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Abstract: Software Product Lines (SPLs) evolve when there are changes in their core assets (e.g., feature models and 
reference architecture). Various approaches have addressed assets evolution by applying evolution 
operations (e.g., adding a feature to a feature model and removing a constraint). Improving quality attributes 
(e.g., maintainability and flexibility) of core assets is a promising field in SPLs evolution. Providing a 
proposal based on a decision maker to support this field is a challenge that grows over time. A decision 
maker helps the human (e.g., domain expert) to choose the convenient evolution scenarios (change 
operations) to improve quality attributes of a core asset. To tackle this challenge, we propose a 
reinforcement learning approach to improve the maintainability of a PL feature model. By learning various 
evolution operations and based on its decision maker, this approach is able to provide the best evolution 
scenarios to improve the maintainability of a FM. In this paper, we present the reinforcement learning 
approach we propose illustrated by a running example associated to the feature model of a Graph Product 
Line (GPL). 
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1 INTRODUCTION 

According to Clements and Northrop (Clements 
and Northrop, 2001), a Software Product Line 
(SPL) is “a set of software-intensive systems 
sharing a common, managed set of features that 
satisfy the specific needs of a particular market 
segment or mission and that are developed from a 
common set of core assets in a prescribed way ”. 
The SPL engineering framework is defined by two 
processes: domain engineering and application 
engineering. Domain engineering process starts 
with domain analysis activity to identify its 
common and variable features. These features are 
then used for the domain design and 
implementation activities. The domain activities 
create software assets, which are called core assets. 
Core assets are reusable assets, which are used in 
the derivation of PL products at the application 
 

engineering process. A core asset may be a feature 
model, an architecture, a component or any 
reusable result of domain activities. Organizations 
applying the SPL engineering approach should 
maintain and optimize their product line 
continuously by evolving their core assets. 
Extending core assets, removing their defects, 
improving their quality attributes are, among 
others, kinds of core assets evolution. SPL 
evolution remains difficult compared to a single 
software evolution. Particularly, improving quality 
attributes (e.g., maintainability and flexibility) of 
core assets remains a major issue in SPLs evolution 
field. Providing a proposal based on a decision 
maker to support this field of evolution is a 
challenge that grows over time. The issue consists 
in the capability to make good decisions on picking 
the convenient change operations to operate on the 
core asset while improving its quality. More 
specifically, selecting the convenient change 
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operations on feature models at the right time to 
improve their maintainability is not an easy task. 
Feature models include various elements, such as 
variabilities, commonalities, constraints and 
dependencies. Then, which element(s) to change 
for improving FM maintainability is an issue that 
may be related to experience. In order to tackle this 
challenge, we propose a reinforcement learning 
(RL) approach to provide a decision maker for 
maintainability improvement of feature models. 
This approach is based on learning by experience 
to make the right decision for an optimization 
problem, which is FM maintainability improvement 
in our case.  

The remainder of this paper is divided into seven 
sections. In Section 2, we present the background 
related to feature models, then we present a previous 
work about FM maintainability assessment to which 
our approach is related. In Section 3, we present our 
motivation behind using reinforcement learning to 
study SPL evolution. Section 4 describes the 
proposed RL approach. The experiment and the 
interpretation of the result are presented in section 5. 
Section 6 presents the related works. We give a 
conclusion in Section 7. 

2 BACKGROUND  

2.1 Feature Models 

A Feature Model (FM) is a PL core asset. It 
describes the configuration space of a product line. 
A feature is a property related to a system, which is 
used to retain systems commonalities and 
variabilities. Features are structured as feature 
diagrams. A feature diagram is a tree with the root 
representing the PL and descendant nodes are 
features. Figure 1 depicts the feature model of our 
running example, the Graph Product Line (GPL), 
which is designed by Lopez-Herrejon and Batory 
(Lopez-Herrejon and Batory, 2001) with the 
ambition to be a standard benchmark for evaluating 
feature-modeling techniques. Nowadays, GPL is 
available in the SPLOT repository (splot-
research.org). GPL can be configured to perform 
several graph search algorithms over a directed or 
undirected graph structure. As shown in the tree, 
the root feature is GPL. The main features of the 
GPL are Graph Type, Search and Algorithms. The 
Graph Type feature defines the structural 
representation of a graph.  The Search feature 
represents the traversal algorithms in the form of 
features that allow for the navigation of a graph. 

