
Collection of Requirements and Model-based Approach for
Scenario Description

Thilo Braun1, Lennart Ries1, Franziska Körtke2, Lara Turner2, Stefan Otten1 and Eric Sax1

1FZI Research Center for Information Technology, Karlsruhe, Germany
2ZF Friedrichshafen AG, Friedrichshafen, Germany

Keywords: AD, ADAS, Traffic Scenarios, Automotive Testing, Scenario-based Testing, Resimulation, Scenario
Description Language.

Abstract: As the level of automation and variety of Advanced Driver Assistance Systems (ADAS) and Automated Driv-
ing (AD) increases, new challenges for Verification and Validation (V&V) methods emerge. This applies espe-
cially in urban areas due to the combination of many different environmental elements, participant types, and
interactions between the participants. Scenario-based testing and resimulation of recorded data are promising
approaches to tackle these new challenges. An elementary component of these methods is the scenario descrip-
tion, which serves as a connection between different working steps in the V&V workflow. This heterogeneous
usage of the scenarios during the development and validation process leads to a multitude of different, some-
times contradictory, demands on the scenario description. Nevertheless, a uniform description is desirable for
easy exchange and automation. The contribution of this paper is twofold: Firstly, the described versatile field
of demands is systematically broken down to requirements for the scenario description languages. This step is
essential to ensure broad applicability. Secondly, this paper introduces a holistic scenario description language
that is usable for generation, extraction from real-world test drives and execution of the scenarios enabling an
automated workflow and increased traceability between generated, extracted and resimulated scenarios. The
description and uses a model based approach and has been exemplarily tested for manually created scenarios
and automatic resimulation of real-word test drives.

1 INTRODUCTION

The development of Automated Driving (AD) is pro-
gressing fast over the last years. The goal of higher
automation in traffic is increased safety, as assistance
systems support the driver in critical situations, e.g.
by automatically initializing an emergency braking
maneuver, and with increased comfort, e.g. by driv-
ing on a highway autonomously.

The degree of automation is defined by SAE In-
ternational in five levels, from ”no automation” on
Level 0 to ”full automation” on Level 5 (International,
2018). To proceed from the current prototype sta-
tus of AD to approved products, an accepted valida-
tion process is necessary. Current validation meth-
ods like requirement-based testing or real-world en-
durance runs are not able to validate the Level 3+
functions, because the statistically necessary kilo-
meters are not reachable (Wachenfeld and Winner,
2016). Furthermore the validity of a distance-based
method is not sufficient in complex environments, be-
cause it is not ensured that rare corner situations are

considered (Schuldt, 2017).
Scenario-based testing is considered as a promis-

ing method to support the validation of AD (Neu-
rohr et al., 2020). With its ability to produce crit-
ical situations through a synthetic scenario descrip-
tion it enables focusing on the most relevant scenar-
ios and therefore achieves a high coverage fast and
efficiently. The scenarios for scenario-based testing
can be manually generated from domain experts, ex-
tracted from real-world test drives for resimulation in
a data-driven approach or generated from computer
algorithms. During the test process, users like test
and simulation engineers, require different descrip-
tion languages and formats to describe the scenarios
depending on their specific task. As a consequence,
the scenarios have to be transformed when processing
and exchanging them, what is usually a manual pro-
cess leading to increased effort and high error rate.
A holistic and formalized Scenario Description Lan-
guage (SDL) can avoid these problems but has to take
into account the diverse views and needs of all users.

634
Braun, T., Ries, L., Körtke, F., Turner, L., Otten, S. and Sax, E.
Collection of Requirements and Model-based Approach for Scenario Description.
DOI: 10.5220/0010478706340645
In Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2021), pages 634-645
ISBN: 978-989-758-513-5
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



To enable a structured design of such a Domain Spe-
cific Language (DSL), the authors of this paper collect
these views and needs and brake it down to require-
ments. Based on these, we propose a DSL for broad
application which supports both the virtualization of
recorded real-world data and the manually generation
of scenarios in the second part of the paper. This en-
ables an automated workflow from recorded data to
resimulated scenarios, while allowing to additionally
integrate handcrafted scenarios seamlessly.

This paper is structured as follows: Chapter
2 introduces different validation methods for AD
and embeds the proposed approach. Chapter 3
describes, among others, the usage, requirements and
state of the art for scenario description languages.
Chapter 4 gives common maneuver categories and
sets to describe the behavior in an abstract way.
Chapter 5 explains our concept including its technical
implementation. Chapter 6 shows the tools for the
extraction of scenarios from recorded real-world
testing as well as manual generation and editing
of scenarios. Chapter 7 exemplarily demonstrates
the complete workflow for resimulating a scenario.
Chapter 8 contains the conclusion and future work.

2 VALIDATION METHODS FOR
AD

Requirement-based testing has been the most popular
method to validate AD in the past. It uses specified
test cases including pass/fail criteria, that are derived
from analysing the system requirements for the Sys-
tem under Test (SuT).

The requirement-based testing is usually com-
bined with endurance runs, which make safety state-
ments by means of statistical evaluation of success-
fully driven kilometers. To reduce the cost, the test
drives can also been simulated (King et al., 2019). As
stated before, the combination of specified test-cases
with endurance runs is not sufficient for higher lev-
els of automation. Therefore, new methods are un-
der research, e.g. in the projects PEGASUS (Pegasus,
2019) and VV-Methods (VVM, 2020).

