical Aspects in Praxeme from ReLEL Models.
DOI: 10.5220/0010493004130420
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 413-420
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

413

aspect of Praxeme from the ReLEL requirement
model. Then we proposed a logical factory metamodel
for the logical aspect of Praxeme. Finally, we have
defined transformation rules to derive the logical
aspect from the semantic aspect of Praxeme.

2 RELATED WORK

This section summarizes the research literature has
focused on the use of the requirement model such as
SBVR, eLEL and ReLEL in the Praxeme
methodology (Biard et al., 2013), (Razafindramintsa
et al., 2016), (Razafindramintsa et al., 2017) and
(Rapatsalahy et al., 2020).

(Biard et al., 2013) present an approach to use the
Praxeme methodology to transform the company. The
authors begin with the pragmatic aspect in order to
extract from the messages exchanged between the
various actors the business objects and their data
which constitute the semantic aspect of Praxeme.
Then to etablish the business and organizational rules
in the semantic and pragmatic aspects, they advocate
the use of the SBVR to represent the intentional
aspect of Praxeme.

(Razafindramintsa et al., 2016) have proposed the
automatic derivation of the semantic aspect of
Praxeme from the eLEL requirement model. The
authors used the eLEL requirement model to
represent the intentional aspect of Praxeme. eLEL is
a lexicon rich in conceptual information proposed in
(Razafindramintsa et al., 2015). They established
rules for the derivation of the eLEL requirement
model into a UML class diagram and transition state
machine of the semantic aspect of the Praxeme
methodology. Then to make automatic the
articulation of the intentional aspect in semantics,
they formalized the derivation rules with the ATL
language (Jouault & Kurtev, 2005).

(Razafindramintsa et al., 2017) present an
approach to automatically locate logical services
from the eLEL model to reduce the time spent on
SOA modeling and implementation as well as
enterprise architecture. To do this, the authors derived
the semantic and pragmatic aspect obtained in logic
factory, data structure and logical workshop from the
logical aspect of Praxeme.

(Rapatsalahy et al., 2020) aim at automatically
generating software components from the intentional
aspect of the Praxeme methodology represented by
ReLEL. To do so, they have proposed rules to
automatically translate the logical components
obtained from ReLEL and the semantic model into
software components while taking into account the

choice of technology used in the technical aspect of
Praxeme. ReLEL is an extension of the eLEL
metamodel in terms of its conceptual representation
(Rapatsalahy et al., 2019).

3 BACKGROUND

This section presents the three main concepts
developed in this work. First, it describes the service
architecture, the approach used by the Praxeme
methodology to build a system. Second, it presents
the ReLEL lexicon, a model that allows to represent
the intentions of the enterprise within the intentional
aspect of Praxeme. Finally, this section explains the
concept of model transformation with MDA, which is
used during articulating aspects of the Praxeme
methodology.

3.1 Service Architecture

(Medvidovic & Taylor, 2010) argues that software
architecture is at the heart of every system and thus
plays a key role as a bridge between requirements and
implementation. Therefore, using their reasoning, our
approach would be a means to control the complexity
of systems construction and evolution. However, the
enterprise requires the software architect to manage a
large amount of information and questions that are
useful to describe different jobs and business
(Vauquier, 2006). This suggests that using an
enterprise architecture method would help. The main
goal of enterprise architecture is to perfectly align an
enterprise’s information system with its strategy
(Biard et al., 2013). For this purpose we use Praxeme,
which is an enterprise architecture method that makes
it possible to achieve this objective by grouping the
facets of the enterprise in categories called "aspects".
An aspect is a component of the system that is linked
to a point of view, a type of concern, a specialization
(Vauquier, 2006). The Praxeme methodology is
meant to design software that is to be implemented
using a Service Oriented Architecture (SOA)
(Valipour et al., 2009). Consequently, it structures the
system with the elementary unit called logical
service. The logical services’ role is to respond to the
need for information, action or transformation
(Vauquier, 2006). They are arranged in logical
aggregates on three levels of aggregation, namely,
logical machines, logical workshops (packages
grouping strongly linked machines), and logical
factories (packages corresponding to domains) (Fig.
1) (Vauquier, 2006). There are two categories of
services depending on its location in either a business

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

414

logic machine or an organizational logic machine. In
order to solve the problem raised in this paper, we
focus on the services located in the business logic
machine because they are the preferable means to
identify the software components (class, method) of
Praxeme (Rapatsalahy et al., 2020).

