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Abstract: The perception-based tasks in automated driving depend greatly on deep neural networks (DNNs). In context
of image classification, the identification of the critical pairs of the target classes that make the DNN highly
vulnerable to misclassification can serve as a preliminary step before implementing the appropriate measures
for improving the robustness of the DNNs or the classification functionality. In this paper, we propose that
the DNN’s vulnerability to misclassifying an input image into a particular incorrect class can be quantified
by evaluating the similarity learnt by the trained model between the true class and the incorrect class. We
also present the criteria to rank the DNN model’s vulnerability to a particular misclassification as either low,
moderate or high. To argue for the validity of our proposal, we conduct an empirical assessment on DNN-
based traffic sign classification. We show that upon evaluating the DNN model, most of the images for which
it yields an erroneous prediction experience the misclassifications to which its vulnerability was ranked as
high. Furthermore, we also validate empirically that all those possible misclassifications to which the DNN
model’s vulnerability is ranked as high are difficult to deal with or control, as compared to the other possible
misclassifications.

1 INTRODUCTION

In the recent years, the advancements in the field of
autonomous driving have been reinforced with the
progress in the techniques of artificial intelligence,
especially deep learning. A survey of the current
state-of-the-art deep learning technologies, e.g., deep
convolutional neural networks, deep reinforcement
learning, etc., has been presented in Grigorescu et al.
(2019). The deep convolutional neural networks have
led to various breakthrough contributions in object
detection and image classification tasks, such as in
Krizhevsky et al. (2012) and Sermanet et al. (2014).
In context of autonomous driving, deep learning plays
a major role in perception-based tasks such as pedes-
trian detection (Ouyang et al., 2017), traffic sign de-
tection (Zhu et al., 2016), etc. One of the challenges in
safe automated driving is related to the robustness of
the artificial intelligence or deep learning techniques
(Muhammad et al., 2020). In context of tasks related
to image classification, it must be ensured that the
deep neural networks (DNNs) are not just accurate

but also robust against the perturbations that a vehicle
might encounter during its operation. The perturba-
tions, for instance, can be random noise in the input
images or even shift in brightness, contrast, etc. These
perturbations can influence the DNN’s decision sig-
nificantly and aggravate the chances of misclassifying
an input image into an incorrect class that is highly
similar with respect to the true class. The questions
which need to be addressed are as follows:

• Since an image XXX belonging to the true class k1
can be misclassified into any of the remaining tar-
get classes, how can we rank all these possible
misclassifications on the basis of how vulnerable
is the DNN model to each of them individually?

• If the misclassification from a true class k1 into
an another class k2(6= k1) is ranked to be offering
a high vulnerability, do the perturbations in the
images exploit this vulnerability and give rise to a
higher misclassification rate from k1 into k2?

Such investigations can help in determining the set
of critical misclassifications that need laborious miti-
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gation efforts to enhance the robustness of the classi-
fication function.

Our contributions in this paper are listed below:

• We propose an approach to estimate the trained
DNN model’s vulnerability to a particular mis-
classification. Along with it, we propose the crite-
ria to categorise the DNN model’s vulnerability to
a particular misclassification into one of the three
levels: low, moderate or high.

• We further argue that the ease with which the rate
of a particular misclassification can be kept un-
der control depends on the estimated value of the
DNN model’s vulnerability to it. In other words,
we highlight that it is easier to control those mis-
classifications to which the model is estimated to
be lowly vulnerable, as compared to the misclassi-
fications to which it is estimated to be highly vul-
nerable. We validate our arguments empirically.

The practical examples and the corresponding ex-
perimentation1 conducted in context of the above-
mentioned contributions have been extensively dis-
cussed in the paper. The remainder of the paper is
organized as follows. In Section 2, we present a brief
background to discuss the rationale behind our pro-
posed approach of estimating the DNN’s vulnerabil-
ity to a particular misclassification. In Section 3, we
present a detailed description of the approach, and an
experimental analysis in context of traffic sign classi-
fication. Section 4 addresses the second part of our
contributions, i.e., an empirical investigation to show
that the set of misclassifications to which the DNN
model is ranked to be highly vulnerable are rather
difficult to manage, even after the implementation of
the measures to control the misclassification rate. Fi-
nally, Section 5 presents a conclusion along with a
brief overview on the possible future directions.

2 BACKGROUND

In context of image classification, the objective is to
ensure that a classifier is able to correctly distinguish
between the target classes. In Tian et al. (2020), for
instance, the authors assess the classifier model’s abil-
ity to distinguish between any two classes by comput-
ing the confusion score. This score is based on mea-
suring the euclidean distance between the neuron ac-
tivation probability vectors corresponding to the two

1For the experimentation, the libraries: Numpy (Harris
et al., 2020), Keras (Chollet et al., 2015), SciPy (Virta-
nen et al., 2020), Scikit-learn (Pedregosa et al., 2011) and
Matplotlib (Hunter, 2007) were used along with some of
the other standard Python libraries and their functions.