Formal test approaches such as Responsible Sen-
sitive Safety argument with exact mathematical mod-
els and white-box testing (Shalev-Shwartz et al.,
2017). However, their application and implementa-
tion is not straight forward and, thus, scope of further
research (Koopman et al., 2019).

For reasons of reproducibility, recorded test drives
can be replayed, which is an approach frequently used
in industry. While a replay of recorded data is suf-

ficient for open-loop systems, systems that interact
with the environment require a closed-loop reactive
simulation (Bach et al., 2017) (Pfeffer et al., 2019).

In scenario-based testing, a catalog of relevant
traffic scenarios is generated and used for the test-
coverage estimation (Schuldt, 2017). The scenarios
can be created knowledge-based or, in contrast to
this, data-driven and extracted from real-world test
drives (Langner et al., 2018) (Stellet et al., 2015) .
The execution of the scenarios is possible on differ-
ent platforms (software-in-the-loop, hardware-in-the-
loop, vehicle-in-the-loop) whereby most of the tests
are expected to be performed in simulation environ-
ments because of their high scalability.

In this paper, we focus on scenario-based testing.
As proposed in literature (Neurohr et al., 2020), we
assume that the resimulation workflow is conceptu-
ally integrated in the testing process, as shown in fig-
ure 1. In addition, we show a technical integration
by providing a SDL for this workflow, enabling a
fully automated workflow for resimulation. In a first
step the scenarios are generated, either extracted from
recorded data or manually, and stored in the scenario
catalog. Then they are executed in a simulation with
parameter variations to enable systematical testing of
the AD function.

3 SCENARIO DESCRIPTION

A test in scenario-based testing consists of several
parts: Firstly, the description of the scenario, in which
the static and dynamic content is described, and sec-
ondly the description of the test case itself where,
among others, the SuT with test goal and test evalua-
tion and the test setup are described. Scenarios can be
represented in different forms: While they are avail-
able in the form of sensor data for recorded test drives,
scenario-based testing of AD functions requires a se-
mantic interpretation of these data.

3.1 Usage and Requirements for
Scenario Description Languages

In the following, we describe where and how sce-
narios are used in the test process and the role of
the SDL to derive requirements for its design. A
common way to generate relevant scenarios is to
use the knowledge of domain experts and formulate
the scenarios manually. When creating scenarios
manually, the SDL defines which elements can be
used and how they are related to each other.
Another source of scenarios is recorded data from
real-world test drives or simulation. When extracting

Collection of Requirements and Model-based Approach for Scenario Description

635



Figure 1: Workflow and usage of the scenario description language in scenario-based testing.

scenarios from recorded data, the SDL defines the
abstraction level and interface for the extraction
algorithm.

To save the scenarios in the catalog, the SDL
defines the data format.

In the execution of the scenario within a simula-
tion tool, the SDL has an imperative character being
the instruction for the underlying behavior models.

Besides creating and executing scenarios, inspec-
tion, comparing and clustering are actions to gain
further knowledge about the scenarios. Here, the
SDL defines the interface to the specific tools and
can support the algorithms by providing relevant
information.
Based on an analysis of the previously described
usages and discussions with domain experts and
researchers, this section summarizes the most impor-
tant requirements for the SDL.

Expressive. It should provide the ability to describe
as many possible driving scenario as possible. This
includes, e.g., different Operational Design Do-
main (ODD)s like highway or inner-urban scenarios,
different participant types like cars, bikes and trucks
and different types of behaviors.

Extendable. It should be possible to add new
features to the language when necessary to make the
language more expressive. So the language can and
should evolve over time and adapt to new challenges
in the testing domain.

Abstract. The SDL should be capable of describing
scenarios in different abstraction levels. Higher
abstraction levels are needed for comparing and
interpreting scenarios, lower abstractions levels for
definition of very specific driving situations. An
example for a low abstraction level is the description
of an objects’ movement with exact trajectories,
whereas a verbal description would be a high abstrac-
tion level. A higher abstraction level is necessary to
condense the complex and large scenario space.

Reference on Scenery. Describing scenarios only

based on trajectories will cause problems on different
curve radius or junction forms, because it is not dis-
tinguishable if a curved trajectory was caused from a
curved road, intersection or another maneuver. When
using an abstracted description the reference on the
scenery connects the behavior of the participants with
the static part.

Parameter Spaces and Concrete Values. It should
be possible to describe the parameters of the sce-
narios with concrete values and parameters spaces.
This also leads to a condensation of the scenario
space. This kind of abstraction is comparable to the
PEGASUS levels of concrete and logical scenarios.

Comparable and Searchable. It should be possible
to compare, search and filter scenarios with specific
features on the basis of the SDL. This is necessary
for a good handling of the scenario catalog, a catego-
rization, clustering of the scenarios and evaluation of
the covered scenario space.

Concise. Especially when generating scenarios
manually, the description of a scenario should be as
compact and precise as possible to avoid unnecessary
long descriptions.