Figure 1: Nesting of the logical aggregates (Vauquier,
2006).

3.2 Restructuring Extended Lexical
Elaborate Language

ReLEL is a model expressed in natural language
allowing to specify both the requirements and the
conceptual level of a system (Rapatsalahy et al.,
2019). It captures significant words or phrases in the
UofD and then saves them as “symbols”. Each
symbol in the ReLEL lexicon belongs to one of the
following categories: subject, object, verb or state.
Symbols that are classified as subject, verb and object
are the elements integrating requirements (Niu &
Easterbrook, 2008). The conceptual linking of
ReLEL symbols is done through the concept of
circularity (Rapatsalahy et al., 2019). The three
objectives of ReLEL are: (i) the unification of the
language allowing the communication with
stakeholders, (ii) the specification of requirements
and (iii) the accurate representation of conceptual
information corresponding to each term. The ReLEL
metamodel is composed of nineteen classes
(Rapatsalahy et al., 2019).

3.3 Notion of Model Transformation
with MDA

MDA is a software development framework that is
based on semi or automatic model transformation.
The key principle of MDA consists in the use of
models, namely the requirement model (CIM), the
analysis and design model (PIM) and the code model
(PSM) at the different phases of the software
development cycle (Blanc & Salvatori, 2011). In this
paper we transform the intentional aspect (at CIM
level) of Praxeme into the semantic aspect (at PIM
level) and then further transform the semantic aspect

into the logical aspect (also at PIM level). We used
the technique of exogenous transformation which
means that the source and target model are derived
from a different metamodel (Diaw et al., 2010), (see
Fig. 4). The transformation process by the modeling
approach is done through derivation rules that
describe the correspondence between the symbols of
the source model and those of the target model (Diaw
et al., 2010).

4 THE DERIVATION PROCESS

The Praxeme methodology is based on the MDA
standard in order to articulate the models
corresponding to each aspect of the company. Fig. 2
represents the synoptic of the approach proposed in
this article. The model transformation presented in
Fig.2 belongs to the Model to Model group or M2M
which generates target models such as the semantic
‘red’ and logical model ‘yellow’ from source models
such as the intentional model ‘black’ as well as the
semantic model ‘red’ (Jézéquel et al., 2012).

Figure 2: Derivation process of aspects of Praxeme in the
context of MDA.

4.1 ReLEL Derivation into Semantic
Aspect of Praxeme

It is important to group together in the intentional
aspect all the terms used specifically in the company
and/or in its field of activity, with their precise
definitions (Boussis & Nader, 2012). (Rapatsalahy et
al., 2020) shows that the ReLEL requirement model
groups together the specific terms used by the
company as well as their exact definitions, so we use
ReLEL requirement model proposed by (Rapatsalahy
et al., 2019) instead of the eLEL (Razafindramintsa et
al., 2015) for the representation of the firm’s
intentions at the level of the intentional aspect of
Praxeme. This approach facilitates and allows all

Derivation of Logical Aspects in Praxeme from ReLEL Models

415

level of abstraction changes (business, logical and
technical) for each existing aspect of the Praxeme
methodology. The semantics aspect houses the
knowledge of the business of the enterprise while
excluding the references related to the organization
and means to control them. The UML class diagram
and the state diagram are representative models of the
semantic aspect of Praxeme (Vauquier, 2006). Our
approach begins with the definition of the
transformation rules (theoretical approach) of the
ReLEL into a UML class diagram. The UML class
diagram of the semantic aspect that we proposed as a
target model is composed of a package, class,
attribute, method and association. Rule 1: A domain
is a concept for storing ReLEL symbols classified
subject and object. The domain corresponds to a
UML package. Rule 2: The subject classified ReLEL
symbol corresponds to the actors in UofD. Actors can
be individuals or part of an organization. The object
classified ReLEL symbol represents passive and
significant entities in the UofD. Each subject and/or
object classified ReLEL symbols corresponds each to
a UML class. Rule 3: The attribute provides the
characteristics of a ReLEL symbol. The attributes of
each ReLEL symbol (subject or object) correspond to
the attributes of each UML class obtained in rule 2.
Then, we deduce the characteristic elements
(definition, code, size) of each attribute. Rule 7 allows
you to obtain the type of each attribute. Rule 4: The
method is the action that allows access to a ReLEL
object. Each method of a ReLEL symbol (subject or
object) corresponds to the operation of each UML
class obtained in rule 2. Rule 5: A parameter is none
other than an already existing attribute which is
manipulated by a method of a ReLEL object. The
parameter of each method of the ReLEL symbol
(subject or object) corresponds to the parameter of each
operation of UML class obtained in rule 2. Rule 6: The
return value is the response returned by the method
after handling a ReLEL object. The return value of
each method belonging to a ReLEL symbol (subject or
object) corresponds to the return value of each
operation of a UML class obtained in rule 2. Rule 7:
The type of an attribute or the type of the return value
of a method of a ReLEL object (subject or object) is
either a classified ReLEL symbol (subject or object) or
a simple type. The type (simple or symbol) of an
attribute of a ReLEL object corresponds to the type
(primitive or class) of an attribute of a UML class. The
type (simple or symbol) of a return value of a method
of a ReLEL object corresponds to the type (primitive
or class) of the return value of an operation of a UML
class. Rule 8: The concept of circularity links two
target and source ReLEL objects. The concept of the

