
Using Type Analysis for Dealing with Incompetent Mutants in
Mutation Testing of Python Programs

Anna Derezińska a and Anna Skupinska
Warsaw University of Technology, Institute of Computer Science, Nowowiejska 15/19, Warsaw, Poland

Keywords: Dynamically Typed Programming Language, Mutation Testing, Python, Type Analysis.

Abstract: Mutation testing of dynamically typed languages, such as Python, raises problems in mutant introduction and
evaluation of mutant execution results, which may provide to the application of incompetent mutants. Type
analysis technique has been proposed to support mutation testing in Python. Based on the static information
available in a program and on the type impact analysis, prospects of type errors are detected. The method has
been developed in a type analyser, which has been combined with a mutation tool for Python programs. In
mutation testing of programs in which many incompetent mutants would be created, the approach could lower
the number of such mutants. The final contribution depends on the mutation operators and programming
structures used in a mutated program. Preliminary experiments do not confirm the efficiency improvement in
terms of time execution.

1 INTRODUCTION

One of the characteristic features of the Python
programming language is dynamic typing. It might
contribute to the easiness of programming and code
clarity. On the other hand, many of the developer
errors are not detected at the implementation stage.
Therefore, numerous exceptions could become
apparent only during the execution of a program.

Mutation testing is a method that supports the
evaluation and improvement of a program and its test
suite quality (Papadakis et al., 2019). However,
dynamic typing influences the creation of mutants
and the assessment of mutation testing results. One of
the significant problems is the encountering of so-
called incompetent mutants that are mainly associated
with type errors detected during a mutant execution
(Bottaci, 2010), (Derezinska and Hałas, 2014a).

Dynamic nature of Python impacts on the allowed
mutations or combinations in genetic algorithms.
Incompetent mutants degrade efficiency of mutation
testing and could even provide ambiguous results.
High cost of mutation testing is an obstacle in the
method application (Pizzoleto et al., 2019).
Therefore, a mutation tool should limit the creation of
such kind of mutants. A straightforward approach

a https://orcid.org/0000-0001-8792-203X

could be the avoidance of mutation operators that
may lead to the creation of many incompetent
mutants and bounding a number and/or places of
mutants being created by other mutation operators
(Derezinska and Hałas, 2014b). However, this
strategy could entail unwanted restrictions in the
mutation testing capabilities.

Another approach could be a type analysis based
on information about types accessible from the
program statement evaluation and from annotations,
which are increasing commonly used in the current
Python programs (Python, 2021). Any kind of static
type analysis could not resolve all situations, but
potentially could point at selected cases of
incompetent mutant occurrence.

The primary goal of this paper is to investigate a
static type analysis to optimize the mutation testing of
Python programs. The main contribution is a
dedicated approach to the type analysis, its
development combined with a mutation testing tool
for Python programs, and a preliminary evaluation of
this proof of concept.

The paper will be structured as follows. The next
Section describes the issues of mutation testing in
Python programs, especially concerning incompetent
mutants. In Section 3, an approach to type analysis is
explained. Development of the type analysis support

Derezińska, A. and Skupinska, A.
Using Type Analysis for Dealing with Incompetent Mutants in Mutation Testing of Python Programs.
DOI: 10.5220/0010481103970404
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 397-404
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

397

in the mutation tool for Python is addressed in Section
4. We finish the paper with notes about related work
in Section 5, and with the conclusions.

2 BACKGROUND

We first introduce the basic notion of mutation testing
and discuss its specific features in the context of
Python programs.

2.1 The Basics of Mutation Testing

Mutation testing has been primarily used for the
evaluation of test set quality. An original program is
modified to create many program variations, so-
called mutants. A mutant is generated applying a
mutation operator in a certain place(s) of the original
code. Mutation operators reflect possible code
changes caused by programmer errors.

Mutants are executed against a test set under
concern. Differences detected in a mutant behavior
denote that the injected error(s) has been discovered
by the tests. The more mutants are killed in this way,
the more the test set is able to reveal errors. The
mutation testing can also support the generation of
new test cases that supplement the test set. Mutants
that could not be killed by any test, i.e., equivalent
mutants, impede the process, as these mutants not
always could be automatically recognized.

2.2 Competent and Incompetent
Mutants

Application of mutation testing in dynamically typed
programming languages leads to specific kinds of
mutants (Bottaci, 2010). Competent mutants have
code changes that could have been introduced by a
developer of an original program. Mutation operators
are aimed at generating mutants that could have been
produced by a competent developer. A mutant will be
called competent if a mutated code has no injected
errors that could undesirably interrupt its execution
and its modifications could be detected by test cases.

The first source of incompetent mutants could be
mutants that have syntax errors (still-born mutants).
Errors of such kind can be detected during program
compilation, which is time-consuming. However,
incompetent mutants with syntax errors could be
avoided by a careful creation of mutants within a tool.
Thus, we can omit this problem in our discussion.

Another cause of incompetent mutants are
execution errors generated mainly by incompatible
types. Python is a programming language with a

dynamic typing system. Therefore, a variable could
be of any type. Usage of an incompatible type could
result in the following situations:
 Calling an attribute that the type has not got,
 Calling a variable that the type is not possible

to be called,
 Using an operator not supported by the type.
An idea to detect situations that might lead to the
creation of those kinds of incompetent mutants is a
program analysis aimed at type occurrence.

A mutation operator can create an incompetent
mutant if it cannot verify that such a mutant could not
be created. Therefore, mutation operators that create
too many incompetent mutants have been excluded
from mutation testing. To check that a created mutant
is a competent one, it should be compiled and tested,
which requires some time and resources.

One of the main causes that a mutant becomes an
incompetent one is a TypeError. It can occur when a
variable has to perform an action not supported by
this type. For example, a concatenation of strings
would be accomplished with an addition operator.
Original code:

if n >= 1
 out==”I have” + str(n)+”books”

Mutated code:

if n >= 1
 out==”I have” - str(n)+”books”

Errors of this kind could be introduced by
mutation operators that manipulate variables or their
actions. Because of dynamic typing, mutation
operators of this kind cannot detect whether the
introduced mutations could be supported by types that
will be taking part in the actions.

2.3 Dealing with Incompetent Mutants

While tracing of types, the incompetence of some
mutations could be predicted, such as AOD
(arithmetic operation deletion), AOR (arithmetic
operation replacement). It also makes possible to
apply the VOR mutation operator (variable to
constant replacement) without creating a great
number of incompetent mutants.

There are some mutation operators that would be
not influenced by the tracing of types. For example,
LOR (logical operator replacement) and ROR
(relational operator replacement) do not create
incompetent mutants that could be detected by the
considered tracing of types. These operators avoid
introducing such changes after which the same types
would not be supported and, therefore, avoid creating

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

398

incompetent mutants. For example, an equivalence
relation “==” would be not substituted by “>=”
although in both cases a relational operator is used.

In Mutpy, the mutation testing tool for Python
programs (Derezinska and Halas, 2014a), mutants are
created while traversing an abstract syntax tree
(AST). For each tree node, acceptable mutation
operators are applied to generate mutants. In this set
of mutants, some could be recognized as certainly
incompetent and rejected from further analysis.

Checking a mutant incompetence relies on
verification whether a mutated operation supports the
types of the operation elements. A test is performed
using variables of the same type as elements of the
mutated operation. A mutated operation is realized in
a Python try expression. If a ‘TypeError’ is caught,
the operation is not supported by the types under
concern. A mutation is allowed for this set of types, if
no exception is caught. An operation could have
many combinations of possible simple types and all
such combinations are tested by MutPy. If all
combinations of types have risen an error, the mutant
will be certainly incompetent and will not be created.

MutPy will be enhanced by type analysis. The
Type Analyzer associates variables with possible
types which they could possess. A variable could be
identified as having many possible types, or as a
variable which type cannot be recognized.

Even the incomplete knowledge of variable types
gives an opportunity to use other mutation operators,
which could not be applied due to a large number of
incompetent mutants generated by these operators.
For example, information about the types of variables
that could be substituted by constants could be used
in the application of a mutation operator that swaps a
variable with a constant of the same type. Therefore,
we want to address the following research questions:
(1) Is it worthwhile to apply type analysis to cope with
incompetent mutants in mutation testing of Python
programs?
It is associated with the following detailed issues:
(2) Does the application of type analysis lower the
number of incompetent mutants in mutation testing of
Python programs?
(3) Does the application of type analysis save the time
of mutation testing of Python programs?

3 TYPE ANALYSIS

An approach to type analysis of Python programs will
be presented. It is based on tracing of variable types
and processing of dedicated Type_tree structures.

3.1 Evaluating Types in Python

Certain information included in a Python program
could help in revealing the types of variables. It could
allow us to detect mutants that could be incompetent
due to type error and avoid creating them.

In comparison to built-in types, tracing of the
types created by a user is more complicated, as their
attributes could be changed during a program
execution. It is even possible to change attributes of
single objects, resulting in a unique special type.
Therefore, in this work we only focus on tracing built-
in types, such as int, float, bool, string, list, and set,
because their attributes do not change during a
program execution.

Mutant creation could be supported by the
following functions:
 Obtain the type of newly created variables
 Obtain the type of function parameters
 Obtain the type returned by a function
 Identify situations, when a variable could have

many types
 Assign possible types that could have a variable

in different stages of a program execution.
Recognizing of a type that could be assigned to a

variable would be impossible in several
circumstances, such as: (i) function parameter
without annotation, (ii) the type of a variable returned
in a function call which type of the returned value is
not known, (iii) the type of a variable taken from a
container of a content having an unknown type.

This second situation is illustrated by the
following example in which the type of a returned
variable is not known. It could be an integer or a string
of characters.

def unknown_type(answer:bool):
 a = 0
 if answer:
 a = ‘letter’
 return a

3.2 Determining Type of Variables

There are three sources of information that could be
used for the identification of a variable type:

1. Annotations of functions
2. Annotations of variables
3. Assignment of a value to a variable

Annotations could inform about the types of
created variables, function parameters, or values
returned by functions. According to the Python
paradigm, annotations are optional and have no
impact on the variable type during program
execution. However, it could be assumed that if

Using Type Analysis for Dealing with Incompetent Mutants in Mutation Testing of Python Programs

399

annotations are present, they give information about
programmer intentions and the corresponding
variables, arguments, or return values are of the given
types. Therefore, an annotation, if it is given, would
be treated as a primary initial type of a variable.

A subsequent code extract shows an example of
annotations for an argument, a return value of a
function, and of a variable annotation:

def annotation_example(a:int):int
 b: int = 3
 return a:b

However, types of variables that have neither
assigned values, arguments, or returned values, nor
have annotations; or their annotations do not specify
any type, cannot be identified using annotations.

The trird possibilty to determine a variable type is
an assignment operation. A type of the left hand side
variable becomes the type of the assigned object.
Assignment operations encounter also in for loops, in
which values are assigned to an iterated variable.

Specification of a variable type due to its
assignment is sometimes impossible. An assigned
object could have an unknown type, e.g., be a result
of a function with an argument without annotation. In
these cases, the variable type also remains unknown
after assignment.

Annotations have been used as information for
programmers and do not influence variable types,
assuming there is no additional code to implement
typing control. Therefore, in case of type conflicts,
information originated from an assignment operator
overpass this from annotations.

3.3 Tracing Types of Dynamic
Variables

In a language with dynamic types, such as Python, the
type of a variable could be further changed by an
assignment operation. Consequently, the types
identified by annotations or by the first assignments
could be replaced. Identification of a variable type
used at a particular mutation place, would require the
observation of the variable changes in the execution
paths of a program.

A variable could have many possible types. For
example, a type could be changed in an if statement,
and it could not be determined whether the condition
is satisfied or not. Therefore, many possibilities are
taken into account for a variable of this kind.

def many_type_example(condition):
 a =0
 if condition;

a = ””

Tracing of type changes could be performed
directly in Python code or at the AST of the code. The
AST comprises all necessary program information,
including annotations, and supports the semantic
analysis, therefore type analysis could be based on
AST and additional data structures.

During the type analysis, a program AST is
scanned and for each variable a special structure,
called Type_tree, is built. A Type_tree consists of two
kinds of nodes: internal and external. An external
node corresponds to a variety of potential types of a
variable and comprises many internal nodes. In an
external node, one of its internal nodes is marked as a
current position of the variable. An internal node
includes a single possible type of a variable and a
reference to its external node. Apart of “real” types,
an internal node can include a void type that denotes
no change in the variable type. A type in an internal
node can be overwritten if the variable is assigned to
a value of another type. An external node with their
internal nodes is deleted when its parent node has
been overwritten.

A Type_tree is created and modified during the
type analysis. However, Type_tree is not a static tree
that gives information about a variable type in each
moment of a program execution.

Type analysis is tightly coupled with the language
grammar reflected in AST. According to the Python
grammar (Python, 2020), a complex expression
consists of one or more closures. Each closure has its
header and its suite. Closure headers are at the same
ident level and begin with the unique keywords. The
suite contains a group of expressions controlled by
the closure.

Scanning of types in complex expressions has
been described by a set of automata-like
specifications. The current state is determined by two
factors: a kind of current position in AST and a phase
regarding try expression processing. Taking into
account all possible states, a set of rules has been
identified. Each rule specifies modifications
performed on the Type_tree, i.e., creation of external
or internal nodes, category of created internal nodes,
searching and selection of nodes, deleting of nodes,
as appropriate.

The number of set-up nodes in Type_tree depends
on the composite statements encountered in the
program. External nodes created for if expressions
have at most two internal nodes: one of the if body
and the second of else, because constructions of kind
if elif are treated in the same way as if inside of else.
External nodes that handle for, while or try structures
could have many internal nodes, as there are many
places in which the expression could be got out of.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

400

Though, the number of internal nodes is limited by
the number of break statements in a loop, or except
closures of an exception handling expression.

For example, the variable x is annotated with int
type, but the assignment inside the conditional
statement could change the type to float.

def TypeTree_example(x:int):
if x != 0:
 x = 1/x
return x

During the AST processing, a Type_tree of the
variable x has been developed. Figure 1 illustrates the
development phases of the Type_tree. Dark nodes
stand for internal nodes with a current position. In the
bottom row, the external nodes are shown. Internal
nodes have their types (int and float) or are empty
(void). In step I, an empty node is created for the
identified variable. The variable has its annotation int
(II). Processing of the statement if results in the
creation of a new node with the void type (III). After
analysis of the assignment inside if, the type is
changed to float (IV). The next internal node becomes
void, as there are no clauses else or elif (V). The final
structure indicates that at stage VI the variable could
have one of two different types, int or float.

Figure 1: Evaluation of Tree_type of the variable x.

4 MUTATION TESTING WITH
TYPE ANALYSIS

The provided type analysis in Python has been
motivated by the advancement of mutation testing of
Python programs. The developed solution has been
combined with MutPy (its core of 2017 Nov 21) – a
tool for mutation testing of Python programs
(Derezinska and Halas, 2014a) (MutPy, 2021).

4.1 Extending MutPy with a Type
Analyzer

MutPy creates and runs a set of mutants that are built
from an original Python program using a set of
mutation operators and taking into account the
coverage results (Derezinska and Halas, 2014b). A
few strategies for applying higher order mutation can
also be selected.

Enhancement of MutPy with Type Analyzer
allows to avoid the creation and running of these
incompetent mutants that have been identified. The
general flow of the mutation testing process with the
type analysis is presented in (Figure 2). Actions and
conditions supplemented by the type analysis are
denoted by the ‘*’ character.

During the initial phase, an original program is
tested using a selected test suite. Next, a configuration
of a mutant generator is established. It depends on the
mutation order (first, second, …), a selection strategy
in case of higher order mutation, a set of mutation
operators to be performed, options about application
of code coverage and type analysis. An abstract
syntax tree of the original program is created. The
further program analysis and manipulation is
performed on the AST.

Figure 2: Mutation testing realization with type analysis.

If code coverage is affected, code nodes not used
in the tests are identified in AST in order not to be
employed in a mutant creation. If the option of type
analysis is allowed, it is performed at this stage and
appropriate Type_trees are generated.

Then, for each mutation operator from the list,
mutation testing is performed. A mutation operator
scans the AST and looks for the nodes that could be
mutated by the operator. If the type analysis was
selected, realization possibility of a mutation in a
located node is checked. If, according to the type
analysis, the mutant is an incompetent one, this code

Using Type Analysis for Dealing with Incompetent Mutants in Mutation Testing of Python Programs

401

position would be discarded and the mutant not
created.

The created mutant is run with the tests and its
testing results stored appropriately. After traversal of
all AST nodes and processing of all mutation
operators, the final mutation results are evaluated.

4.2 Experiments on Type Analyzer

The Type Analyzer has been implemented as a proof
of concept, and the conducted experiments focused
on the verification of its main capabilities in the
processing of incompetent mutants. We wanted also
to observe the impact of selected program
construction and annotation usage on the type
analysis and mutation testing results. The following
six subjects have been used in experiments2:

1) A very simple program that includes a
conditional statement (if) and arithmetic
operations. No annotations are used.

2) The same program as (1) but with the
application of annotations in function
parameters.

3) A very simple program with two similar
methods. One of the methods uses
annotations, while the second does not.

4) A very simple program with many arithmetic
operations on parameters of a method.

5) A program that calculates a game statistics. It
manipulates on numbers and strings. Creates a
relative high number of mutants.

6) A program that processes C++ code and
creates its inheritance tree.

The numbers of mutants obtained in the
experiments are given in Table 1. For each program,
the results are provided in two rows: the upper row
(denoted by “-“) when no type analysis was used, and
the bottom row (“+”) including outcomes with type
analysis. The number of mutants are given in four
columns: (i) all generated mutants, (ii) mutants killed
by a test set associated with the program, (iii) mutants
not killed by the tests but not counted as incompetent
mutants, and (iv) created mutants that were identified
as incompetent during the program execution.

There is also another mutant category that could
be recognized by MutPy during test execution, i.e.,
mutants abandoned by a time limit. For all programs
discussed, there were no such timeout mutants.

2https://galera.ii.pw.edu.pl/~adr/MutPywithTypeAnalyzer/

Table 1: Number of mutants in mutation testing.

Number of mutants

all killed not killed incompetent
1 - 6 3 0 3
1 + 6 3 0 3
2 - 6 3 0 3
2 + 6 3 0 3
3 - 2 0 0 2
3 + 1 0 0 1
4 - 12 0 3 9
4 + 3 0 3 0
5 - 481 259 169 53
5 + 433 259 169 5
6 - 257 6..8 100..102 149..151
6 + 257 6..8 100..102 149..151

To compare the approach efficiency, execution
times were also measured. Each program was
executed 200 times. The average time values are
presented in Table 2.

Table 2: Execution time (including mutant generation and
testing time) in [s].

Average execution time [s]

Without Type Analysis With Type Analysis
1 0.0509 0.0527
2 0.0556 0.0596
3 0.0443 0.0479
4 0.1703 0.1675
5 9.4028 9.4247
6 11.0237 13.5065

Comparison of programs 1) and 2) points at longer
processing time of an annotated program 2). This is
probably due to the bigger number of AST nodes, as
annotations are included in AST. This impact of
annotations is higher when the type analysis is
applied, because annotations are used in the type
determination. In these programs, there were no
mutants with TypeErrors, so the type analysis could
not lower the number of incompetent mutants and
caused only a slightly longer execution time because
of the overhead provided. Detected incompetent
mutants originated from a “by zero division” which
was present in one of tests.

Programs 3) and 4) also differ in annotations. In
3), there were no annotations, and only two
incompetent mutants, one of which was statically
detected. The small number of mutants could not
lower the execution time, which was a bit longer due
to the overhead. In the annotated program 4), all
incompetent mutants (9) were recognized and the
execution time was a bit shorter than for 3). The
number of incompetent mutants is 3 times higher than

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

402

the number of killed mutants, so in this case mutation
testing with the type analysis was beneficial.

The remaining programs, 5) and 6) were existing
programs developed independently from these
experiments. In 5), most of the incompetent mutants,
48 out of 53, were detected by the static type analysis.
Even though, the approach does not spare the
execution time. In this program, the more serious
problem was a high number of nonkilled mutants
(169), mostly equivalent ones. The type analysis was
not dealing with this kind of mutants and all of them
reminded in the second version of mutation testing.

Program 6) has no incompetent mutants caused by
TypeErrors, so their number remains unchanged. The
mutant numbers are expressed as ranges min and max
over the set of all program executions. Incompetent
mutants were mainly due to the calling of attributes
or container spots that do not exist. This could be
utilized in further development of the MutPy tool
extension to avoid incompetent mutants based also on
different reasons. The whole execution time with the
type analysis was longer because of the overhead and
no saving in the incompetent mutant number.

The presented experiments give a preliminary
assessment of the proof of concept but cannot be
counted as a representative set of professional Python
programs. The possibility to generalize the outcomes
in terms of threats to validity is bounded.

5 RELATED WORK

There are different approaches to handle types in the
context of Python programs.

One of the approaches is realized by type
controllers, such as mypy – an optional static type
checker for Python (mypy, 2021). A type controller
verifies the variables which types have been specified
by a developer, obtaining in result a mixture of static
and dynamic types in the same program. Mypy
detects types based on annotation, logical reasoning,
and a special kind of comments. The current mypy
supports programs that use Python 3 function
annotation syntax (conforming to Python
Enhancement Proposal 484).

Although variable types are statically processed
in both cases: type controllers and Type Analyzer, but
these kinds of tools are aimed at different tasks. In the
Type Analyzer the code is not directly analyzed and
not modified and it is sufficient to scan AST produced
by the Python scanner. MyPy introduces some
changes into the program and has to interpret
comments, which are excluded from the ordinary
scanning.

The most important difference refers to the
determination of the type of a variable. Type
Analyzer works on dynamic types, i.e., the variable
types are not stable but have to be traced. Type
Analyzer has to deal with the situations, when many
types are possible. Type controllers deal with static
types that are supposed not to change. Variables
without specified types remain dynamic, and their
correctness is due to the Python compiler and not to
the type controller.

Type Analyzer reports only about its internal
errors and can assume that the syntax errors
introduced by a programmer would be detected by the
Python scanner. Whereas type controller verifies the
static type rules and informs about any rule violation,
also syntax errors might be reported if a code is
changed.

In (Monat, Quadjaout and Mine, 2020), a static
analysis was proposed to use type information to
detect all exceptions that can be raised and not caught.
The type analysis is flow-sensitive and takes into
account the fact that variable types evolve during
program execution and, conversely, run-time type
information is used to alter the control flow of the
program, either through introspection or method and
operator overloading. Some limitations to the Python
language are assumed.

Combination of static and dynamic typing
capabilities, i.e., gradual typing, is presented in a
language dialect – Reticulated Python (Vitousek, Siek
and Baker, 2014). It provides type checking based on
the annotations interpreted as if they were static
obligations. It is performed on AST during a module
load time.

Mutation testing and annotations have been
treated by (Gopinath and Walkingshaw, 2017).
Though, it was focused on the evaluation of the
annotation quality by mutation testing (MutPy) and
static analysis supported by mypy.

One of the most comprehensive tools for mutation
testing of Python programs has been MutPy
(Derezinska and Hałas, 2014b). Other previous tools
had a very limited number of mutation operators and
do not cover any object-oriented or Python-specific
features of the language. MutPy was used in different
experiments and refactored to improve its quality
(Derezinska and Hałas, 2015). The current basic
version is available at (MutPy, 2021).

Recently, other tools for mutation testing of
Python programs have been developed: Cosmic Ray
(Bingham, 2017) and mutmut (Thoma, 2020).
However, to the best of our knowledge, there is no
detailed information about dealing with type errors
and processing incompetent mutants in those tools.

Using Type Analysis for Dealing with Incompetent Mutants in Mutation Testing of Python Programs

403

6 CONCLUSIONS

In programs of dynamically typed languages, type
correctness cannot be verified by compilers before
program execution. Therefore, mutants that activate
type errors can be created in the mutation testing. This
kind of mutant could be killed by any test and is not
supportive in the evaluation of a test suite quality. In
this work, we have addressed the problem of
incompetent mutants in Python programs.

A type analysis has been proposed that assists
with the identification of a subset of potential
incompetent mutants before creation and testing of a
mutant. The approach has been implemented and
integrated with MutPy – the mutation testing tool of
Python. This proof of concept has been evaluated in
preliminary experiments. As expected, the number of
incompetent mutants could be lowered. This effect
depends strongly on the selected mutation operators.
Those mutation operators that are prone to generate
incompetent mutants would benefit from the solution.

The type analysis adds overhead to the mutation
process. Most of the work is performed once before
mutant generation. Hence, the evaluation of a
program with many mutation operators and many
incompetent mutants could benefit from the type
analysis, in comparison to the situation when only a
few mutation operators selected to avoid incompetent
mutants are applied. However, the preliminary results
showed that the time overhead of type analysis could
surpass the time lowering caused by a slight drop in
the number of incompetent mutants.

Type analysis was intended to overcome obstacles
in the application of a variety of mutation operators
that would have been excluded or limited due to the
creation of incompetent mutants. Time measurement
does not confirm this supposition. However, detailed
efficiency evaluation needs experiments on a more
comprehensive set of programs. Combination of the
approach with other mutation testing tools (Bingham,
2017), (Thoma, 2020) is an open question, as it is not
known how they handle incompetent mutants.

REFERENCES

Bottaci, L., 2010. Type Sensitive Application of Mutation
Operators for Dynamically Typed Programs. In:
Proceedings of 3rd International Conference on
Software Testing, Verification and Validation
Workshops (ICSTW). IEEE Comp. Soc. pp 126-131.
doi: 10.1109/ICSTW.2010.56.

Bingham, A. 2017. Mutation Testing in Python, [Online]
[Accessed 18 Jan 2021] Available from:

balabit.github.io/coderegation/notes/2017-05-10-
Austin-Bingham-Mutation-Testing-in-Python.

Derezinska, A., and Hałas, K., 2014a. Experimental
Evaluation of Mutation Testing Approaches to Python
Programs. In: Proceedings of IEEE International
Conference on Software Testing, Verification, and
Validation Workshops. IEEE Comp. Soc. pp. 156-164.
doi: 10.1109/ICSTW.2014.24.

Derezinska, A., and Hałas, K., 2014b. Analysis of Mutation
Operators for the Python Language. In: Zamojski, W.,
Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk,
J.: (eds.) DepCos-RELCOMEX 2014. AISC, vol. 286.
Springer Int. Pub. Switzerland. pp. 155-164. doi:
10.1007/978-3-319-07013-1_15.

Derezińska, A. and Hałas, K., 2015. Improving Mutation
Testing Process of Python Programs, In: Silhavy, R.,
Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova,
Z. (eds.) Software Engineering in Intelligent Systems,
AISC, vol. 349, Springer. pp. 233-242. doi:
10.1007/978-3-319-18473-9_23.

Gopinath, R. and Walkingshaw, E., 2017. How good are
your types? Using mutation analysis to evaluate the
effectiveness of type annotations. In: Proceedings of
10th IEEE International Conference on Software
Testing, Verification and Validation Workshops, pp.
122-127. IEEE Comp. Society.

Monat, R., Ouadjaout, A. and Mine, A. 2020. Static Type
Analysis by Abstract Interpretation of Python
Programs. In: 34th European Conference on Object-
Oriented Programming, ECOOP, No17, pp. 17:1-
17:29. doi: 10.4230/LIPIcs.ECOOP.2020.17.

MutPy mutation testing tool for Python. [Online] [Accessed
17 Jan 2021] Available from: https://github.com/
mutpy/mutpy.

mypy - optional static type checker for Python. [Online]
[Accessed 11 Jan 2021] Available from: http://mypy-
lang.org/.

Papadakis, M., Kintis, M., Zhang, Jie, Jia, Y., Le Traon, Y.,
and Harman, M., 2019. Chapter Six - Mutation testing
advances: an analysis and survey. Advances in
Computers. 112, pp. 275-378. Elsevier. doi:10.1016/
bs.adcom.2018.03.015.

Pizzoleto, A. V., Ferrari, F. C., Offutt, J., Fernandes, L., and
Ribeiro, M., 2019. A systematic literature review of
techniques and metrics to reduce the cost of mutation
testing. Journal of Systems and Software. 157, Elsevier.
doi:10.1016/j.jss.2019.07.100.

Python documentation. [Online] [Accessed 13 Dec 2020]
Available from: https://docs.python.org/3/.

Thoma, M. 2020. Mutation Testing with Python. [Online]
[Accessed 18 Jan 2021] Available from:
https://medium.com/analytics-vidhya/unit-testing-in-
python-mutation-testing-7a70143180d8.

Vitousek, M. M., Kent, A. M., Siek, J. G., and Baker, J.,
2014. Design and evaluation of gradual typing for
Python. In: Black, A. P., and Tratt, L., (ed.), DLS, pp.
45–56, ACM.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

404