Executable. The language has to be defined in a
way, that an interpreter can execute the scenario. The
interpreter can be an algorithm of a simulation tool or
a test driver.

Understandable for Humans. The content of the
described scenario should be intuitively understand-
able for all its users, e.g. test engineers, programmers
and non-programmers and also non-domain-experts.

Exchangeable and Tool-independent. It should
be possible to exchange scenarios between different
tools. This concerns scenario generation, editing and
execution. The exchanging should be traceable.

Although many requirements have to be consid-
ered, a uniform SDL for the V&V process brings ad-
vantages: It enables easy exchange between different

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

636



tools, better traceability during the process and a com-
mon understanding between different users.

3.2 Layers of Scenarios

In order to classify the elements in road traffic, there
exist a series of layered models proposed in the lit-
erature. In the following, we refer to one of the lat-
est publications (Bock et al., 2018) introducing a total
of six layers (so-called 6-layer-model). Layer 1 de-
scribes the street layer including the geometry, topol-
ogy and condition of the roads. Layer 2 addresses the
traffic infrastructure with, e.g., signs and markings.
The focus of Layer 3 is on temporal modifications
of the previous two layers describing the geometri-
cal and topological overlay by construction sites. The
movable traffic participants and objects and their be-
havior (interactions, maneuvers) is listed in Layer 4.
Layer 5 contains the environmental conditions such as
weather and daytime as well as their effects on Layer
1-4. Finally, Layer 6 is designed to summarize digital
map data and information on V2X communication.

This paper focuses on Layer 4, which has a high
complexity due to the variety of possible combina-
tions of participant behaviors and maneuvers. When
necessary, connections to other levels are also consid-
ered.

3.3 Types of Scenario Descriptions and
Related Work

There exist different approaches to describe scenar-
ios, targeting different use cases and user groups. This
section gives an overview about existing approaches
and serves as a basis for the design of our SDL.

When evaluating the concepts and designing an
own implementation, the following trade-off has to
be considered: Developing a language that is intuitive
for humans and easy to apply on the one side or de-
veloping a machine-readable and executable language
on the other side. Another important property to be
taken into account is the expressiveness of the lan-
guage, which specifies how many different scenarios
can be described.

3.3.1 Verbal Description

Verbal languages use natural language to describe
scenarios. One example is the functional description
mentioned above or first drafts of scenarios written
down manually. Obviously, a verbal description is
very easy to understand and write for humans and has
a very high expressiveness. On the other hand, it is

not possible for machines to create an executable sce-
nario of the given description. This kind of language
is often used in early stages of a scenario generation,
when the focus is mainly on the content and not the
execution of the scenario.

3.3.2 Visual Description

Visual languages use visual representations of the sce-
nario, e.g., snapshots in bird view perspective. They
are often an alternative or addition to other language
types like verbal or programming languages. Simi-
lar to the verbal language, the visual representation
is easy to understand for humans, but not readable for
machines. It is a good method to get a quick overview
about the scenario and share it, although it is hard to
write down all the necessary details.

3.3.3 Formalized Verbal and Visual Description

To overcome the lack of readability for machines,
some efforts were done to formalize verbal and vi-
sual languages using a defined vocabulary and rules
(Damm et al., 2018) (Menzel et al., 2018) (Kohlhaas
et al., 2014). The executability is obtained at the ex-
pense of reduced expressiveness and a more compli-
cated generation process, because the person generat-
ing the scenario has to learn the defined rules and the
vocabulary.

3.3.4 Programming Language and Domain
Specific Language

The need to execute the described scenarios in simula-
tion tools suggests the use of programming languages.
Here a universal programming language (e.g., python,
C++) or a DSL can be used. DSLs are designed for
a specific domain or use case. They can define an
own syntax (external DSL) or use the syntax of an
universal programming language as a basis (internal
DSL). Examples for scenario DSL are the concept
of OpenSCENARIO 2.0 (ASAM, 2020b) and the M-
SDL (Foretellix, 2020). For programming languages,
the requirement of machine-readability is obviously
satisfied, but they can normally only be used and un-
derstood by experts. Therefore, programmers and
simulation experts are the main target group of this
kind of languages. The expressiveness and usability
of the DSL depends on the design. Comparing to an
universal programming language it is easier to learn
because it is tailored to a domain and has a reduced
set of commands.

Collection of Requirements and Model-based Approach for Scenario Description

637



3.3.5 Model-based Scenario Description
Language

In the model-based scenario description, a technical
metamodel is created that maps all relevant entities
and relationships (Wuellner et al., 2019). This can
be a UML class model like in OpenSCENARIO 1.0
(ASAM, 2020a), an Ecore model (Bach et al., 2016)
(Jafer et al., 2018) or an ontology (Geyer et al., 2013).
Each scenario is an instance of this metamodel. Us-
ing a graphical representation of the domain as meta-
model, this approach is easy to understand. The for-
malized description also assures machine readability.
If the metamodel is directly linked to a software, a
change in the metamodel effects a change in the soft-
ware, assuring that conceptional changes, normally
done in the metamodel, and implementation do not
diverge. This makes the model-based approach easy
to maintain.
Previous mentioned descriptions focus on a single sub
task of the validation workflow, whereas this work
provides a holistic approach enabling automation and
traceability throughout the whole resimulation pro-
cess.