The feature Algorithms represents other useful 
algorithms that manipulate or analyze a given 
graph. As seen in figure 1, the integrity constraints 
are defined to ensure valid configurations of GPL. 
For instance, the last constraint indicates that a 
strongly connected algorithm have to be 
implemented on a directed graph. A node as a 
parent has a Mandatory or an Optional dependency 
with its children. Mandatory dependency indicates 
that the child feature must be included in any 
configuration where the parent feature is included. 
However, optional dependency means that the child 
feature may or may not be selected for the 
configuration to derive, so it is not compulsory. For 
instance, in the running example, Directed feature 
is mandatory and Search feature is optional. 
Children of a parent feature can be related by 
Alternative, OR, or AND group dependencies. 
Alternative means that exactly one child from the 
group can be included in any derived configuration 
where the parent feature is included. OR indicates 
that at least one child from the group must be 
included in any configuration. AND indicates that 
all the children of the group have to be included in 
the configuration where the parent is included. 

 
Figure 1: GPL feature model. 

2.2 Feature Models Maintainability 

In our approach, we are interested in the 
maintainability quality attribute of FMs. Assessing 
FM maintainability is a necessary task to prove its 
improvement. In this paper, we reuse the structural 
metrics used to assess the maintainability of FMs 
and the correlation matrix presented in (Bagheri and 
Gasevic, 2011) in order to adapt them to our proper 
approach. In table 1, we present a brief description 
of the metrics; more details are presented in the 
mentioned Bagheri source paper.  
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Table 1: Structural metrics for FM maintainability 
assessing (Bagheri and Gasevic, 2011). 

Metric Description 
Number of features 
(NF) 

The total number of features that 
are present in a feature model. 

Number of leaf 
features (NLeaf) 

Number of the feature model tree 
leaves. 

Cyclomatic 
complexity (CC) 

The number of a feature model 
integrity constraints. 

Cross-tree 
Constraints (CTC) 

The ratio of the number of unique 
features involved in the feature 
model integrity constraint over all 
of the number of features in the 
feature model. 

Ratio of variability 
(RoV) 

The average number of children 
of the nodes in the feature model 
tree. 

Coefficient of 
connectivity-
density (CoC) 

The ratio of the number of edges 
over the number of features in the 
feature model. 

Flexibility of 
configuration (FoC) 

The ratio of the number of 
optional features over all of the 
available features in the feature 
model. 

According to Bagheri and Gasevic, FM 
maintainability is defined by three 
subcharacteristics, which are analyzability, 
changeability and understandability. “Analyzability 
(An) is the capability of the conceptual model of a 
software system to be diagnosed for deficiency; 
changeability (Ch) is the possibility and ease of 
change in a model when modifications are 
necessary, and Understandability (Un) is the 
prospect and likelihood of the software system 
model to be understood and comprehended by its 
users or other model designers” (Bagheri and 
Gasevic, 2011). In table 2, we present a correlation 
matrix realized by the mentioned authors. Table 2, is 
a merge of three tables presented in (Bagheri and 
Gasevic, 2011). It can be seen from table 2 that the 

number of leaves (NLeaf) in a feature model has a 
high negative correlation with both analyzability and 
understandability (-0.86 and -0.82, respectively). In 
turn, the number of features (NF) is also closely 
correlated with these two characteristics (-0.75 and -
0.81). The correlation between NLeaf and NF and 
these two sub characteristics of maintainability is 
highly negative, then it can be deduced that more 
features and leaf features a FM has more complex it 
becomes in terms of analyzability and understand-
ability. Consequently, maintainability is worse.    