circularity of the ReLEL object corresponds to the
association between two different UML class. Rule 9 :
The concept of number of elements created defines the
minimum and maximum occurrence of an association
between two symbols ReLEL. The concepts of the
number of elements created corresponds to each UML
class cardinality.

The rules for deriving the intentional aspect
represented by ReLEL in a diagram of the UML state
machine of the semantic aspect of Praxeme are as
follows: Rule 1: The state classified ReLEL symbol
is characterized by attributes that contain values at
different times during system execution. Each state
type ReLEL symbol becomes state in the UML
diagram of the state transition machine of the
semantic aspect of Praxeme. Rule 2: Circularity
allows to link two target and source ReLEL objects
classified as state. The target and source ReLEL
objects classified state in the circularity corresponds
to the transition of the event of the UML diagram of
the state machine of transition of the semantic aspect
of Praxeme. Rule 3: A state is triggered by the event
of another state. Each method belonging to a state
type ReLEL symbol corresponds to the event of the
UML diagram of the state transition machine of the
semantic aspect of Praxeme.

4.2 Derivation from the Semantic
Aspect to the Logical Aspect of
Praxeme

The logical aspect of the Praxeme methodology is an
asset for the opening of the system because it leads to
the production of software component published as a
service in the logical continuation of web service
technologies. In this paper, our focus is particularly on
the logical service named BLS. It is described in the
logical aspect of Praxeme from the semantic modeling
of the methodology. The BLS comes from the
derivation of an operation belonging to a semantic
class. It is located in the Business Logical Machine or
BLM of the Praxeme logic model that derives from a
semantic class as well. The BLM is encapsulated in the
Logical Workshop or LW which does not correspond
to any element in the upstream model but it results
from the decision of structuring taken by the logical
architect during the logical design. Thus, the access to
the BLS is either directly between the BLM located in
the same LW or through the interface services provided
by the LW. The relationship between the BLM is only
reflected in the usage relationship that is a functional
dependency achieved at the time of BLS service call
execution. Finally, the aggregates of the LW are stored
in Logical Factory or LF.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

416

Figure 3: Logical Factory Metamodel proposed.

The derivation of the semantic aspect in logical
aspect is constituted by seven rules including: Rule 1:
Each UML package of the semantic aspect
corresponds to the LF of the logical aspect of
Praxeme. Rule 2: Each class of the UML class
diagram of the semantic aspect corresponds to each
BLM of the logical aspect of Praxeme. Rule 3: Each
UML class diagram operation of the semantic aspect
corresponds to each BLS of the logical aspect of
Praxeme. Rule 4: Each parameter of a UML class
diagram operation of the semantic aspect corresponds
to each parameter of a BLS of the logical aspect of
Praxeme. Rule 5: Each return value of a UML class
diagram operation of the semantic aspect corresponds
to each BLS return value of the logical aspect of
Praxeme. Rule 6: Each primitive type of a parameter
or return value of an operation of a UML class
diagram of the semantic aspect corresponds to a
primitive type of a parameter or return value of a BLS
of the logical aspect of Praxeme. Rule 7: Each class
type of a parameter or return value of an operation of
a UML class diagram of the semantic aspect
corresponds to a BLM type of a parameter or a value
of return of a BLS of the logical aspect to the Praxeme
methodology.