4 MANEUVERS

In order to understand which part of the driving task
is described by maneuvers, the driving task is divided
into several levels. (Lange, 2018) compares existing
models for the driving task and summarizes them in
four levels: Navigation level, Maneuver level, Trajec-
tory level and Stabilization level.

The maneuver level converts the mission plan gen-
erated by the navigation level into suitable maneu-
vers and is responsible for the behavioral decision.
The trajectory level converts the selected maneuvers
to concrete trajectories.

A sequence of (driving) maneuvers, which are
used instead of trajectories, has proven to be a useful
abstraction for the dynamic behavior of traffic par-
ticipants (ASAM, 2020a) (ASAM, 2020b) (Pfeffer
et al., 2019) (Hartjen et al., 2019). Compared to a de-
scription with trajectories, maneuvers are much more
concise and intuitive. By defining maneuver-specific
parameters the expressiveness and variability of this
description is increased.

To structure the maneuvers and describe their
properties, a categorization of these maneuvers is
often done. This section describes commonly used
categories:

Direction. Frequently, a classification is made into

the movement directions longitudinal and lateral.
The classification is particularly intuitive for vehicle
steering because lateral maneuvers are controlled by
the steering system and longitudinal maneuvers by
the drive train. The category can be extended by
routing maneuvers (ASAM, 2020a).

Interaction. (Firl and Tran, 2011) creates a maneu-
ver category, indicating whether an interaction with
other participants is part of the maneuver or not.

Triggered and Self-terminating. (Schreiber, 2012)
categorizes based on the trigger for starting the
maneuver. If a maneuver is actively started with
a trigger, e.g., a lane change, this is an explicit
maneuver. A lane keeping maneuver following the
lane change without trigger is an implicit maneuver
because it starts automatically when the lane change
is finished. Closely related to this category is whether
a maneuver terminates itself (e.g., lane change) or
whether it is without defined end (e.g., lane keeping).

Atomic and Composed. The division into atomic
and composed maneuvers is often found (Bagschik
et al., 2018) (ASAM, 2020b). Atomic maneuvers
are a basic class of maneuvers that can be combined
to composed maneuvers. The rules of combination
range from quite simple sequencing (ASAM, 2020a),
maneuver graphs (Bach et al., 2016) or methods of
a DSL (Foretellix, 2020), where the border between
maneuvers and scenarios vanishes.

5 CONCEPT FOR A SCENARIO
DESCRIPTION

The concept aims to create a semantic meaningful ab-
straction to describe the behavior of dynamic partici-
pants and use it for recorded and manually generated
scenarios and for their execution as shown in Figure
1. It is desirable to have only one SDL for all pro-
cessing steps to avoid converting the scenarios. For
recorded scenarios, the abstraction should contain all
necessary information for their analysis and resimula-
tion without using the recorded time series data. For
manually generated scenarios, the abstraction should
be as concise as possible to enable faster specification.
Furthermore it should be possible to modify the sce-
narios manually. The abstraction should be both in-
tuitive for humans and easy to use for machines. The
mentioned requirements should be fulfilled for a vari-
ety of ODDs, including the ambitious domain of ur-
ban traffic. In this chapter, we explain the concept and

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

638



1

0..*

1..*

1..*
1..* 1..*

1 

1..*

1..*

0..* 
(reference Participant)

Participant Types

Longitudinal
Maneuver types

Lateral  
Maneuver types

Road types

Scenario

Participant

id

Initial Conditions

conditions

Scenery

file

Maneuver

parameters

Road Element

id

Longitudinal ManeuverEnd Event

condition

Lateral Maneuver

Figure 2: Elements and relationships of a scenario. Grey classes are abstract classes that cannot be instantiated. For reasons
of space some inherited classes are not shown in the figure but the types are indicated with boxes with curved edges. The
numbers on the connections define the cardinality.

give motivation for our design decisions, abstractions
and technical representation.

5.1 Core Elements

Figure 2 shows the core elements of a scenario and
their relations in form of a UML-model.
Classes with gray background are abstract classes,
meaning that only an inherited class can be instan-
tiated. So general properties of this class can be
designed, but the instance is always of a specific type.

The Scenario consists of a static part, the Scenery,
and a dynamic part, the Participants. The Scenery
consists of several Road Elements. For the structure
of the Road Elements and the Road Types we use a
subset of the OpenDRIVE format, therefore it can
be automatically imported from a given OpenDRIVE
file. Each Road Element has a unique id.

The Participants have Initial Conditions that
define the state at the beginning of the scenario (e.g.
position on the road, heading, velocity). Participant
Types are car, truck, pedestrian, bicycle and motor-
bike.

The dynamic behavior of the participants is de-
scribed with Maneuvers. Each Participant has a list
of Lateral Maneuvers and Longitudinal Maneuvers
that are sequentially executed during the scenario.
Figure 4 shows our concept for the graphical repre-
sentation. The Lateral and Longitudinal Maneuver
classes inherit from the base Maneuver class. Each
Maneuver has parameters as attributes that allow to

vary the behavior, e.g. velocity of a Longitudinal
Maneuver, distance of a Stop Maneuver or the lateral
offset on a lane of a Lateral Maneuver. Maneuvers
refer also the Road Elements on which they are
performed.