classes. Such analyses are usually performed by eval-
uating the trained model against a set of independent
(test) images. However, such evaluations against a set
of test images are not sufficient to realize the classi-
fier’s ability to distinguish between the classes (since
the completeness of the test data serves as a major
challenge). As an additional assessment, the critical
misclassifications corresponding to the DNN model
can be identified by determining the set of possible
misclassifications to which the model is highly vul-
nerable. In Agarwal et al. (2021), it has been argued
that the classifier’s vulnerability to a particular mis-
classification (let us say, from the true class k1 into
an incorrect class k2 or vice versa) can be assessed in
terms of the similarity between the dominant visual
characteristics of the corresponding two classes (i.e.,
k1 and k2). For instance, the dominant visual charac-
teristics in the traffic signs are shape and color (Gao
et al., 2006). By evaluating the overlap in terms of (a)
the shape of the traffic sign board, and (b) the color
combination of the border and the background, the
similarity between any two traffic sign classes can be
analysed a priori (Agarwal et al., 2021). The obtained
measure of similarity between the classes k1 and k2 is
recognized as a measure of the classifier’s vulnerabil-
ity to misclassifying an input image belonging to the
class k1 into the class k2 or vice versa. Higher simi-
larity between the two classes is considered to induce
higher vulnerability to the corresponding misclassifi-
cation.

We illustrate it further with an example. In this re-
gard, we trained a DNN to classify the different traf-
fic signs from the German Traffic Sign Recognition
Benchmark (GTSRB) dataset (Stallkamp et al., 2012).
Mathematically, we represent the DNN (classifier)
model as f : XXX ∈R(48×48×3)−→ ŷ ∈ {1,2, ...,43},
where ŷ is the predicted class for the input image XXX .
The hyperparameters and the training details related
to it are provided in Appendix A. From the set of
10000 test images, we choose 2207 images which be-
long to the danger sign type. We determine the per-
centage of these images that the DNN model f mis-
classifies into: (a) another danger sign, (b) a speed
limit or a prohibitory sign, (c) a derestriction sign,
and (d) a mandatory sign. The results are graphically
presented in Figure 1. We first consider the results
plotted for the GTSRB original test images (i.e., the
test images without any perturbations deliberately en-
forced by us). We observe a higher rate of misclassi-
fication of a danger sign into another danger sign, as
compared to the other misclassifications. All the traf-
fic signs that belong to the danger sign type have high
similarity due to their two dominant visual character-
istics being the same. This can perhaps be a potential
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Figure 1: Graph showing the percentage of the danger sign
images in the test dataset that were misclassified into: an-
other danger sign, speed limit or prohibitory sign, derestric-
tion sign, and mandatory sign.

source of the higher rate of misclassification of a dan-
ger sign into another danger sign, as observed in Fig-
ure 1. It can also be observed that some common per-
turbations (e.g., contrast change, gaussian blur, etc.)
enforced by us on the GTSRB original test images
further aggravate the DNN’s susceptibility to misclas-
sification of a danger sign into another danger sign.
This indicates that the DNNs used for image classi-
fication are rather more susceptible or vulnerable to
misclassification of an input image into the classes
that have stronger visual similarity with the true class.

This estimation of similarity depending on the
chosen predominant visual characteristics can facil-
itate the planning of the pre-training activities. For
instance, it can help the experts in choosing a suit-
able configuration of the DNN architecture or tailor-
ing the DNN-based strategy appropriately in a manner
that has the potential to minimize those misclassifi-
cations wherein the true class and the incorrect class
are highly similar in terms of their visual appearance.
However, it must be noted that the visual characteris-
tics considered in the abovementioned a priori anal-
ysis of similarity may not always necessarily be the
features that actually influence the decision of the
classifier (Ribeiro et al., 2016). Thus, the similar-
ity perceived by humans between any two classes is
not necessarily the similarity that will be learnt by the
DNN model via training. As an extension to this con-
cept, unlike the approach discussed in Agarwal et al.
(2021), in this paper, we propose to estimate the DNN
model’s vulnerability to misclassification from class
k1 into class k2 by measuring the similarity learnt by
the trained model between the classes k1 and k2. In
our approach of measuring the class similarity learnt

by the DNN model, we use the images from the train-
ing dataset itself. Hence, by virtue of this vulnera-
bility estimation, we identify the set of critical mis-
classifications without actually evaluating the trained
model against any independent or seperate set of the
images (i.e., test data). The approach has been elabo-
rated in Section 3.

3 VULNERABILITY TO
MISCLASSIFICATION

Let us assume the DNN (classifier) is trained for
K number of target classes. A class k ∈ K =
{1,2, ....,K} can be misclassified into any of the re-
maining (K− 1) classes. Therefore, the set of mis-
classifications that it can incur is represented as:

M = { (ka,kb) | ka 6= kb, ka ∈K , kb ∈K }, (1)

where ka and kb represent the true class and the incor-
rect class, respectively. The total number of misclas-
sifications that are possible is |M |= K(K−1).

The DNN’s vulnerability to a particular misclassi-
fication, let us say, (ka,kb), is determined by evaluat-
ing the similarity between the two classes ka and kb.
Followed by this, the categorisation criteria is imple-
mented in order to identify the set of possible misclas-
sifications to which the DNN model is highly vulner-
able. The approach has been discussed in this section,
along with an experimental analysis.