4.3 Formalization of the Derivation
Process with ATL

To define and execute the ATL transformation, we
must define a source model and a target model as the
ecore metamodel (Budinsky et al., 2004). In the ATL
transformation from the intentional aspect into the
semantic aspect, the metamodel ecore ReLEL
(Rapatsalahy et al., 2019) represents the metamodel
of the intentional aspect of Praxeme and is defined as
a source model. Then we defined two ecore
metamodels as the target model for the same ATL
transformation, one for the UML class diagram and
the other for the transition state machine diagram. The
resulting derivation results in two target UML models
representing in XMI (XML Metadata Interchange)
format such as the class diagram model and the model
of the transition state machine. In order to execute the
ATL transformation of the semantic aspect rule into a
logical one, we defined an ecore metamodel of LF
(Fig. 3) for the logical aspect of Praxeme as target
model (Fig. 4).

M CD: Model of the UML class diagram of the
semantic aspect of Praxeme; MM CD: Metamodel of
the UML class diagram of the semantic aspect of
Praxeme; M LF: Model of logical factory of praxeme
logical aspect; MM LF: Metamodel of the logical
factory of the Praxeme logical aspect.

Derivation of Logical Aspects in Praxeme from ReLEL Models

417

Figure 4: Derivation of the logical factory from a class
diagram with ATL.

5 VALIDATION STRATEGY

For the experiment, we used the land travel booking
process of a transport agency (Rapatsalahy et al.,
2019). Only an excerpt from the need of the
‘Transpost Malagasy’ agency from the UofD is
illustrated in this paper.

Figure 5: Represents the concrete logic model of the
Praxeme methodology.

The agency proposes a trip in ‘bush taxi’ which
connects two cities. The customer can make a
reservation for a trip by registering the concerned
passenger. The significant terms of UofD concerning
the extract of the need of the agency previously are
instantiated in the model ReLEL in the form of
symbol classified by topology. We applied the
derivation rules and the ATL transformation
described in this paper on this case study. Finally, we
automatically obtained the logic model of the logical
aspect of Praxeme as result of the derivation
represented by Fig. 5.

5.1 Comparison of the Logical Models
Obtained by the eLEL Compared
to the Approach Proposed in This
Paper

We assessed the performance of our approach using
two different methods to process the case study of the
online booking from a land travel agency
(Rapatsalahy et al., 2019). Method 1 consists in using
the ReLEL requirement model in the intentional
aspect of Praxeme and then deriving it in a semantic
and logical aspect. Method 2 is identical except that
we used the eLEL requirement model to represent the
intentional aspect of Praxeme. Our approach consists
firstly of counting the elements generated
automatically and by refinement in the logical models
of the two different methods. Tables 1 and 2 illustrate
the elements generated automatically and by
refinement in the logical models as well as their
numbers from the two different methods. BLM is
coherent set of BLS built around a strong notion of a
semantic model. The total number of BLM generated
automatically (each 8 in the Table I) for the two
methods are equivalent since the eight semantic
classes of the source model are all kept as they are
during the derivation in BLM of the logical model but
simply coated in the LW. The total number of BLS
automatically generated in the logic model (target
model) of the two methods 1 and 2 (each 57) comes
from the 57 operations located on the eight semantic
classes of the source model. The parameter is a data
manipulated by the BLS having two types such as
primitive and/or complex (BLM) (Rapatsalahy et al.,
2019). The total number 20 (type primitive/BLM)
belonging to the BLS parameters comes from the
number 20 (type primitive /BLM) belonging to the
parameters of the operations located on the eight
semantic classes of the upstream model. The return
value is a data returned by the BLS after its execution
and has two types such as primitive and/or complex
(BLM). The total number (16) of the primitive type
belonging to the return values of the BLS comes from
the 16 primitive types belonging to the return values
of the operations located on the eight semantic classes
of the upstream model. The 10 BLM types belonging
to the BLS return values derive from the 10 class
types belonging to the return values of the operations
located on the eight semantic classes of the upstream
model. Method 2 does not allow to generate a
parameter or a return value because of the
requirement model representative of the intention
aspect of Praxeme (Rapatsalahy et al., 2019). The LW
(each 3), the interface of the workshop (each 3) as
well as the relationships in the logical architecture

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

418

Table 1: Elements generated automatically.