To define when to end the Maneuver, each
Maneuver contains at least one End Event. An End
Event occurs if the specified conditions are fulfilled,
e.g. if a certain point on the road is reached or the
distance to another Participant is below a specific
value. Furthermore a Maneuver can have reference
Participants, if interaction with other participants
is required. This could be the preceding vehicle
in a Follow maneuver. Examples for Longitudinal
Maneuvers Types are Cruise Free, Approach and
Follow (another Participant). Examples for Lateral
Maneuver Types are Hold Lane, Cross Street and
Turn.

Turn maneuvers do not have relation to the
specific junction or exit, but are described as Turn
left or Turn right. So it is possible to execute and
compare scenarios with the same dynamic behavior
on different junctions.

Figure 3 shows exemplarily a longitudinal ma-
neuver list with the parameters of the maneuver.
When creating scenarios, a rule checker is used to
detect unrealistic maneuvers. It detects infeasible
combinations of types, e.g., only pedestrians and
bikes can use a sidewalk or perform a Cross Street
maneuver on a crosswalk. It detects infeasible
parameters of the Maneuver, e.g., Follow maneuvers

Collection of Requirements and Model-based Approach for Scenario Description

639



with a negative distance to the preceding Participant.

Figure 3: Example of a longitudinal maneuver list with cor-
responding parameters.

5.2 Used Maneuver Categories from
Chapter 4

To describe the maneuvers in an urban environment,
the categories direction and interaction with other
participants are used.
The behavior of a participant is always described with
a combination of one lateral and one longitudinal ma-
neuver to decouple the description of steering and ve-
locity.

The interaction category is necessary to describe
maneuvers with a reference participant. An interac-
tive maneuver has at least one reference participant,
for a non-interactive maneuver the reference partici-
pants list is empty.

We treat all maneuvers as explicit in our imple-
mentation, because the start of a maneuver in our con-
cept is always marked by the end of the previous ma-
neuver. Generally, adding the right end events to the
maneuvers is complex, but for self-terminating ma-
neuvers it is trivial. Therefore, we use this category
to automatically add end events when possible. Until
now, we treat all maneuvers as atomic, but it is pos-
sible to integrate composed maneuvers in the concept
to make the description more concise.

5.3 Abstraction of Evolution Over Time

The information on the progression of the scenario
is mainly described by the end events, that define
both the end of the current maneuver and the start
of the next maneuver. We do not use an act-based
description as (Bach et al., 2016) introduced for
highway scenarios. Even if this is an elegant way
to define simultaneous maneuvers, the number of
acts increases significantly when more participants
appear and the maneuvers change more often. This
effect makes the act-based description not usable for
an urban traffic scenario. To define simultaneous
maneuvers, the conditions for the end events have to

be carefully chosen.
When extracting scenarios from real-world data,

participants appear or disappear during the scenario
runtime since they exceed the maximum sensor range
or due to occlusion. We defined a special ”None-
Maneuver” for this time span. If the None-Maneuver
is at the start of the scenario, the participants start
to perform the remaining maneuvers after the end
event for this None-Maneuver. As default we use the
road position of the ego car as end event for the first
None-Maneuver. If the None-Maneuver is at the end
of the scenario, the participant disappears during this
maneuver.

(a) Visualization of scenario and maneuvers

15.10.2020 © FZI Forschungszentrum Informatik 6

(b) Maneuvers and end
events of the car

15.10.2020 © FZI Forschungszentrum Informatik 6

(c) Maneuvers and end
events of the pedestrian

Figure 4: Example of an abstracted scenario with lateral and
longitudinal maneuver lists.

5.4 Example of an Abstracted Scenario

Figure 4 shows an example of an abstracted scenario.
There are two participants, a car driving on a straight
road and a pedestrian that wants to cross the road. The
pedestrian should start crossing the road causing the
car to brake. This scenario could be used for testing
an emergency brake assist.

The sequence of graphics in Figure 4a visualize
the scenarios evolution over time.

Figure 4b shows the maneuvers and end events of
the car. The arrows indicate the end events. The first
end event occurs when the car detects the pedestrian
(non self-terminating maneuver). Because Stop is a
self-terminating maneuver, the maneuver ends when
the velocity of the car is zero. The Standstill maneu-
ver ends after a number of predefined seconds and at
this time the scenario finishes.

Figure 4c shows the maneuvers and end events of
the pedestrian. He starts crossing the street when the
distance to the car falls below a certain threshold thus
challenging the car.

For testing purposes the parameters of the maneu-

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

640



vers, e.g. cruising velocity of the car, and the param-
eters of the end events, e.g. distance for starting the
Cross Street maneuver, can be varied to expand the
test coverage.

The visual representation of our concept is shown
in figure 4b and 4c. Light gray blocks show the lon-
gitudinal maneuvers, dark gray the lateral maneuvers,
the arrows indicate the end events. This representa-
tion is intuitively understandable and enables the exe-
cution of the scenario.

5.5 Technical Representation as
Metamodel

Figure 5: Model levels in model-driven engineering, their
equivalents in the traffic scenario domain and used formats
(italic).