3.1 Similarity between the Classes

In order to measure the class similarity learnt by the
trained model, the approach discussed in Agarwal
et al. (2020) is used. The trained DNN model pre-
dicts the logits zzzk = [z1,z2, ....,zK ] for an input im-
age belonging to a class k ∈ K . The predicted logits
zzzk is then modelled as a multivariate normal distri-
bution N k. Mathematically, zzzk ∼ N k(µµµk,ΣΣΣk), where
µµµk and ΣΣΣk represent the K × 1 mean vector and the
K×K covariance matrix of the distribution N k. The
similarity between any two classes is determined by
calculating the Bhattacharyya distance between their
corresponding modelled multivariate normal distribu-
tions. Let us consider the classes ka and kb here. The
Bhattacharyya distance dka,kb between N ka(µµµka ,ΣΣΣka)

and N kb(µµµkb
,ΣΣΣkb) is determined using Equation 2

(Kashyap, 2019).

dka,kb =
1
8
(µµµka −µµµkb

)T
ΣΣΣ
−1
avg (µµµka −µµµkb

)

+
1
2

ln

(
|ΣΣΣavg|√
|ΣΣΣka | |ΣΣΣkb |

)
, (2)
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where
ΣΣΣavg =

1
2
(ΣΣΣka +ΣΣΣkb). (3)

The similarity between the classes ka and kb will
be inversely proportional to the computed value of the
Bhattacharyya distance dka,kb . It must be noted that
the Bhattacharyya distance computed above is sym-
metric, i.e., dka,kb = dkb,ka .

3.2 Estimation of Vulnerability

Using the approach discussed in Section 3.1, we can
compute the value of d to assess the similarity of a
class k ∈ K with every other class in K \ {k}. Since
the number of target classes is K, we will have a total
K(K− 1) values of the Bhattacharyya distances. We
accumulate all these obtained values in a set D , as
shown below:

D = {dka,kb | ka 6= kb, ka ∈K , kb ∈K }. (4)

Among all these K(K− 1) values, let us assume
that the maximum value is observed to be dmax, i.e.,

dmax = max (D). (5)

Now, we represent the DNN model’s vulnerability
to the misclassification (ka,kb) as:

v(ka,kb) = 1−
dka,kb

dmax
. (6)

Note that v(ka,kb)∈ [0,1) and v(ka,kb)=v(kb,ka).
Since v(ka,kb)=1 is possible only if ka=kb (which
does not represent the case of misclassification),
therefore, the value of 1 is excluded from the speci-
fied range of v(ka,kb). The value of v(ka,kb) closer to
1 indicates higher vulnerability to the corresponding
misclassification (ka,kb).

3.3 Categorisation Criteria

Using the approach discussed above, we can acquire
the model’s vulnerability values corresponding to all
the K(K− 1) possible misclassifications. We collect
all these obtained values in a set V , as shown below:

V = { v(ka,kb) | (ka,kb) ∈M }. (7)

We will now categorise the model’s vulnerability
to a particular misclassification into one of the levels:
low, moderate or high, using certain statistical mea-
sures, as discussed below.

To the misclassification (ka,kb), the DNN model
will be considered to have:

• low vulnerability if 0≤ v(ka,kb)< p25,

• moderate vulnerability if p25 ≤ v(ka,kb) < p75,
and

• high vulnerability if p75 ≤ v(ka,kb)< 1,
where p25 and p75 are the 25th and the 75th percentile
of the values in the set V , respectively.

The set of the misclassifications to which the DNN
model’s vulnerability is ranked as low, moderate and
high are denoted as Mlow,Mmoderate and Mhigh, re-
spectively. They are mathematically represented as:

Mlow = { (ka,kb) ∈M | 0≤ v(ka,kb)< p25 },
(8)

Mmoderate = { (ka,kb) ∈M | p25 ≤ v(ka,kb)< p75 },
(9)

Mhigh = { (ka,kb) ∈M | p75 ≤ v(ka,kb)< 1}.
(10)

Note that: (i) Mlow ∩ Mmoderate = /0, (ii)
Mmoderate∩Mhigh = /0, (iii) Mlow∩Mhigh = /0, and (iv)
Mlow∪Mmoderate∪Mhigh = M .

In order to support the validity of this proposed
criteria of categorising the DNN model’s vulnerabil-
ity, we conducted an experimental analysis, which has
been discussed in Section 3.4.

3.4 Experimental Analysis

3.4.1 DNN Training

We conducted our experiment for the classification of
the traffic signs from the GTSRB dataset. The DNN
model used here in this experimental analysis is the
same model f : XXX ∈ R(48×48×3) → ŷ ∈ {1,2, ...,43},
which was trained for the illustration of the example
presented in Section 2. A brief summary of the DNN
architecture and the associated details related to it’s
training are provided in Appendix A. Since the total
number of target traffic sign classes is K = 43, the
number of possible misclassifications is |M | = 43×
42 = 1806.

3.4.2 Vulnerability to Misclassification

We first determined the similarity learnt by the DNN
model f between all the 43 target traffic sign classes,
using the approach discussed in Section 3.1. Note that
in order to model the logits zzzk as a multivariate nor-
mal distribution, the samples of the predicted logits zzzk
were collected for all the images in the training data
that belong to the class k. Followed by the measure-
ment of similarity between the classes, we determined
the model’s vulnerability (v) to each of the 1806 pos-
sible misclassifications, as discussed in Section 3.2.
The distribution of the obtained 1806 values of v is il-
lustrated as a histogram in Figure 2. The 25th and the
75th percentile of the distribution are p25 = 0.4354
and p75 = 0.6455, respectively.
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Figure 2: Distribution of the trained DNN model’s esti-
mated vulnerability (v) to the 1806 possible misclassifica-
tions among the 43 traffic sign classes. The terms p25 and
p75 denote the 25th and the 75th percentile of the distribu-
tion, respectively.