Approach BLM BLS Parameter Return value Total

Prim BLM Prim BLM

Method 1 8 57 20 20 16 10 31

Method 2 8 57 0 0 0 0 65

(each 10) are purely logical notions which result from
a decision by the logical architect from where Table
2. Method 2 did not take into account in its logical
factory metamodel the elements which have a purely
logical notion namely LW, interface of the workshop,
relationships in the logical architecture. This is what
explains the absence of method 2 in the Table 2.

5.2 Evaluation of the Performance of
the Proposed Approach

The metrics used are based on the complete state of
the automatically generated model (Recall), with the
accuracy of the generated information (Precision), the
measurement of the number of information
considered to be correct but not automatically
generated by the Overspecification and the accurarcy
of the proposed strategy (F-Measure). We use the
parameters used in the table 1 and 2 to calculate the
metrics adopted by CM-Builder’s (Harmain &
Gaizauskas, 2003). Thus in Table 3, we summarize
the results obtained in order to measure the different
metrics necessary for this evaluation. From Table 3,
we obtained the metrics allowing to evaluate the
completeness, the precision, the addition of the
information considered important and the accuracy of
the automatic generation of logical model of
Praxeme. The analysis in Table 4 allows us to deduce
that the method 1 proposed in this paper is the most
suitable for obtaining BLS exploitable by developers
(Rapatsalahy et al., 2020). Indeed the deduction is
explained by the result of the metric ‘F-Measure’
which indicates that method 1 provides 94.2% of the
exact logic model compared to method 2 only 61.3%.
Therefore method 1 generates 89.1% of the full state
of the automatically generated logic model and
method 2 only 44.2% (Recall). Nevertheless, all
information extracted from the two methods is
correct, hence their precisions which each reach a
value of 100% (Precision). Yet the overspecification
of method 2 is of 55.7% because of the absence of
conceptual elements in the logic model such as the
parameter, type of parameter, the return value, the
type of return value of BLM. In addition there are also
the LW of the business stratum and their interfaces
services to be manually added by the logical

architects in the logic model for the two different
methods. It should also be noted that the relationship
between BLM for both methods (1 and 2) is still
manually added by the logical architects. In spite of
this, method 1 only requires the manual addition of
10.8% of the information considered correct but
which is not generated automatically
(Overspecification). Thus, the results of the
performance evaluation are significant and support
the approach proposed in this paper.

Table 2: Elements generated by refinement.

Approach LW Interface Relation
with BLM

total

Method 1 3 3 10 16

Table 3: Nature of information for measuring the metrics of
the automatically generated logic model.

Nature of
information

Nkey Ncorrect Nincorrect Nextra

Method 1 147 131 0 16

Method 2 147 65 0 82

Table 4: Performance evaluation.

Metrics Equation Method 1 Method 2

Recall (%) R=Ncorrect/NKey 89.1% 44.2%

Precision (%) P=Ncorrect/
(Ncorrect+Nincorrect)

100% 100%

Overspecification
(%)

O=NExtra/NKey 10.8% 55.7%

F-Measure (%) F-Measure=
(2×R×P)/(R+P)

94.2% 61.3%

6 CONCLUSION AND FUTURE
WORK

In this paper, we have proposed the automatic
derivation of the logical aspect of Praxeme from the
requirement model noted ReLEL. Our goal is to make
the Business Logical Service or BLS of the logical

Derivation of Logical Aspects in Praxeme from ReLEL Models

419

model of Praxeme exploitable by the developers. The
importance of our study lies in being able to attribute
to the logical aspect of Praxeme its intermediary role
between purely business and technical aspects. To
achieve the goal of the research, our approach
consists of four steps, the first of which is to replace
the eLEL requirement model which represents the
intentional aspect of the Praxeme methodology by
ReLEL (Rapatsalahy et al., 2020). And since the
operation of the semantic class is the source of the
BLS in the logic model, we then proposed to
automatically derive the intentional aspect
represented by ReLEL in the semantic aspect of
Praxeme. Next we proposed a logical ecore
metamodel to form the target model in the automatic
derivation of the semantic aspect in the logical aspect
of Praxeme. Finally, we have defined a
transformation rule that allows to automatically
derive the semantic aspect in logical aspect of
Praxeme methodology. In order to validate our
approach, we conducted a comparative study between
the two different methods using the CM-Builder’s
metric and instantiating them in the same case study.
The results of comparison concerning the accuracy of
the proposed approach (F-Measure) allowed us to
deduce that the logic model provided from our
approach with a very high percentage 94.2% is
composed of exploitable BLS by the developers
(Rapatsalahy et al., 2020). Therefore, our approach
easily allows the developer to translate BLM into
software components (Rapatsalahy et al., 2020). The
urbanization of the information system from the
lexicon ReLEL is the research perspective of this
present work.

REFERENCES

Rapatsalahy, A. M., Razafindramintsa, J. L., Mahatody, T.,
Ilie, S., & Raft, R. N. (2019). Restructuring extended
Lexical elaborate Language. 2019 23rd International
Conference on System Theory, Control and Computing
(ICSTCC), 266‑272.

Rapatsalahy, A. M., Razafimahatratra, H., Mahatody, T., Ilie,
M., Ilie, S., & Raft, R. N. (2020). Automatic generation
of software components of the Praxeme methodology
from ReLEL. 2020 24th International Conference on
System Theory, Control and Computing (ICSTCC),
843‑849.

Biard, T., Bigand, M., & Bourey, J.-P. (2013). Explicitation
et structuration des connaissances pour la transformation
de l’entreprise : Les apports de la méthode Praxeme.
Congrès International de Génie Industriel.

Blanc, X., & Salvatori, O. (2011). MDA en action : Ingénierie
logicielle guidée par les modèles. Editions Eyrolles.

Boussis, A., & Nader, F. (2012). Urbanization of Information
Systems with a Service Oriented Architecture according
to the PRAXEME Approach. Web and Information
Technologies, 102.

Budinsky, F., Ellersick, R., Steinberg, D., Grose, T. J., &
Merks, E. (2004). Eclipse modeling framework : A
developer’s guide. Addison-Wesley Professional.

Diaw, S., Lbath, R., & Coulette, B. (2010). État de l’art sur le
développement logiciel basé sur les transformations de
modèles. Technique et Science Informatiques, 29(4‑5),
505‑536.

Harmain, H. M., & Gaizauskas, R. (2003). Cm-builder : A
natural language-based case tool for object-oriented
analysis. Automated Software Engineering, 10(2),
157‑181.

Jouault, F., & Kurtev, I. (2005). Transforming models with
ATL. International Conference on Model Driven
Engineering Languages and Systems, 128‑138.

Leite, J. do P., & Franco, A. P. M. (1993). A strategy for
conceptual model acquisition. [1993] Proceedings of the
IEEE International Symposium on Requirements
Engineering, 243‑246.

Razafindramintsa, J. L., Razafimandimby, J. P., Mahatody,
T., & Becheru, A. (2016). Semantic aspect derivation of
the Praxème methodology from the elaborate lexicon
extended language. 2016 20th International Conference
on System Theory, Control and Computing (ICSTCC),
842‑847.

Medvidovic, N., & Taylor, R. N. (2010). Software
architecture : Foundations, theory, and practice. 2010
ACM/IEEE 32nd International Conference on Software
Engineering, 2, 471‑472.

Niu, N., & Easterbrook, S. (2008). Extracting and modeling
product line functional requirements. 2008 16th IEEE
International Requirements Engineering Conference,
155‑164.

Razafindramintsa, J. L. (2015). Elaborate Lexicon Extended
Language with a lot of conceptual informa-tion.
International Journal of Computer Science, Engineering
and Applications (IJCSEA) Vol, 5.

Razafindramintsa, J. L., Mahatody, T., Razafimandimby, J.
P., & Simionescu, S. M. (2017). Logical services
automatic location from eLEL. 2017 21st International
Conference on System Theory, Control and Computing
(ICSTCC), 849‑854.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified
modeling language. Reference manual.

Valipour, M. H., AmirZafari, B., Maleki, K. N., &
Daneshpour, N. (2009). A brief survey of software
architecture concepts and service oriented architecture.
2009 2nd IEEE International Conference on Computer
Science and Information Technology, 34‑38.

Vauquier, D. (2006). Modus la méthodologie PRAXEME
Guide general. Praxeme Institute.

Jézéquel, J.-M., Combemale, B., & Vojtisek, D. (2012).
Ingénierie Dirigée par les Modèles : Des concepts à la
pratique... Ellipses.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

420