We applied a metamodeling approach to design our
scenario description language. Figure 5 shows the
general concept of metamodels (OCUP2 Examina-
tionTeam, 2017), their equivalents in the domain for
traffic scenarios and the formats we used for our con-
cept. Level M3 is a meta metamodel that defines the
language for specifying metamodels, meaning entities
like classes and relationships. Level M2 is the do-
main specific metamodel, that uses M3 to describe the
structure of scenarios. Here the different entities of
the scenario and their relationships are defined. Level
M1 describes the abstracted scenarios as instances of
the metamodel in Level M2. A instance of Level M1
is a specific scenario in our SDL. Level M0 is the
real-world without any abstraction, so in our case the
trajectories of the scenario.

We created an Ecore metamodel using the Eclipse
Model Framework (EMF) (Foundation, 2020) for
level M2. The class diagram in Figure 2 shows the

core of our metamodel. The metamodel is designed as
Data Transfer Object (DTO) and uses object-oriented
programming. The DTO enables the scenarios to
be transferred easily between tools and programming
languages (e.g. different tools for simulation, creating
and editing scenarios, scenario extraction and work-
flow management).

The object-oriented programming encapsulates
the information and fits the domain because the par-
ticipants are physical objects. Inheritance is used to
generalize specific characteristics for e.g. different
participants or maneuver types. Each new participant
type or maneuver type is a new class and inherits from
the corresponding superclass.

A scenario can be instantiated either as Java-
instance, the native format of EMF, or as XML-
instance, which is suited for exchange between pro-
grams. It is possible to transfer the instances auto-
matically form one format into the other.

5.6 Comparison of Concept with
Requirements

This section evaluates the concept, mainly the
conceptional abstraction to maneuvers and the
metamodel as technical representations, against the
requirements of chapter 3.1.

Expressive. The expressiveness of the scenario de-
scription is strongly connected to the used maneuver
set and maneuver parameters. With a well-defined
maneuver catalog the desired scenarios can be de-
scribed adequately. To increase expressiveness new
maneuvers, sub-maneuvers or maneuver parameters
can be added.

Extendable. Object-oriented programming and
inheritance for maneuvers, participants and road
types are methods that are easily extendable. The
direct link between domain description and tools in
the metamodel concept ensures the transfer from the
concept level to the technical level.

Abstract. The concept abstracts the scenario from
concrete time series data to semantic meaningful
maneuvers.

Reference to Scenery. The concept uses a subset of
the OpenDRIVE standard to create a reference on the
scenery. By using the standard no further definitions
in the scenery description are necessary and existing
files can be used seamlessly. For execution the
specification of the direction of the turn maneuvers
allows, e.g., to run the same scenario on different

Collection of Requirements and Model-based Approach for Scenario Description

641



junctions.

Parameter Spaces and Concrete Values. So far,
parameter spaces are not used in the concept. For
parameter variation an external tool is still necessary.
This topic can be focused in future work.

Comparable and Searchable. The abstraction to
maneuvers allows to compare, search or filter scenar-
ios based on maneuvers. The scenario catalog can
be searched for scenarios with specific maneuvers
or scenery elements. Furthermore, scenarios can be
defined as equal, when their participants have the
same maneuver lists.

Concise. Maneuvers are a concise way to describe
the behavior of the participants. Using the subset
of OpenDRIVE reduces the effort for the scenery
description. Adding standard end events to self-
terminating maneuvers makes the description more
concise.

Executable. By the definition of exactly one lateral
and exactly one longitudinal maneuver the behavior
of the participants is described in an unambiguous
and executable way. Also the end events define un-
ambiguously when to proceed to the next maneuver.

Understandable for Humans. The abstractions from
time series to maneuvers and visual representation
of the maneuver lists shown in figure 4 makes the
scenarios intuitively readable and understandable.
The graphical representation as metamodel is also a
intuitive technical format.

Exchangeable and Tool-independent. Using the
data transfer object design pattern and the export op-
tion as XML-file makes it easy to exchange the sce-
narios between tools.

In summary, the abstraction from time series to
maneuvers fulfills the requirements of the concep-
tional level, the use of a metamodel meets the tech-
nical requirements.

6 TOOLS FOR SCENARIO
GENERATION

6.1 Scenario Extraction

The target of the scenario extraction is the generation
of scenario instances from recorded data. Output for-
mat is the scenario description language introduced

in Chapter 5. The data can be recorded by a driving
vehicle, static sensors in the infrastructure or drones.
Also existing datasets with recorded trajectories can
be used. Similarly, the concept applies to simulation
data.

In a first step, data preprocessing is necessary to
compensate noise in the recorded data and exploit
knowledge about the scenery. This includes the as-
signment of the participants to the next participant-
type specific valid road element and lane and the clas-
sification of irrelevant participants (e.g. when they are
present a very short). The scenery is represented by
an OpenDRIVE file.

In the next step the performed lateral and longi-
tudinal maneuvers are classified. After classifying
the maneuvers, the corresponding parameters and end
events are extracted. Finally, all extracted data is re-
structured to fit the our SDL and the scenario is saved
in the scenario catalog.
We use rule-based algorithms for all extraction steps.

Figure 6 shows an example of an Approach-and-
Follow scenario in a curve. Using the road elements
of the scenery the relative distance along the lane is
calculated. Compared with the euclidean distance this
method provides reasonable results even in curves.
The Approach maneuver changes into a Follow ma-
neuver when the ego vehicle and preceding vehicle
have the same velocity.

6.2 Manual Generation and Editing

As stated before, it is possible to edit and create sce-
narios manually. So expert knowledge can be added
to the extracted scenarios or detected false classifica-
tions of the scenario extraction algorithm can be cor-
rected. Also the parameters of the maneuvers can be
edited.

Figure 7 shows an example how to edit a junction
scenario. The left side shows the scenery and initial
positions of the participants. The right side shows
the editable elements like participants and maneu-
vers. When selecting an element an interactive mask
with all editable elements shows up. The same dia-
logue can be used to build up scenarios from scratch.
The program was implemented by Zukunft Mobility
GmbH, a company of ZF Friedrichshafen AG.

7 ILLUSTRATIVE EXAMPLE

For illustration of our approach we executed the com-
plete workflow automatically for a recorded real-
world scenario on a junction. Figure 8a shows the
trajectories of the participants embedded in a satellite

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

642



(a) Trajectory of the ego and preced-
ing vehicle. The black lines show the
start and end of the scenario, the black
boxes show the initial positions of the
vehicles. The yellow color indicates
the trajectory of an Approach maneu-
ver, the blue color indicates the trajec-
tory of a Follow maneuver. The trajec-
tories of the two vehicles overlap.

0 5 10
0

5

10

time[s]

ve
lo

ci
ty
[m
/s
]

(b) Detected maneuvers and velocity of the
ego vehicle. The velocity decreases (Ap-
proach maneuver, yellow) until it is equal to
the preceding car, that is driving with a con-
stant velocity (Follow maneuver, blue). The
dashed line indicates a lateral Cross-Junction
maneuver.

Figure 6: Detection of maneuvers in an Approach-and-
Follow scenario in a curve. Yellow indicates the Approach
maneuver, blue indicates the Follow maneuver.

Figure 7: GUI for manual editing a scenario implemented
by Zukunft Mobility GmbH (ZKM).

picture of the scenery. The scenario contains 3 cars
(including the ego car that recorded the data) driving
over a junction and one pedestrian crossing the street.
The ego car turns left on the junctions and has to stop
to give way to another car. The pedestrian is crossing
the street, but not influencing other participants. The
scenery was known and described in the OpenDRIVE

format.
The scenario was extracted with the scenario ex-

traction algorithm, saved as instance of the meta-
model and then executed by a simulation tool. The
simulation tool only takes the abstract scenario de-
scription and scenery as input, but has no knowledge
about the recorded time series like velocity or trajec-
tories. Please notice that the workflow is completely
automated.

Figure 8b shows the resimulated trajectories of the
scenario, that are very similar to the original ones.
Figure 9 displays the recorded and resimulated veloc-
ity of the ego vehicle. In the recorded speed diagram
the classified maneuvers Stop (red), Standstill (gray)
and Cruise Free (green) are marked. In the resimu-
lated velocity a similar speed profile is generated. In
addition, the gear shifts produced by the simulation
driver are visible as small peaks.

With this example scenarios we demonstrate how
a fully automated resimulation of a scenario can be
performed with our concept. The behavior is success-
fully abstracted and used as input for a simulation that
generates comparable results. The concept also sup-
ports more complex scenario, but need a more power-
ful scenario extraction algorithm or manual supoort.

(a) Recorded trajectories (b) Snapshot of resimulated
trajectories in the ZKM sim-
ulation tool

Figure 8: Resimulation: Trajectories of a scenario on a
junction. Black boxes indicate the initial positions of the
vehicles, colored lines their trajectories.

8 CONCLUSION AND FUTURE
WORK

We motivated this paper by the necessity for new test-
ing methods for AD due to the rising automation level

Collection of Requirements and Model-based Approach for Scenario Description

643



0 5 10 15
0

5

10

time[s]

ve
lo

ci
ty
[m
/s
]

(a) Recorded velocity of ego
vehicle with detected maneu-
vers.

0 5 10 15
0

5

10

time[s]

ve
lo

ci
ty
[m
/

s]

(b) Resimulated velocity
of ego vehicle in the ZKM
simulation tool

Figure 9: Resimulation: Velocity of ego vehicle.

and the variety of new ODDs. The scenario descrip-
tion was identified as an elemental part for the ap-
proaches scenario-based testing and automatic resim-
ulation. This paper collects and structures require-
ments for the scenario description as basis for its de-
sign. Its shows the integration of the resimulation of
recorded test drives in scenario-based testing using
scenario extraction and propose an abstract and holis-
tic model-based scenario description language. The
design as tool-independent metamodel ensures an ex-
tendable, maintainable and traceable use of scenarios
between different working steps, tools and execution
platforms. It is designed to fit the needs of urban traf-
fic and is easily extendable to other ODDs. Further-
more it is possible to modify and add scenarios man-
ually to include expert knowledge. Due to the com-
pletely automated workflow for generation of scenar-
ios from recorded real data and resimulation of these,
our approach offers a scalable option to build up a
scenario catalog for testing of AD. The approach was
implemented and exemplarily tested on recorded real-
world driving data in urban traffic.