3.4.3 Evaluation

The trained model f was evaluated on τ = 10000 GT-
SRB test images. We represent the set of these test
images as X test = {XXX1,XXX2, ...,XXXτ}. An accuracy of
96.12% was observed. Alternatively, it can be said
that the model misclassifies ρ = 388 traffic sign im-
ages from X test. Let us denote the set of the misclas-
sified images as X m = {XXXm1 ,XXXm2 , ...,XXXmρ

}, such that
X m ⊂ X test. The corresponding misclassifications ex-
perienced by the model for the images in X m are put
together in the set Ψm, as shown below:

Ψm={(ym1 , ŷm1),(ym2 , ŷm2), ...,(ymρ
, ŷmρ

)}, (11)

where the ordered pair (ymi , ŷmi) ∈M signifies that
for the image XXXmi ∈ X m, the actual class is ymi ; how-
ever, the model f predicts it as a class ŷmi ∈K \{ymi}.

Out of all the images in X m, the number of images
for which the corresponding misclassifications in Ψm
were ranked to be offering the model f , based on our
proposed criteria, a:
(a) Low vulnerability equals:

nlow =
ρ

∑
i=1

[0≤ v(ymi , ŷmi)< p25], (12)

(b) Moderate vulnerability equals:

nmoderate =
ρ

∑
i=1

[p25 ≤ v(ymi , ŷmi)< p75], (13)

(c) High vulnerability equals:

nhigh =
ρ

∑
i=1

[p75 ≤ v(ymi , ŷmi)< 1], (14)

where [...] in (12), (13) and (14) denote the Iverson
brackets, and v(ymi , ŷmi) denotes the model’s vulner-
ability to the misclassification (ymi , ŷmi). Note that:

nlow +nmoderate +nhigh = ρ. (15)

For X test, using the trained classifier model f , we
got the values of nlow, nmoderate and nhigh as 1, 103 and
284, respectively. This has been graphically presented
in Figure 3a. It can be deduced that:

nhigh > nmoderate > nlow, (16)

which implies, the model is most likely to incur
those misclassifications to which it’s vulnerability
was ranked to be high. To further validate this, we
continue our analysis using the perturbed test images.
These perturbations are: change in contrast2, change
in brightness3, gaussian blur4 and gaussian noise5.
We apply these perturbations seperately to every im-
age XXX j in X test, j = 1 to τ. Hence, we have four dif-
ferent sets of perturbed test images, i.e., X ∆contrast,
X ∆brightness, X ∆blur and X ∆noise. The corresponding
obtained values of nlow,nmoderate and nhigh are graphi-
cally presented in Figure 3b - 3e. It can be observed
that the condition in (16) holds true for the analysis
associated with the perturbed test images as well.

The criteria proposed for categorisation seems co-
herent or convincing when analysed experimentally
on a classification problem, as it does helps in deter-
mining the set of critical misclassifications, i.e., the
set of misclassifications which the DNN model can
most likely incur. Hence, the concept of using the
class similarity learnt by the model for quantifying
it’s vulnerability to every possible misclassification
appears to be reasonable.

4 Further Empirical Investigation

4.1 Concept and Purpose

One of the ways to minimize the possibility of an
erroneous prediction or a misclassification incurred
by a DNN model is to integrate a mechanism that
can provide the classification functionality an alter-
native to not yield any decision in case of lack of cer-
tainty. For this purpose, in addition to the classifier

2every pixel p(r,s, t) ∈ [0,1] of a test image XXX j undergoes
a transformation: p(r,s, t)→ γ p(r,s, t), using a randomly
chosen γ ∈ [1,3].

3every pixel p(r,s, t) ∈ [0,1] of a test image XXX j undergoes a
transformation: p(r,s, t)→ p(r,s, t) + δ, using a randomly
chosen δ ∈ [0,0.4].

4function in the OpenCV library (https://github.com/
opencv/opencv). To perturb a test image XXX j , we choose
randomly a kernel size η ∈ {3,5,7}, and the standard de-
viation σ ∈ [0.5,1.5] along both x and y directions.

5adding to a test image XXX j a random normal gaussian noise
with a mean µ = 0 and a randomly chosen standard devia-
tion σ ∈ [0.01,0.1].
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Figure 3: Graphs showing the values of nlow, nmoderate and nhigh, obtained when the trained DNN model was evaluated for
different sets of the test images: (a) Xtest, (b) X ∆contrast, (c) X ∆brightness, (d) X ∆blur, and (e) X ∆noise.

model f (trained earlier for the experimental analy-
sis in Section 3.4), we implement a network of dif-
ferently trained DNN classifiers that collaborate to si-
multaneously yield a prediction for the input image.
Here, we refer to the model f as the primary classifier
( fprimary) and the classifier models trained additionally
to work in conjunction with it as the secondary classi-
fiers. The final prediction for a given input image can
be acquired by the principle of unanimity voting. If
the prediction (ŷsecondary) obtained from this network
of secondary classifiers is not congruous with the pre-
diction (ŷprimary) obtained from fprimary, then the final
prediction (ŷfinal) for the input image is considered to
be undecided, as shown below:

ŷfinal =

{
ŷprimary, if ŷprimary = ŷsecondary

φ, if ŷprimary 6= ŷsecondary,
(17)

where φ denotes the final prediction as undecided, i.e.,
no prediction is being issued for the given input im-
age. In the event of an undecided outcome, the ve-
hicle, for instance, can transit into a safe state. The
safe state depends on many factors. One of the most
important factors is the level of automation6 the ve-
hicle possesses. For instance, in case of Level 2 au-
tomation, the safe state could be the switching off of
the AI functionality, while for Level 3 automation, it
could be the handover to the driver. In cases of higher
levels of automation, i.e., Level 4 or 5, defining the
safe state will require a detailed review of the possi-
ble hazards and the associated risks. Also, the factors
6SAE J3016 standard (SAE International, 2014) states six
levels of driving automation, i.e., Level 0 (no automation)
to Level 5 (full automation).

such as driving scenario, operational conditions, traf-
fic environment, etc. will play a major role. However,
in this paper, defining an appropriate safe state for the
vehicle in this context is not within the scope, and
therefore, we do not address it in detail here.

Theoretically, it is expected here that for all the
ρ number of test images that are misclassified by the
model fprimary, the final prediction ŷfinal will be unde-
cided (φ). The purpose of our investigation here is to
validate the following arguments:

• Argument 1: For almost every test image for
which the primary classifier model incurs a
misclassification to which it’s vulnerability was
ranked as low, the use of the abovementioned
mechanism will result in the final prediction as
undecided (which is actually desired).

• Argument 2: On the other hand, if the primary
classifier model, for an input test image, incurs
a misclassification to which it’s vulnerability was
ranked as moderate, the possibility of obtaining
the final prediction as undecided is lower. More-
over, this possibility gets further lowered for the
misclassifications to which the model’s vulnera-
bility was ranked as high.

The validation of these arguments will demon-
strate the fact that among all the possible misclas-
sifications in M , the misclassifications to which the
primary classifier model’s vulnerability is high (i.e.,
the misclassifications categorised into the set M high)
will need relatively more tedious mitigation efforts as
compared to the other possible misclassifications in
M moderate and M low.
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4.2 Mechanism

4.2.1 Primary and Secondary Classifiers

Firstly, the primary classifier fprimary maps an input
traffic sign image XXX into one of the 43 classes in the
GTSRB dataset. Mathematically, it is represented as:
• Primary classifier fprimary : XXX ∈ Rl −→ ŷprimary ∈
{1,2, ...,43}.

where l denotes the size of the input image XXX , and
ŷprimary is the traffic sign class predicted by fprimary.
This is also shown in Figure 4.

4.2.2 Secondary Classifiers

Some traffic signs vary in terms of their physical char-
acteristics, i.e., variation in terms of shape, color or
both. However, all the traffic signs of a particular
sign type7 have the same physical characteristics. The
classifier fprimary, for a given input image, can experi-
ence either an inter-sign-type8 misclassification or an
intra-sign-type9 misclassification.

An inter-sign-type misclassification by fprimary
implies that it is perhaps not able to correctly visual-
ize the high-level feature(s) (i.e., shape and/or color)
of the traffic sign in the given input image. In or-
der to deal with such misclassifications, a suitable ap-
proach can be to implement two additional diverse
classifiers: one for predicting the shape of the traf-
fic sign and the other to classify the traffic sign based
on the prominent colors present on the sign board.
Since these classifiers focus on classifying the input
traffic sign image on the basis of just the correspond-
ing high-level feature, it is expected that these clas-
sifiers will be easier to train and have high accuracy.
We refer to these two secondary classifiers as shape
and color classifier, i.e., fshape and fcolor, respectively.
The classes to which these classifiers map the input
image XXX are presented in Figure 5. All the 43 traf-
fic signs in GTSRB can be grouped into the classes
{S1,S2, ...,S5} and {C1,C2, ...,C5} on the basis of the
shape of the traffic signs and the prominent colors
present on the sign boards, respectively. Mathemat-
ically, we represent the two classifiers as:

• Shape classifier fshape : XXX ∈Rl−→ Ŝsecondary ∈
{1,2, ...,5}, and

7the 39 traffic signs in GTSRB belong to one of the sign
types: speed limit, prohibitory, danger, mandatory and der-
estriction. The remaining 4 signs (priority road, yield to
cross, do not enter, stop) are independent sign types.

8predicted traffic sign is of a type, different than that of the
actual traffic sign.

9predicted traffic sign is of a type, same as that of the actual
traffic sign.

Primary Classifier
fprimary

Input
Image

XXX

1
..
6

SL (1-6)

7 DRT (1)
8 SL (7)
9 SL (8)

10 PROH (1)
11 PROH (2)
12 DNG (1)
13 Priority road sign
14 Yield to cross sign
15 Stop sign
16 PROH (3)
17 PROH (4)
18 Do not enter sign
19..
32

DNG (2-15)

33 DRT (2)
34..
41

MDT (1-8)

42 DRT (3)
43 DRT (4)

Predicted traffic sign (ŷprimary)

Figure 4: Primary classifier to predict the traffic sign class
in an input image XXX . The sign type for every traffic sign
class is also mentioned, where SL, DRT, PROH, DNG and
MDT denote the sign types: speed limit, derestriction, pro-
hibitory, danger and mandatory, respectively.

Shape Classifier
fshape

Input
Image

XXX

Shape of the sign board

S1

S2

S3

S4

S5

(a) Shape-type classifier

Color Classifier
fcolor

Input
Image

XXX

Prominent colors on the sign board
(A = Background, B = Border)

A B
C1

C2

C3

C4

C5

(b) Color-type classifier
Figure 5: Shape and color type classifiers that are trained
for predicting the shape and the prominent colors on the
sign board in the input traffic sign image, respectively.

• Color classifier fcolor : XXX ∈Rl−→Ĉsecondary ∈
{1,2, ...,5}.
Let us consider that the classifiers fshape and fcolor

predict Ŝsecondary = 2 (triangle pointed upwards) and
Ĉsecondary = 1 (white background and red border) for
an input image XXX . This implies that they collaborate
to predict the sign type of the traffic sign in XXX as dan-
ger, since all the danger traffic signs are triangular
(pointed upwards) in shape and bear a white back-
ground with red border. Now, we use an additional
classifier fdng, which, unlike fprimary, is trained to map
XXX into one of the 15 danger traffic sign classes only.
Similarly, we can train the additional classifiers for
the other sign types, namely, speed limit, prohibitory,
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derestriction and mandatory. Note that all the speed
limit and the prohibitory traffic signs have the same
shape and bear the same prominent colors, therefore,
we train a common classifier fsl/proh with all the speed
limit and the prohibitory signs as the target classes.
These sign type specific classifiers are schematically
represented in Figure 6, and their mathematical repre-
sentations are given below:

• Speed limit/prohibitory signs classifier fsl/proh :
XXX ∈Rl−→ ŷsl/proh ∈ {1,2, ...,12},

• Danger signs classifier fdng : XXX ∈ Rl −→ ŷdng ∈
{1,2, ...,15},

fsl/proh

Input
Image

XXX

1 SL (1)
......
8 SL (8)
9 PROH (1)
..

12 PROH (4)

Predicted speed limit/
prohibitory sign (ŷsl/proh)

(a) Speed limit/prohibitory signs classi-
fier

fdng

Input
Image

XXX

1 DNG (1)
.............

15 DNG (15)

Predicted danger sign
(ŷdng)

(b) Danger signs classifier

fdrt

Input
Image

XXX

1 DRT (1)

2 DRT (2)
3 DRT (3)

4 DRT (4)

Predicted derestriction
sign (ŷdrt)

(c) Derestriction signs classifier

fmdt

Input
Image

XXX

1 MDT (1)
.
.
.
.
.
.

8 MDT (8)

Predicted mandatory
sign (ŷmdt)

(d) Mandatory signs classifier
Figure 6: Sign type specific classifiers, wherein all the cor-
responding target traffic sign classes have the same physical
characteristics (shape and prominent colors).

• Derestriction signs classifier fdrt : XXX ∈ Rl −→
ŷdrt ∈ {1,2, ...,4}, and

• Mandatory signs classifier fmdt : XXX ∈ Rl −→
ŷmdt ∈ {1,2, ...,8}.

Since the traffic signs: do not enter, priority road,
yield to cross and stop, are independent in terms of
their shape and color, we do not train any further sec-
ondary classifier(s). For instance, if fshape and fcolor

predict Ŝsecondary = 5 (octagon) and Ĉsecondary = 5 (red
background) for an input image XXX , the prediction
obtained by the network of secondary classifiers is
stop sign. The traffic sign predicted upon the use
of the secondary classifiers is finally mapped back
into the corresponding original traffic sign label in
{1,2, ...,43}, which is then considered as ŷsecondary.

4.2.3 Merging the Decisions of the Classifiers

A schematic representation of the approach is pro-
vided in Figure 7. For a given input image XXX , if
the prediction made by the primary classifier fprimary
is 20 speed limit sign (i.e., ŷprimary = 1), then by
prior knowledge, we know that the shape of the
sign board will be circular (i.e., Ŝprimary = S1) and it
will have a white background with red border (i.e.,
Ĉprimary = C1). Now, the predictions Ŝsecondary and
Ĉsecondary, made by the secondary classifiers fshape and
fcolor, are compared with Ŝprimary and Ĉprimary, respec-
tively. If either or both the conditions: Ŝprimary =

Ŝsecondary and Ĉprimary = Ĉsecondary are false, then the fi-
nal prediction is an undecided outcome, i.e., ŷfinal = φ.
On the contrary, if both the abovementioned condi-
tions are true simultaneously, then based on the pre-
dicted shape and color class (i.e., Ŝprimary/Ŝsecondary

and Ĉprimary/Ĉsecondary), the traffic sign prediction
ŷsecondary is derived from the matrix given in Figure
7. Again, the unanimity of the predictions ŷprimary and
ŷsecondary is checked. As also shown in Equation 17,
if both these predictions are the same, then the final
prediction ŷfinal for the input image XXX is ŷprimary (or
ŷsecondary). However, non-unanimity results in an un-
decided outcome, i.e., ŷfinal = φ.

The effectiveness of this mechanism is remarked
by it’s ability to trigger an undecided outcome for
all those test images for which the primary classifier
make incorrect predictions. Nevertheless, the disad-
vantage of this strategy is that it might also trigger an
undecided outcome for certain amount of test images
for which the primary classifier already make correct
predictions. Thus, a suitable threshold must be im-
posed to ensure that the number of test images for
which ŷfinal = φ is not too high. However, defining
this threshold is not within the scope of this paper.
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Ĉprimary

Prominent colors on
the predicted sign
{C1,C2, ...,C5}

Shape Classifier
fshape
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-

C2 fdrt(XXX) - - - -

C3 fmdt(XXX) - - - -

C4 - - Priority road
sign

- -

C5
Do not

enter sign
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Figure 7: Prediction of the traffic sign class for the input image XXX by fusing the predictions of the primary classifier ( fprimary)
and the network of secondary classifiers (i.e., fshape, fcolor, fsl/proh, fdng, fdrt and fmdt).

4.3 Experimentation

A total of 26640 images from the GTSRB training
data were splitted into three equal subsets. All the im-
ages were rescaled to l=48×48×3 pixels. The first
subset of the data was used to train the primary clas-
sifier fprimary. The model f used for our analysis in
Section 3.4 is fprimary in our experimentation here.

Half of the images in the second subset of the
training data were used to train the shape classifier
fshape, while the other half were used to train the color
classifier fcolor. For training the classifiers fshape and
fcolor, the images in their respective training data were
first mapped from the traffic sign classes {1,2, ....,43}
into the corresponding shape {S1,S2,S3,S4,S5} and
color {C1,C2,C3,C4,C5} classes, respectively. The
shape and the color classes (shown in Figure 5) were,
hence, used as labels for training fshape and fcolor, re-
spectively. The images in the third subset belonging
to the speed limit and prohibitory sign types were
used to train the classifier fsl/proh, and similarly, the
other classifiers, i.e., fdng, fdrt and fmdt were trained

with the corresponding sign type’s images in the third
subset of the training data. Further experimenta-
tion details (e.g., DNN architecture, hyperparameters,
etc.) related to the training and the evaluation of these
classifier models are recorded in Appendix B. Note
that the set of test images, i.e., X test, used for the eval-
uation here is the same as used in Section 3.4.3.

4.4 Results and Discussion

4.4.1 Evaluation of the Mechanism

Firstly, the individual accuracies of the classifier mod-
els are recorded in Table 1.

Let us denote the total number of test images used
for the evaluation as τ. When we use the primary clas-
sifier alone (i.e., without the implementation of the
mechanism), let us assume it misclassifies ρ number
of images. The misclassification rate by fprimary is:

ρ̄ =
ρ

τ
×100. (18)

Now, when we implement the mechanism, out of
these τ test images, let us say that the mechanism
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Table 1: Individual accuracies of the classifier models.

Classifier # Test Images Test Accuracy
fprimary 10000 96.12 %
fshape 10000 98.87 %
fcolor 10000 98.56 %
fsl/proh 4497 98.2 %
fdng 2207 95.7 %
fdrt 278 94.6 %
fmdt 1409 97.3 %

yields an undecided outcome (i.e., ŷfinal = φ) for λ im-
ages. Thus, the percentage of test images for which
the mechanism does not yield any prediction is:

ū =
λ

τ
×100. (19)

The number of images for which ŷfinal = ŷprimary
is (τ− λ). Let us assume that out of these (τ− λ)
images, for ω images the final prediction (i.e., ŷfinal =
ŷprimary) is actually an incorrect prediction. Therefore,
the misclassification rate after the implementation of
the mechanism becomes:

ω̄ =
ω

τ−λ
×100. (20)

We use the mechanism presented in Figure 7 to
obtain the final prediction (ŷfinal), for all the τ =
10000 images in the set of original GTSRB test data,
i.e., X test, as well as for the set of perturbed test im-
ages, i.e., X ∆contrast, X ∆brightness, X ∆blur and X ∆noise.
The obtained values of ρ̄ (Equation 18), ū (Equa-
tion 19) and ω̄ (Equation 20) are determined for each
of these sets of test images. The results are pre-
sented in Figure 8. To realize the advantage of us-
ing the mechanism, we compare the misclassification
rate ω̄ obtained after implementation of the mecha-
nism with the misclassification rate ρ̄ observed when
using fprimary alone. In Figure 8, consider the results

corresponding to Xtest. The use of fprimary alone re-
sults in a misclassification rate of ρ̄ = 3.88%. How-
ever, when the mechanism is used, for ū = 5.61% of
images in Xtest, no decision is produced. Among the
remaining images, i.e., for which a decision is pro-
duced (ŷfinal = ŷprimary), the misclassification rate is
just ω̄ = 0.69%. A substantial drop in the misclas-
sification rate suggests that the mechanism controls
the misclassifications incurred by fprimary consider-
ably well. Similar conclusion can be drawn from the
results obtained for the set of perturbed test images.

4.4.2 Validation of the Arguments 1 and 2

For the test data Xtest, X ∆contrast, X ∆brightness, X ∆blur
and X ∆noise, the number of images nlow, nmoderate, and
nhigh misclassified by fprimary are already shown in
Figure 3. For instance, consider the set of the original
(unperturbed) test images, i.e., Xtest. The values are
nlow = 1, nmoderate = 103, and nhigh = 284 (Figure 3a).
As discussed in Section 4.1, we expect the mechanism
in Figure 7 to yield ŷfinal = φ (undecided outcome),
ideally, for all these images misclassified by fprimary.
Upon investigation, we observed that the mechanism
does yield the undecided outcome for the nlow = 1 im-
age, and hence, ūlow = 100%. The term ūlow signifies
the percentage of nlow images for which the mecha-
nism does not yield any decision. Out of nmoderate =
103 images, the mechanism yields the undecided out-
come for 97 images, i.e., 94.17% of nmoderate im-
ages. Therefore, ūmoderate = 94.17%. However, out
of nhigh = 284 images, the mechanism yields the un-
decided outcome for only 225 images, i.e., 79.23% of
nhigh images, therefore, ūhigh = 79.23%. We continue
this investigation for the set of perturbed test images.
The results are presented in Table 2. It is observed
that for all the nlow number of misclassified images
(i.e., for which the corresponding misclassifications
lie in Mlow), the mechanism yields the undecided out-
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Figure 8: Experimental results: Evaluation of the mechanism.
.
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Table 2: Experimental results: Validation of the arguments.

Test Images
For the misclassification(s) belonging to:

Mlow Mmoderate Mhigh
nlow ūlow nmoderate ūmoderate nhigh ūhigh

Original X test 1 100% 103 94.17% 284 79.23%

Pe
rt

ur
be

d Contrast change X ∆contrast 4 100% 112 95.54% 299 85.62%
Brightness change X ∆brightness 15 100% 156 91.03% 533 81.05%
Gaussian blur X ∆blur 2 100% 138 89.13% 425 79.53%
Gaussian noise X ∆noise 27 100% 197 88.32% 564 69.33%

come. On the other hand, it is relatively difficult to
achieve the same for all the nhigh number of misclas-
sified images (i.e., for which the corresponding mis-
classifications lie in Mhigh). It can be inferred that the
misclassifications that were ranked to be offering the
primary classifier model a high vulnerability (based
on our categorisation criteria) are relatively difficult
to control, even after the implementation of the ad-
ditional efforts to minimize the misclassification rate.
One can expect the amount of rigor required to control
a particular misclassification incurred by fprimary to be
considerably higher as it’s vulnerability to the mis-
classification increases. The investigation supports
our Arguments 1 and 2 specified in Section 4.1.

5 CONCLUSIONS

In this paper, we proposed an approach to estimate
how vulnerable is a trained DNN model to any par-
ticular misclassification. It is based on estimating
the DNN’s vulnerability to misclassification of an in-
put image belonging to a class k1 into an incorrect
class k2 by measuring the similarity learnt by the
trained model between the classes k1 and k2. We il-
lustrated experimentally that the majority of the test
images that are misclassified by the model encounter
the misclassifications to which it’s vulnerability is cat-
egorised as high. This provides a rationale to our
proposed approach and also justifies its potentiality
to identify the set of critical misclassifications that
the DNN model is more likely to incur during the
operation. Based on the acquired knowledge, perti-
nent measures or counter strategies can be developed
and integrated to curb the in-operation likelihood of
these critical misclassifications. Our further empir-
ical investigation was to validate the argument that
the amount of rigor required to deal with these crit-
ical misclassifications is relatively higher than what is
required to deal with the misclassifications to which
the DNN model is moderately or lowly vulnerable.
As an extension to this work, we wish to study how
the knowledge acquired by the application of this pro-

posed concept be further utilized for the preparation
of the consequent steps to enhance the robustness
and/or performance of the image classification func-
tionality in highly automated driving.
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APPENDIX

A Primary Classifier

All the images from the GTSRB dataset were rescaled
to 48×48×3 and normalized so as to keep the pixel
values in the range of 0 to 1. For the experimenta-
tion details corresponding to the DNN model f (or
fprimary), refer to the first row of Table 3.

B Secondary Classifiers

Table 3 also summarizes the details corresponding to
fshape, fcolor, fsl/proh, fdrt, fdng and fmdt. From the val-
idation (and the test) data used for evaluating fprimary,
fshape and fcolor, only the images belonging to the
sign type: speed limit/prohibitory, derestriction, dan-
ger and mandatory were used as the validation (and
the test) data for the corresponding sign type classi-
fiers, i.e., fsl/proh, fdng, fdrt and fmdt, respectively.

Table 3: Experimentation details corresponding to the different classifier models.

Classifiera Brief Summary of the DNN
Architectureb Hyperparametersc Number of Images

Train Validation Test
f or 6 convolutional, 4 max pooling, 2

dense and 7 dropout layers
bs=64, α=10−4,
ϕ=10−4 8880 2630 10000fprimary

fshape
3 convolutional, 3 max pooling, 2
dense and 4 dropout layers

bs=32, α=10−4,
ϕ=10−4 4440 2630 10000

fcolor
3 convolutional, 3 max pooling, 2
dense and 4 dropout layers

bs=32, α=10−4,
ϕ=10−4 4440 2630 10000

fsl/proh
8 convolutional, 4 max pooling, 4
dense and 8 dropout layers

bs=16, α=10−4,
ϕ=10−4 3890 1173 4497

fdng
8 convolutional, 4 max pooling, 4
dense and 12 dropout layers

bs=16, α=10−3,
ϕ=10−4 2050 583 2207

fdrt
8 convolutional, 4 max pooling, 4
dense and 8 dropout layers

bs=16, α=10−3,
ϕ=10−4 280 82 278

fmdt
8 convolutional, 4 max pooling, 4
dense and 8 dropout layers

bs=16, α=10−4,
ϕ=10−4 1280 361 1409

a Every classifier was trained for 30 epochs using the standard categorical cross entropy loss function. We chose the model
obtained from the training epoch at which the highest validation accuracy was observed.
b The DNN architecture yields two outputs: logits and output from the final softmax activation layer.
c bs, α and ϕ denotes the batch size, the learning rate, and the learning rate decay, respectively.
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