3 PL EVOLUTION BY RL 

In this section, we present the Reinforcement 
Learning approach, and then we present our 
motivations to introduce this approach in improving 
FM maintainability. 

3.1 Learning by Reinforcement   

Reinforcement Learning is a subfield of Machine 
Learning. One of its purposes is automatic decision-
making. In RL, an agent interacts with its 
environment by perceiving its state and selecting an 
appropriate action, either from a learned policy (by 
experience) or by random exploration of possible 
actions. As a result, the agent receives feedback in 
terms of rewards, which rate the performance of its 
previous action. In fact, an action is chosen by RL 
using two complementary strategies: exploitation 
and exploration. Exploitation focuses on the collected 
reward values, and recommends the action with the 
highest reward to be executed. Exploration 
recommends a random action regardless of its reward 
value to prevent the learning from sub-optimal 
solutions. A proper learning strategy is a reasonable 
combination of exploitation and exploration.  

Table 2: Correlation matrix of FM maintainability parameters (Bagheri and Gasevic, 2011). 

 NF NLeaf CC CTC RoV CoC FoC An Un Ch 
NF 1 0.95 0.41 0 -0.01 0.24 -0.53 -0.75 -0.81 -0.46 
NLeaf  1 0.54 0.17 0.22 0.39 -0.59 -0.86 -0.82 -0.60 
CC   1 0.8 0.65 0.91 -0.67 -0.48 -0.53 -0.92 
CTC    1 0.78 0.93 -0.65 -0.21 -0.25 -0.80 
RoV     1 0.69 -0.47 -0.39 -0.12 -0.63 
CoC      1 -0.74 -0.36 -0.46 -0.89 
FoC       1 0.49 0.74 0.73 
An        1 0.74 0.60 
Un         1 0.63 
Ch          1 
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3.2 Decision Making for Core Assets 
Evolution 

SPLs core assets include variabilities, constraints 
and so many concepts to represent a family of 
products. Evolving a core asset requires various 
change operations. Many scenarios may occur, as 
well. Making a decision for choosing the convenient 
scenarios and operations to evolve a core asset is a 
hard task. According to some experience reports 
(O’Brien, 2001), (Bergey et al., 2010), some 
decisions may lead to negative results. For example, 
in (Bergey et al., 2010), the authors regret updating 
some components in order to increase the flexibility 
of their PL architecture. They spent seven months 
for the updates but finally they rejected the new 
components. Therefore, the decision to update an 
asset instead of replacing it was not a good 
recommendation. A decision maker as an automatic 
process can be the solution to help human to choose 
the best scenarios (sequence of operations) to evolve 
their product lines. Particularly, a decision maker 
proposed by a reinforcement learning approach can 
optimize the improvements of FM maintainability. It 
makes the decisions to pick the convenient evolution 
(change) operations (e.g., add a feature and remove a 
feature) on a FM to improve its maintainability.   

4 FM MAINTAINABILITY 
IMPROVEMENT BASED ON RL  

Our proposal consists in the design of a RL-based 
evolution agent. Its role is to help evolving PL 
feature models by proposing the convenient change 
operations to improve their maintainability. The 
agent consists of three key components: quality 
attribute monitor, decision maker, and evolution 
controller. Hence, the role of the agent we propose is 
to pick automatically the best evolution operations 
for improving FM maintainability. Therefore, the 
maintainability monitor measures the metrics related 
to maintainability quality attribute (e.g., FoC, CC, 
CTC, RoV, NLeaf and the CoC) (described in table 
1). Then it sends the information to RL-based 
decision maker. The decision maker runs the Q-
learning RL algorithm (Sutton and Barto, 2011) and 
produces a state-action table, called Q-value table. A 
state is defined by a version of a FM, which is 
represented by a set of selected parameters (see table 
3). Possible actions to change the state of a FM are 
evolution (change) operations. They include adding 
a leaf optional feature, removing a feature, changing 

the optionality of a feature, adding a constraint, 
removing a constraint, etc. Each action may act on 
one or more parameters of the FM state. Based on 
the dynamically updated Q table, the evolution 
controller generates the evolution policy and evolves 
the FM by creating a new version (state). 

4.1 Parameters as FM Vector State 
Dimensions 

To represent a FM state we identified a set of 
parameters, which are presented in table 3 and that 
we can consider as a vector with 8 dimensions. In 
table 4, we show which parameters are used by each 
metric. For instance, in the running example (see 
Figure 1), the values of these parameters are NLF= 
12, TNF=17, TNE=16, TNOF=1, NIC=4, NCF=16, 
NN=5 and NFIC=5. 

Table 3: State vector dimensions. 

Meaning Dimension  
Number of leaf features NLF 
Total number of features in a FM TNF 
Total number of Edges in a FM TNE 
Total number of optional features TNOF 
Number of integrity constraints (ICs) NIC 
Number of children features NCF 
Number of nodes (not leaf nodes) NN 
Number of features included in ICs NFIC 

The formula of each metric considering the 
selected parameters is defined as follows (Bagheri 
and Gasevic, 2011): CC = NIC, CoC = TNE/TNF, 
FoC = TNOF/TNF, RoV = NCF/NN, NLeaf = NLF 
and CTC = NFIC/TNF. For instance, according to 
the running example the values of these metrics are: 
CC=4, CoC=0.94, FoC=0.059, RoV=3.2, NLeaf=12 
and CTC=0.294. 

Table 4: Metrics and state dimensions dependency. 

Metrics State dimensions 
NLF TNF TNE TNOF NIC NCF NN NFIC 

CC         
NF       

CoC         
FoC         
RoV         

NLeaf     
CTC         

4.2 Decision Making 

In our approach, we define a state by a version of a 
FM to evolve. For the selective group of n 
parameters (dimensions), we represent a state Si by a  
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Table 5: Change actions and related dimensions. 

Actions 
Dimensions 

NLF TNF TNE TNOF NIC NCF NN NFIC 

A0 Add-leaf-optional-feature         

A1 Add-leaf-mandatory-feature         
A2 Remove-leaf-optional-feature         

A3 Update-optionality-of-a-feature 
(from Mandatory to Optional)         

A4 Add-constraint-on-two-features         

A5 Add-node-mandatory-feature with 
two children leaf-optional         

A6 Remove-leaf-mandatory-feature         

A7 Update-optionality-of-a-feature 
(from Optional to Mandatory)         

A8 Remove-node-mandatory-feature 
with its two children leaf-optional         

A9 Remove a constraint on two features         
 

vector in the following form: Si = (Para1, Para2, …, 
Paran). To evolve the maintainability of a FM, a state 
of a FM is represented by the vector: Si = (NLF, 
TNF, TNE, TNOF, NIC, NCF, NN, NFIC). For 
instance, the first (initial) version of the FM of the 
running example is defined by the State S0 = (12, 17, 
16, 1, 4, 16, 5, 5). 

We use a vector Ai to represent an action on the 
parameters (state dimensions) it affects. Each action 
is a 8-elements vector, indicating influenced/not-
influenced (1/0) of the eight parameters. The action 
vector is in the following form : Ai=(1,1,1,0,0,0,0,0). 
This means that action Ai influences the first 
parameter (NLF), the second parameter (TNF) and 
the third parameter (TNE) of a FM state. However, 
the next parameters are not impacted by the action 
Ai. For instance, the following notation represents 
the influence of the action Add-leaf-optional-feature 
(A1) on parameters NLF, TNF, TNOF and NCF : 
A1(1,1,0,1,0,1,0,0). 

The agent receives a reward value as the 
feedback following the application of an action. For 
our approach, the reward should reflect the FM 
maintainability improvement. For a given action Ai, 
a set of parameters are affected. Consequently, the 
values of the metrics based on these parameters are 
impacted. Finally, the maintainability is influenced. 
If the FM maintainability is improved then the agent 
receives a positive reward else, it receives a negative 
one. The overall aim of RL is to maximize some 
form of cumulative reward. For instance, applying 
the action A1, Add-leaf-optional-feature, influences 
the values of the parameters NLF, TNF, TNOF and 

NCF. Therefore, the values of the metrics NF, 
NLeaf, CoC, FoC, CTC and RoV (see table 4) are 
affected and finally the FM maintainability is 
impacted. For our approach, we are based on the 
affected metrics and their correlation coefficients 
with the subcharacteristics of maintainability as 
indicators to deduce the reward value.  
First, we pick the metrics related to the parameters 
affected by the applied action (see table 5). Then, the 
reward value rt is defined at instant t (when the 
action is applied) based on the value of the 
standardized Cronbach’s alpha (coefficient alpha) 
(NCSS, 2021). Coefficient alpha is the most popular 
of the internal consistency coefficients. We use the 
standardized expression of Cronbach’s alpha 
because its calculation is based on a correlation 
matrix (see equation 1).  𝛼 = 𝑘 �̅�1 + �̅�(𝑘 − 1) (1)

The parameter k is the number of items (variables) 
and ρത is the average of all the correlations among k 
items. 

The reward value at instant t may be 1, 0 or -1. 
Alpha (α) is calculated for the sub-matrix extracted 
from the correlation matrix of table 2. This sub-
matrix contains the correlation coefficients of the 
picked metrics (impacted by action taken at instant t) 
and the maintainability sub characteristics. Then the 
average of the new values of the metrics is 
calculated (AVnew). We consider as AVold the 
average of these metrics before applying the action 
of instant t.  The reward value R (or rt) is defined as 
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follows: a) if α is high negative and AVnew > AVold 
then R = -1 because maintainability is worse. b) If α 
is high positive and AVnew > AVold then R = 1 
because maintainability is better. c) If α is high 
positive and AVnew < AVold then R= -1 because 
maintainability is worse. d) If α is high negative and 
AVnew < AVold then R = 1 because maintainability is 
better. e) If AVnew = AVold then R = 0 because 
maintainability is not impacted. 

To learn the Q value of each state, the agent 
should continuously update its estimation based on 
the state transition and reward it receives. Using 
such incremental fashion, the average Q value of an 
action A on state S, denoted by Q(S, A), can be 
refined once after each reward R is collected (see the 
equation 2). 𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝛼ሾ𝑅 + 𝛾 𝑚𝑎𝑥௔𝑄(𝑆ᇱ, 𝑎)− 𝑄(𝑆, 𝐴)ሿ  (2)

The parameter α is the learning rate; its value is 
between 0 and 1. We note that alpha used in this 
expression is not the standardized Cronbach’s alpha 
(no relationship between them). The parameter γ is 
the discount factor; it is set between 0 and 1. maxa 
Q(S’, a) indicates the maximum reward that is 
attainable in the state following the current one; i.e., 
the reward for taking the optimal action thereafter. 

Algorithm 1: Q-value Learning Algorithm. 

1 : Initialize Q-table 
2 : Initialize state S  
3 : Repeat (for each state) 
4 : Choose action A for state S using ε-

greedy policy 
5 : Take action A, observe R and S’ 
6 : Q(S, A) = Q(S, A) + α[R + γ maxa 

Q(S’, a) - Q(S, A)] 
7 : S  ←  S’      
8 : Until terminal state 

Algorithm 1 presents the pseudo code of our Q-
value learning algorithm. It is explained as follows:  
1) Initialize the Q-values table, Q(S, A). 2) Initialize 
the first state of the FM, 3) Observe the current state 
S. 4) Choose an action, A, for that state based on the 
policy ε-greedy (Sutton and Barto, 2011). The agent 
then picks the action based on the max value of 
those actions. This is exploiting since decision is 
made from available information. The second way to 
take action is to act randomly. This is exploring. 
Instead of selecting actions based on the max future 
reward, an action is selected at random. We can 
balance exploration/exploitation using epsilon (ε) 

and setting the value of how often you want to 
explore vs exploit. 5) Take the action, and observe 
the reward, R, as well as the new state, S’. 6) Update 
the Q-value for the state using the observed reward 
and the maximum reward possible for the next state. 
The updating is done according to the formula and 
parameters described above. 7) Set the state to the 
new state, S’, and repeat the process until 8) a 
terminal state is reached. In our work, we consider a 
terminal state as a FM version fixed by the domain 
(product line) expert.     

5 APPROACH EXPERIMENT 

In this section, we present an application of the 
approach we propose to the GPL feature model 
(shown in figure 1). We implemented the approach 
with Python. Following, we present the algorithm 1 
application. 

The Q-table is defined by 10 actions (see table 5) 
and 8 states of the FM. The state number 7 
represents the terminal FM version to be reached. In 
Q-table initialization, we set all the values of the 
state-action pairs to zero since all the actions for 
each state are assumed to be an equally valid choice. 
This approach starts the system from an initial state 
of a FM. Then actions are applied according to the 
algorithm 1. In our case, the running example (see 
figure 1) is the initial FM. Its state is represented by 
the vector S0 = (12, 17, 16, 1, 4, 16, 5, 5) as defined 
above. 

We wanted that exploration is higher than 
exploitation because the agent has to learn more than 
to exploit applied actions. Consequently, we chose a 
value of epsilon = 0.9. We set the learning rate α = 
0.1 in order to make the agent explores more states 
and γ=0.9 to consider the future rewards as 
important. Table 6 shows the Q-table after 800 
iterations of Q-learning. Each Q-value (Si, Ai) 
corresponds to the probability to improve the FM 
state Si by applying the action Ai. For each state, we 
underline the maximum Q-value in order to show 
the maximum probability to indicate the best action 
to improve that state. For instance, in the line of 
state S0, the maximum value is 0.86 and its 
corresponding action is A6. This means that 
choosing the action A6 has the probability of 0.86 to 
improve the state S0 of the FM maintainability. We 
can observe in table 6 that actions 2 and 7 are never 
taken (their Q-values are null). Then more 
exploration is needed. Table 7 shows the Q-table 
following the decrease of the learning rate α to 0.02 
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Table 6: Q-Table values after 800 iterations of learning (α = 0.1, γ=0.9 and ε=0.9). 

States 
Actions 

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 
S0 0.5 0.4 0 0.05 0.8 0.1 0.86 0 0.85 0.08 
S1 0.17 0.75 0 0.07 0.39 0.04 0.07 0 0.98 0.04 
S2 0.15 0.35 0 0.01 0.09 0.03 0.53 0 0.2 0.06 
S3 0.15 0.16 0 0.1 0.71 0.01 0.04 0 0.73 0.23 
S4 0.12 0.72 0 0.05 0.41 0.01 0.83 0 0.80 0.33 
S5 0.31 0.84 0 0.02 0.74 0.04 0.06 0 0.92 0.48 
S6 0.41 0.09 0 0.52 0.45 0.08 0.41 0 0.33 0.50 
S7 0.51 0.52 0 0.72 0.07 0.07 0.06 0 0.69 0.07 

Table 7: Q-Table values after 800 iterations of learning (α = 0.02, γ=0.9 and ε=0.9). 

States 
Actions 

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 
S0 0.42 0.32 0.75 0.01 0.6 0.11 0.35 0.52 0.36 0.45 
S1 0.18 0.54 0.68 0.15 0.59 0.04 0.07 0.56 0.58 0.67 
S2 0.54 0.35 0.35 0.01 0.02 0.03 0.03 0.65 0.33 0.85 
S3 0.35 0.16 0.12 0.1 0.11 0.01 0.47 0.15 0.73 0.09 
S4 0.34 0.26 0.15 0.05 0.41 0.01 0.03 0.25 0.87 0.12 
S5 0.42 0.56 0.13 0.02 0.74 0.04 0.92 0.29 0.91 0.87 
S6 0.52 0.33 0.25 0.02 0.66 0.08 0.1 0.86 0.88 0.45 
S7 0.3 0.51 0.26 0.45 0.07 0.07 0.06 0.87 0.69 0.36 

 

in order to increase the learning by exploring more 
states. 

We noted that Actions 2 and 7 are taken 
(explored).  In addition, we observed that the Action 
2 has the probability of 0.75 to improve the 
maintainability of the FM in state S0. This indicates 
that more learning may lead to new decisions.       

6 RELATED WORK 

Many past works were devoted to feature models 
evolution. In this section, we present approaches 
related to our proposal. In (Bhushan et al., 2018), the 
authors proposed an ontology-based approach for 
identifying inconsistencies in FMs, explaining their 
causes and suggesting corrective solutions. The 
ontology is used to express the semantic of feature 
models. Rules in FOL (first order logic) are defined 
to express constraints on FMs consistency. This 
approach is about improving the quality of FMs, 
where the quality attribute is consistency. However, 
learning is not considered in this work as in our 

approach where we also treat several quality 
attributes. 

In order to improve usability of FMs, Geetika 
and al. (Geetika et al., 2019) proposed a prediction 
approach to estimate FMs usability. Five machine 
learning algorithms were used to compare their 
prediction accuracy in terms of usability to predict 
FMs usability. The authors used a set of metrics to 
express FMs information and sub-characteristics to 
express the usability quality attribute related to FMs. 
This work is not validated and there is no result.  

To evolve FMs automatically, in (Ren et al., 
2019), the authors proposed a method of 
automatically generating the evolved SPL’s feature 
models. The evolution process takes an initial FM 
and evolutionary requirements as input and produces 
an evolved FM. Their approach uses a formal 
method named communication membrane calculus 
to describe the structure of feature models and 
evolution process of feature models. This approach 
is about FM evolution but it is not based on learning.  
Other proposed works, which are related to our 
approach are dedicated to dynamic SPLs such as in 
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(Pessoa et al., 2017) where an approach was 
proposed to build reliable and maintainable DSPLs. 
Adaptation plans are used at runtime. The proposed 
approach was applied and evaluated on the body 
sensor network domain. The results showed that 
reliability and maintainability are provided with 
execution and reconfiguration times. Hence, their 
work is interested in quality attributes of DSPLs but 
no learning is done. In (Xiangping et al., 2009) a 
reinforcement approach is proposed to auto-
configure online web systems. In DSPL, context 
change leads to change in system configuration. 
Then, the authors used Q-learning reinforcement 
learning to detect change in the workload and the 
virtual machine resource of the online web system 
and to adapt the system configuration (performance 
parameter settings). Where this work uses the Q-
learning algorithm as in our approach, its goal is to 
automate configurations of DSPL online web 
systems.  According to existing works, our 
contribution, which is RL-based, seems promising, 
considering different FM quality attributes to 
maintain where change operations occur on FM.    

7 CONCLUSION  

Product Line evolution is a continuous process 
where the improvement of PLs core assets quality 
attributes is mandatory. What are the elements that 
we may change and when their change is reasonable 
are hard decisions. Learning by experience to make 
a decision is a good approach. Consequently, using 
an automatic decision maker to help PL 
organizations to do the right changes in their core 
assets is a challenge. In order to tackle this latter, we 
proposed a reinforcement learning approach to FM 
evolution. Our approach makes decisions about 
change operations on feature models to improve 
their maintainability. However, further 
experimentations are required to validate our results 
and draw last conclusions. In fact, we can extract 
more FMs from SPLOT repository to apply the 
proposed approach and to give better interpretations.   

In our approach we use structural metrics to 
assess the FM maintainability and then to obtain the 
reward value. These metrics are not sufficient 
because some change operations on the FM do not 
affect them. Therefore, the impact of these 
operations on the FM maintainability is not 
considered. Examples of these change operations are 
change the dependency of a node with its children 
from OR to AND, change the name of a feature, add 
a feature cardinality and add group cardinality. 

Consequently, the other directions of future work 
that we are interested in are:  1) exploring and 
studying metrics related to the FM semantic, 2) 
defining our correlation matrix considering various 
types of metrics to determine FM maintainability. 
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