Future work will focus on the integration of pa-
rameter distributions in the description language to
be able to describe logical scenarios. A condensa-
tion of the scenarios to scenario clusters is a necessary
step to define the coverage of the scenario catalog. It
is planned to use the method on more different data
sources and with more simulation tools. The usage of
mixed datasets of recorded and resimulated scenarios
as input for AI-based methods is another interesting
research topic.

ACKNOWLEDGMENT

We thank Katrin Lotto (ZF) for her help in creating
the concept of the SDL. We thank Markus Lemmer
(FZI) for his help in implementing the concept.We
thank Marco Alt (ZKM) for his help in implement-
ing the scenario description in their simulation tool.
We thank Philipp Rigoll (FZI) for his help in imple-

menting the visualization tool for extracted scenarios.

REFERENCES

ASAM (2020a). OpenSCENARIO 1.0 User
Guide. https://www.asam.net/index.
php?eID=dumpFile&t=f&f=3496&token=
df4fdaf41a8463e585495001cc3db3298b57d426.
Accessed: 2020-10-16.

ASAM (2020b). OpenSCENARIO 2.0 Con-
cept Paper. https://www.asam.net/index.
php?eID=dumpFile&t=f&f=3460&token=
14e7c7fab9c9b75118bb4939c725738fa0521fe9.
Accessed: 2020-10-16.

Bach, J., Holzäpfel, M., Otten, S., and Sax, E. (2017).
Reactive-replay approach for verification and valida-
tion of closed-loop control systems in early develop-
ment. Technical report, SAE Technical Paper.

Bach, J., Otten, S., and Sax, E. (2016). Model based sce-
nario specification for development and test of auto-
mated driving functions. In 2016 IEEE Intelligent Ve-
hicles Symposium (IV), pages 1149–1155. IEEE.

Bagschik, G., Menzel, T., and Maurer, M. (2018). Ontol-
ogy based scene creation for the development of au-
tomated vehicles. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1813–1820. IEEE.

Bock, J., Krajewski, R., Eckstein, L., Klimke, J., Sauerbier,
J., and Zlocki, A. (2018). Data basis for scenario-
based validation of HAD on highways. In 27th Aachen
colloquium automobile and engine technology.

Damm, W., Kemper, S., Möhlmann, E., Peikenkamp, T.,
and Rakow, A. (2018). Using traffic sequence charts
for the development of havs. In European Congress on
Embedded Real Time Software and Systems 2018, 9th
European Congress on Embedded Real Time Software
and Systems (ERTS 2018).

Firl, J. and Tran, Q. (2011). Probabilistic Maneuver Predic-
tion in Traffic Scenarios. In ECMR, pages 89–94.

Foretellix (2020). M-SDL Specification. Accessed: 2020-
08-146.

Foundation, E. (2020). Eclipse modeling framework
(emf). https://www.eclipse.org/modeling/emf. Ac-
cessed: 2020-10-16.

Geyer, S., Baltzer, M., Franz, B., Hakuli, S., Kauer, M.,
Kienle, M., Meier, S., Weißgerber, T., Bengler, K.,
Bruder, R., et al. (2013). Concept and development of
a unified ontology for generating test and use-case cat-
alogues for assisted and automated vehicle guidance.
IET Intelligent Transport Systems, 8(3):183–189.

Hartjen, L., Schuldt, F., and Friedrich, B. (2019). Seman-
tic classification of pedestrian traffic scenarios for the
validation of automated driving. In 2019 IEEE In-
telligent Transportation Systems Conference (ITSC),
pages 3696–3701. IEEE.

International, S. (2018). Taxonomy and Definitions
for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles. https://www.sae.org/
standards/content/j3016 201806/. Accessed: 2020-
10-16.

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

644



Jafer, S., Chhaya, B., Zeigler, B. P., and Durak, U.
(2018). SES and Ecore for Ontology-based Scenario
Modeling in Aviation Scenario Definition Language
(ASDL). International Journal of Aviation, Aeronau-
tics, and Aerospace, 5(5):4.

King, C., Ries, L., Kober, C., Wohlfahrt, C., and Sax,
E. (2019). Automated function assessment in driv-
ing scenarios. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST),
pages 414–419. IEEE.

Kohlhaas, R., Bittner, T., Schamm, T., and Zöllner, M.
(2014). Semantic state space for high-level maneuver
planning in structured traffic scenes. In 17th Interna-
tional IEEE Conference on Intelligent Transportation
Systems (ITSC), pages 1060–1065. IEEE.

Koopman, P., Osyk, B., and Weast, J. (2019). Autonomous
vehicles meet the physical world: RSS, variability, un-
certainty, and proving safety. In International Con-
ference on Computer Safety, Reliability, and Security,
pages 245–253. Springer.

Lange, A. (2018). Gestaltung der Fahrdynamik beim
Fahrstreifenwechselmanöver als Rückmeldung für den
Fahrer beim automatisierten Fahren. PhD thesis,
Technische Universität München.

Langner, J., Bach, J., Ries, L., Otten, S., Holzäpfel, M., and
Sax, E. (2018). