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Abstract: Mutation testing of dynamically typed languages, such as Python, raises problems in mutant introduction and 
evaluation of mutant execution results, which may provide to the application of incompetent mutants. Type 
analysis technique has been proposed to support mutation testing in Python. Based on the static information 
available in a program and on the type impact analysis, prospects of type errors are detected. The method has 
been developed in a type analyser, which has been combined with a mutation tool for Python programs. In 
mutation testing of programs in which many incompetent mutants would be created, the approach could lower 
the number of such mutants. The final contribution depends on the mutation operators and programming 
structures used in a mutated program. Preliminary experiments do not confirm the efficiency improvement in 
terms of time execution.  

1 INTRODUCTION 

One of the characteristic features of the Python 
programming language is dynamic typing. It might 
contribute to the easiness of programming and code 
clarity. On the other hand, many of the developer 
errors are not detected at the implementation stage. 
Therefore, numerous exceptions could become 
apparent only during the execution of a program. 

Mutation testing is a method that supports the 
evaluation and improvement of a program and its test 
suite quality (Papadakis et al., 2019). However, 
dynamic typing influences the creation of mutants 
and the assessment of mutation testing results. One of 
the significant problems is the encountering of so-
called incompetent mutants that are mainly associated 
with type errors detected during a mutant execution 
(Bottaci, 2010), (Derezinska and Hałas, 2014a).  

Dynamic nature of Python impacts on the allowed 
mutations or combinations in genetic algorithms. 
Incompetent mutants degrade efficiency of mutation 
testing and could even provide ambiguous results. 
High cost of mutation testing is an obstacle in the 
method application (Pizzoleto et al., 2019). 
Therefore, a mutation tool should limit the creation of 
such kind of mutants. A straightforward approach 
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could be the avoidance of mutation operators that 
may lead to the creation of many incompetent 
mutants and bounding a number and/or places of 
mutants being created by other mutation operators 
(Derezinska and Hałas, 2014b). However, this 
strategy could entail unwanted restrictions in the 
mutation testing capabilities.  

Another approach could be a type analysis based 
on information about types accessible from the 
program statement evaluation and from annotations, 
which are increasing commonly used in the current 
Python programs (Python, 2021). Any kind of static 
type analysis could not resolve all situations, but 
potentially could point at selected cases of 
incompetent mutant occurrence. 

The primary goal of this paper is to investigate a 
static type analysis to optimize the mutation testing of 
Python programs. The main contribution is a 
dedicated approach to the type analysis, its 
development combined with a mutation testing tool 
for Python programs, and a preliminary evaluation of 
this proof of concept. 

The paper will be structured as follows. The next 
Section describes the issues of mutation testing in 
Python programs, especially concerning incompetent 
mutants. In Section 3, an approach to type analysis is 
explained. Development of the type analysis support 
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in the mutation tool for Python is addressed in Section 
4. We finish the paper with notes about related work 
in Section 5, and with the conclusions. 

2 BACKGROUND 

We first introduce the basic notion of mutation testing 
and discuss its specific features in the context of 
Python programs. 

2.1 The Basics of Mutation Testing 

Mutation testing has been primarily used for the 
evaluation of test set quality. An original program is 
modified to create many program variations, so-
called mutants. A mutant is generated applying a 
mutation operator in a certain place(s) of the original 
code. Mutation operators reflect possible code 
changes caused by programmer errors. 

Mutants are executed against a test set under 
concern. Differences detected in a mutant behavior 
denote that the injected error(s) has been discovered 
by the tests. The more mutants are killed in this way, 
the more the test set is able to reveal errors. The 
mutation testing can also support the generation of 
new test cases that supplement the test set. Mutants 
that could not be killed by any test, i.e., equivalent 
mutants, impede the process, as these mutants not 
always could be automatically recognized. 

2.2 Competent and Incompetent 
Mutants 

Application of mutation testing in dynamically typed 
programming languages leads to specific kinds of 
mutants (Bottaci, 2010). Competent mutants have 
code changes that could have been introduced by a 
developer of an original program. Mutation operators 
are aimed at generating mutants that could have been 
produced by a competent developer. A mutant will be 
called competent if a mutated code has no injected 
errors that could undesirably interrupt its execution 
and its modifications could be detected by test cases. 

The first source of incompetent mutants could be 
mutants that have syntax errors (still-born mutants). 
Errors of such kind can be detected during program 
compilation, which is time-consuming. However, 
incompetent mutants with syntax errors could be 
avoided by a careful creation of mutants within a tool. 
Thus, we can omit this problem in our discussion. 

Another cause of incompetent mutants are 
execution errors generated mainly by incompatible 
types. Python is a programming language with a 

dynamic typing system. Therefore, a variable could 
be of any type. Usage of an incompatible type could 
result in the following situations: 
 Calling an attribute that the type has not got, 
 Calling a variable that the type is not possible 

to be called, 
 Using an operator not supported by the type. 
An idea to detect situations that might lead to the 
creation of those kinds of incompetent mutants is a 
program analysis aimed at type occurrence. 

A mutation operator can create an incompetent 
mutant if it cannot verify that such a mutant could not 
be created. Therefore, mutation operators that create 
too many incompetent mutants have been excluded 
from mutation testing. To check that a created mutant 
is a competent one, it should be compiled and tested, 
which requires some time and resources. 

One of the main causes that a mutant becomes an 
incompetent one is a TypeError. It can occur when a 
variable has to perform an action not supported by 
this type. For example, a concatenation of strings 
would be accomplished with an addition operator. 
Original code: 

if n >= 1 
   out==”I have” + str(n)+”books” 
 

Mutated code: 
 
if n >= 1 
   out==”I have” - str(n)+”books” 

Errors of this kind could be introduced by 
mutation operators that manipulate variables or their 
actions. Because of dynamic typing, mutation 
operators of this kind cannot detect whether the 
introduced mutations could be supported by types that 
will be taking part in the actions. 

2.3 Dealing with Incompetent Mutants 

While tracing of types, the incompetence of some 
mutations could be predicted, such as AOD 
(arithmetic operation deletion), AOR (arithmetic 
operation replacement). It also makes possible to 
apply the VOR mutation operator (variable to 
constant replacement) without creating a great 
number of incompetent mutants. 

There are some mutation operators that would be 
not influenced by the tracing of types. For example, 
LOR (logical operator replacement) and ROR 
(relational operator replacement) do not create 
incompetent mutants that could be detected by the 
considered tracing of types. These operators avoid 
introducing such changes after which the same types 
would not be supported and, therefore, avoid creating 
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incompetent mutants. For example, an equivalence 
relation “==” would be not substituted by “>=” 
although in both cases a relational operator is used. 

In Mutpy, the mutation testing tool for Python 
programs (Derezinska and Halas, 2014a), mutants are 
created while traversing an abstract syntax tree 
(AST). For each tree node, acceptable mutation 
operators are applied to generate mutants. In this set 
of mutants, some could be recognized as certainly 
incompetent and rejected from further analysis. 

Checking a mutant incompetence relies on 
verification whether a mutated operation supports the 
types of the operation elements. A test is performed 
using variables of the same type as elements of the 
mutated operation. A mutated operation is realized in 
a Python try expression. If a ‘TypeError’ is caught, 
the operation is not supported by the types under 
concern. A mutation is allowed for this set of types, if 
no exception is caught. An operation could have 
many combinations of possible simple types and all 
such combinations are tested by MutPy. If all 
combinations of types have risen an error, the mutant 
will be certainly incompetent and will not be created. 

MutPy will be enhanced by type analysis. The 
Type Analyzer associates variables with possible 
types which they could possess. A variable could be 
identified as having many possible types, or as a 
variable which type cannot be recognized.  

Even the incomplete knowledge of variable types 
gives an opportunity to use other mutation operators, 
which could not be applied due to a large number of 
incompetent mutants generated by these operators. 
For example, information about the types of variables 
that could be substituted by constants could be used 
in the application of a mutation operator that swaps a 
variable with a constant of the same type. Therefore, 
we want to address the following research questions:  
(1) Is it worthwhile to apply type analysis to cope with 
incompetent mutants in mutation testing of Python 
programs? 
It is associated with the following detailed issues: 
(2) Does the application of type analysis lower the 
number of incompetent mutants in mutation testing of 
Python programs? 
(3) Does the application of type analysis save the time 
of mutation testing of Python programs? 

3 TYPE ANALYSIS 

An approach to type analysis of Python programs will 
be presented. It is based on tracing of variable types 
and processing of dedicated Type_tree structures. 

3.1 Evaluating Types in Python 

Certain information included in a Python program 
could help in revealing the types of variables. It could 
allow us to detect mutants that could be incompetent 
due to type error and avoid creating them.  

In comparison to built-in types, tracing of the 
types created by a user is more complicated, as their 
attributes could be changed during a program 
execution. It is even possible to change attributes of 
single objects, resulting in a unique special type. 
Therefore, in this work we only focus on tracing built-
in types, such as int, float, bool, string, list, and set, 
because their attributes do not change during a 
program execution.  

Mutant creation could be supported by the 
following functions: 
 Obtain the type of newly created variables 
 Obtain the type of function parameters 
 Obtain the type returned by a function 
 Identify situations, when a variable could have 

many types 
 Assign possible types that could have a variable 

in different stages of a program execution. 
Recognizing of a type that could be assigned to a 

variable would be impossible in several 
circumstances, such as: (i) function parameter 
without annotation, (ii) the type of a variable returned 
in a function call which type of the returned value is 
not known, (iii) the type of a variable taken from a 
container of a content having an unknown type.  

This second situation is illustrated by the 
following example in which the type of a returned 
variable is not known. It could be an integer or a string 
of characters. 

 
def unknown_type(answer:bool): 
    a = 0 
    if  answer: 
       a = ‘letter’ 
    return a 

3.2 Determining Type of Variables 

There are three sources of information that could be 
used for the identification of a variable type: 

1. Annotations of functions 
2. Annotations of variables 
3. Assignment of a value to a variable 

Annotations could inform about the types of 
created variables, function parameters, or values 
returned by functions. According to the Python 
paradigm, annotations are optional and have no 
impact on the variable type during program 
execution. However, it could be assumed that if 
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annotations are present, they give information about 
programmer intentions and the corresponding 
variables, arguments, or return values are of the given 
types. Therefore, an annotation, if it is given, would 
be treated as a primary initial type of a variable.  

A subsequent code extract shows an example of 
annotations for an argument, a return value of a 
function, and of a variable annotation: 

def annotation_example(a:int):int 
    b: int = 3 
    return a:b 

However, types of variables that have neither 
assigned values, arguments, or returned values, nor 
have annotations; or their annotations do not specify 
any type, cannot be identified using annotations.  

The trird possibilty to determine a variable type is 
an assignment operation. A type of the left hand side 
variable becomes the type of the assigned object. 
Assignment operations encounter also in for loops, in 
which values are assigned to an iterated variable.  

Specification of a variable type due to its 
assignment is sometimes impossible. An assigned 
object could have an unknown type, e.g., be a result 
of a function with an argument without annotation. In 
these cases, the variable type also remains unknown 
after assignment. 

Annotations have been used as information for 
programmers and do not influence variable types, 
assuming there is no additional code to implement 
typing control. Therefore, in case of type conflicts, 
information originated from an assignment operator 
overpass this from annotations. 

3.3 Tracing Types of Dynamic 
Variables 

In a language with dynamic types, such as Python, the 
type of a variable could be further changed by an 
assignment operation. Consequently, the types 
identified by annotations or by the first assignments 
could be replaced. Identification of a variable type 
used at a particular mutation place, would require the 
observation of the variable changes in the execution 
paths of a program.  

A variable could have many possible types. For 
example, a type could be changed in an if statement, 
and it could not be determined whether the condition 
is satisfied or not. Therefore, many possibilities are 
taken into account for a variable of this kind. 

def many_type_example(condition): 
    a =0 
    if condition; 

a = ”” 

Tracing of type changes could be performed 
directly in Python code or at the AST of the code. The 
AST comprises all necessary program information, 
including annotations, and supports the semantic 
analysis, therefore type analysis could be based on 
AST and additional data structures. 

During the type analysis, a program AST is 
scanned and for each variable a special structure, 
called Type_tree, is built. A Type_tree consists of two 
kinds of nodes: internal and external. An external 
node corresponds to a variety of potential types of a 
variable and comprises many internal nodes. In an 
external node, one of its internal nodes is marked as a 
current position of the variable. An internal node 
includes a single possible type of a variable and a 
reference to its external node. Apart of “real” types, 
an internal node can include a void type that denotes 
no change in the variable type. A type in an internal 
node can be overwritten if the variable is assigned to 
a value of another type. An external node with their 
internal nodes is deleted when its parent node has 
been overwritten. 

A Type_tree is created and modified during the 
type analysis. However, Type_tree is not a static tree 
that gives information about a variable type in each 
moment of a program execution.  

Type analysis is tightly coupled with the language 
grammar reflected in AST. According to the Python 
grammar (Python, 2020), a complex expression 
consists of one or more closures. Each closure has its 
header and its suite. Closure headers are at the same 
ident level and begin with the unique keywords. The 
suite contains a group of expressions controlled by 
the closure.  

Scanning of types in complex expressions has 
been described by a set of automata-like 
specifications. The current state is determined by two 
factors: a kind of current position in AST and a phase 
regarding try expression processing. Taking into 
account all possible states, a set of rules has been 
identified. Each rule specifies modifications 
performed on the Type_tree, i.e., creation of external 
or internal nodes, category of created internal nodes, 
searching and selection of nodes, deleting of nodes, 
as appropriate. 

The number of set-up nodes in Type_tree depends 
on the composite statements encountered in the 
program. External nodes created for if expressions 
have at most two internal nodes: one of the if body 
and the second of else, because constructions of kind 
if elif are treated in the same way as if inside of else. 
External nodes that handle for, while or try structures 
could have many internal nodes, as there are many 
places in which the expression could be got out of. 
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Though, the number of internal nodes is limited by 
the number of break statements in a loop, or except 
closures of an exception handling expression.  

For example, the variable x is annotated with int 
type, but the assignment inside the conditional 
statement could change the type to float.  

def TypeTree_example(x:int): 
if x != 0: 
 x = 1/x 
return x 

During the AST processing, a Type_tree of the 
variable x has been developed. Figure 1 illustrates the 
development phases of the Type_tree. Dark nodes 
stand for internal nodes with a current position. In the 
bottom row, the external nodes are shown. Internal 
nodes have their types (int and float) or are empty 
(void). In step I, an empty node is created for the 
identified variable. The variable has its annotation int 
(II). Processing of the statement if results in the 
creation of a new node with the void type (III). After 
analysis of the assignment inside if, the type is 
changed to float (IV). The next internal node becomes 
void, as there are no clauses else or elif (V). The final 
structure indicates that at stage VI the variable could 
have one of two different types, int or float. 

 

Figure 1: Evaluation of Tree_type of the variable x. 

4 MUTATION TESTING WITH 
TYPE ANALYSIS 

The provided type analysis in Python has been 
motivated by the advancement of mutation testing of 
Python programs. The developed solution has been 
combined with MutPy (its core of 2017 Nov 21) – a 
tool for mutation testing of Python programs 
(Derezinska and Halas, 2014a) (MutPy, 2021). 

4.1 Extending MutPy with a Type 
Analyzer 

MutPy creates and runs a set of mutants that are built 
from an original Python program using a set of 
mutation operators and taking into account the 
coverage results (Derezinska and Halas, 2014b). A 
few strategies for applying higher order mutation can 
also be selected. 

Enhancement of MutPy with Type Analyzer 
allows to avoid the creation and running of these 
incompetent mutants that have been identified. The 
general flow of the mutation testing process with the 
type analysis is presented in (Figure 2). Actions and 
conditions supplemented by the type analysis are 
denoted by the ‘*’ character.  

During the initial phase, an original program is 
tested using a selected test suite. Next, a configuration 
of a mutant generator is established. It depends on the 
mutation order (first, second, …), a selection strategy 
in case of higher order mutation, a set of mutation 
operators to be performed, options about application 
of code coverage and type analysis. An abstract 
syntax tree of the original program is created. The 
further program analysis and manipulation is 
performed on the AST. 

 

Figure 2: Mutation testing realization with type analysis. 

If code coverage is affected, code nodes not used 
in the tests are identified in AST in order not to be 
employed in a mutant creation. If the option of type 
analysis is allowed, it is performed at this stage and 
appropriate Type_trees are generated.  

Then, for each mutation operator from the list, 
mutation testing is performed. A mutation operator 
scans the AST and looks for the nodes that could be 
mutated by the operator. If the type analysis was 
selected, realization possibility of a mutation in a 
located node is checked. If, according to the type 
analysis, the mutant is an incompetent one, this code 
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position would be discarded and the mutant not 
created. 

The created mutant is run with the tests and its 
testing results stored appropriately. After traversal of 
all AST nodes and processing of all mutation 
operators, the final mutation results are evaluated. 

4.2 Experiments on Type Analyzer 

The Type Analyzer has been implemented as a proof 
of concept, and the conducted experiments focused 
on the verification of its main capabilities in the 
processing of incompetent mutants. We wanted also 
to observe the impact of selected program 
construction and annotation usage on the type 
analysis and mutation testing results. The following 
six subjects have been used in experiments2:  

1) A very simple program that includes a 
conditional statement (if) and arithmetic 
operations. No annotations are used. 

2) The same program as (1) but with the 
application of annotations in function 
parameters. 

3) A very simple program with two similar 
methods. One of the methods uses 
annotations, while the second does not. 

4) A very simple program with many arithmetic 
operations on parameters of a method. 

5) A program that calculates a game statistics. It 
manipulates on numbers and strings. Creates a 
relative high number of mutants. 

6) A program that processes C++ code and 
creates its inheritance tree. 

The numbers of mutants obtained in the 
experiments are given in Table 1. For each program, 
the results are provided in two rows: the upper row 
(denoted by “-“) when no type analysis was used, and 
the bottom row (“+”) including outcomes with type 
analysis. The number of mutants are given in four 
columns: (i) all generated mutants, (ii) mutants killed 
by a test set associated with the program, (iii) mutants 
not killed by the tests but not counted as incompetent 
mutants, and (iv) created mutants that were identified 
as incompetent during the program execution.  

There is also another mutant category that could 
be recognized by MutPy during test execution, i.e., 
mutants abandoned by a time limit. For all programs 
discussed, there were no such timeout mutants.  

 
 
 

                                                                                                 
2https://galera.ii.pw.edu.pl/~adr/MutPywithTypeAnalyzer/ 

Table 1: Number of mutants in mutation testing. 

  
Number of mutants 

all killed not killed incompetent 
1 - 6 3 0 3 
1 + 6 3 0 3 
2 - 6 3 0 3 
2 + 6 3 0 3 
3 - 2 0 0 2 
3 + 1 0 0 1 
4 - 12 0 3 9 
4 + 3 0 3 0 
5 - 481 259 169 53 
5 + 433 259 169 5 
6 - 257 6..8 100..102 149..151 
6 + 257 6..8 100..102 149..151 

To compare the approach efficiency, execution 
times were also measured. Each program was 
executed 200 times. The average time values are 
presented in Table 2. 

Table 2: Execution time (including mutant generation and 
testing time) in [s]. 

 
Average execution time [s] 

Without Type Analysis With Type Analysis 
1 0.0509 0.0527 
2 0.0556 0.0596 
3 0.0443 0.0479 
4 0.1703 0.1675 
5 9.4028 9.4247 
6 11.0237 13.5065 

Comparison of programs 1) and 2) points at longer 
processing time of an annotated program 2). This is 
probably due to the bigger number of AST nodes, as 
annotations are included in AST. This impact of 
annotations is higher when the type analysis is 
applied, because annotations are used in the type 
determination. In these programs, there were no 
mutants with TypeErrors, so the type analysis could 
not lower the number of incompetent mutants and 
caused only a slightly longer execution time because 
of the overhead provided. Detected incompetent 
mutants originated from a “by zero division” which 
was present in one of tests.  

Programs 3) and 4) also differ in annotations. In 
3), there were no annotations, and only two 
incompetent mutants, one of which was statically 
detected. The small number of mutants could not 
lower the execution time, which was a bit longer due 
to the overhead. In the annotated program 4), all 
incompetent mutants (9) were recognized and the 
execution time was a bit shorter than for 3). The 
number of incompetent mutants is 3 times higher than 
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the number of killed mutants, so in this case mutation 
testing with the type analysis was beneficial. 

The remaining programs, 5) and 6) were existing 
programs developed independently from these 
experiments. In 5), most of the incompetent mutants, 
48 out of 53, were detected by the static type analysis. 
Even though, the approach does not spare the 
execution time. In this program, the more serious 
problem was a high number of nonkilled mutants 
(169), mostly equivalent ones. The type analysis was 
not dealing with this kind of mutants and all of them 
reminded in the second version of mutation testing.  

Program 6) has no incompetent mutants caused by 
TypeErrors, so their number remains unchanged. The 
mutant numbers are expressed as ranges min and max 
over the set of all program executions. Incompetent 
mutants were mainly due to the calling of attributes 
or container spots that do not exist. This could be 
utilized in further development of the MutPy tool 
extension to avoid incompetent mutants based also on 
different reasons. The whole execution time with the 
type analysis was longer because of the overhead and 
no saving in the incompetent mutant number.  

The presented experiments give a preliminary 
assessment of the proof of concept but cannot be 
counted as a representative set of  professional Python 
programs. The possibility to generalize the outcomes 
in terms of threats to validity is bounded. 

5 RELATED WORK 

There are different approaches to handle types in the 
context of Python programs. 

One of the approaches is realized by type 
controllers, such as mypy – an optional static type 
checker for Python (mypy, 2021). A type controller 
verifies the variables which types have been specified 
by a developer, obtaining in result a mixture of static 
and dynamic types in the same program. Mypy 
detects types based on annotation, logical reasoning, 
and a special kind of comments. The current mypy 
supports programs that use Python 3 function 
annotation syntax (conforming to Python 
Enhancement Proposal 484). 

Although variable types are statically processed 
in both cases: type controllers and Type Analyzer, but 
these kinds of tools are aimed at different tasks. In the 
Type Analyzer the code is not directly analyzed and 
not modified and it is sufficient to scan AST produced 
by the Python scanner. MyPy introduces some 
changes into the program and has to interpret 
comments, which are excluded from the ordinary 
scanning. 

The most important difference refers to the 
determination of the type of a variable. Type 
Analyzer works on dynamic types, i.e., the variable 
types are not stable but have to be traced. Type 
Analyzer has to deal with the situations, when many 
types are possible. Type controllers deal with static 
types that are supposed not to change. Variables 
without specified types remain dynamic, and their 
correctness is due to the Python compiler and not to 
the type controller. 

Type Analyzer reports only about its internal 
errors and can assume that the syntax errors 
introduced by a programmer would be detected by the 
Python scanner. Whereas type controller verifies the 
static type rules and informs about any rule violation, 
also syntax errors might be reported if a code is 
changed. 

In (Monat, Quadjaout and Mine, 2020), a static 
analysis was proposed to use type information to 
detect all exceptions that can be raised and not caught. 
The type analysis is flow-sensitive and takes into 
account the fact that variable types evolve during 
program execution and, conversely, run-time type 
information is used to alter the control flow of the 
program, either through introspection or method and 
operator overloading. Some limitations to the Python 
language are assumed.  

Combination of static and dynamic typing 
capabilities, i.e., gradual typing, is presented in a 
language dialect – Reticulated Python (Vitousek, Siek 
and Baker, 2014). It provides type checking based on 
the annotations interpreted as if they were static 
obligations. It is performed on AST during a module 
load time. 

Mutation testing and annotations have been 
treated by (Gopinath and Walkingshaw, 2017). 
Though, it was focused on the evaluation of the 
annotation quality by mutation testing (MutPy) and 
static analysis supported by mypy.  

One of the most comprehensive tools for mutation 
testing of Python programs has been MutPy 
(Derezinska and Hałas, 2014b). Other previous tools 
had a very limited number of mutation operators and 
do not cover any object-oriented or Python-specific 
features of the language. MutPy was used in different 
experiments and refactored to improve its quality 
(Derezinska and Hałas, 2015). The current basic 
version is available at (MutPy, 2021).  

Recently, other tools for mutation testing of 
Python programs have been developed: Cosmic Ray 
(Bingham, 2017) and mutmut (Thoma, 2020). 
However, to the best of our knowledge, there is no 
detailed information about dealing with type errors 
and processing incompetent mutants in those tools.  
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6 CONCLUSIONS 

In programs of dynamically typed languages, type 
correctness cannot be verified by compilers before 
program execution. Therefore, mutants that activate 
type errors can be created in the mutation testing. This 
kind of mutant could be killed by any test and is not 
supportive in the evaluation of a test suite quality. In 
this work, we have addressed the problem of 
incompetent mutants in Python programs.  

A type analysis has been proposed that assists 
with the identification of a subset of potential 
incompetent mutants before creation and testing of a 
mutant. The approach has been implemented and 
integrated with MutPy – the mutation testing tool of 
Python. This proof of concept has been evaluated in 
preliminary experiments. As expected, the number of 
incompetent mutants could be lowered. This effect 
depends strongly on the selected mutation operators. 
Those mutation operators that are prone to generate 
incompetent mutants would benefit from the solution. 

The type analysis adds overhead to the mutation 
process. Most of the work is performed once before 
mutant generation. Hence, the evaluation of a 
program with many mutation operators and many 
incompetent mutants could benefit from the type 
analysis, in comparison to the situation when only a 
few mutation operators selected to avoid incompetent 
mutants are applied. However, the preliminary results 
showed that the time overhead of type analysis could 
surpass the time lowering caused by a slight drop in 
the number of incompetent mutants. 

Type analysis was intended to overcome obstacles 
in the application of a variety of mutation operators 
that would have been excluded or limited due to the 
creation of incompetent mutants. Time measurement 
does not confirm this supposition. However, detailed 
efficiency evaluation needs experiments on a more 
comprehensive set of programs. Combination of the 
approach with other mutation testing tools (Bingham, 
2017), (Thoma, 2020) is an open question, as it is not 
known how they handle incompetent mutants. 
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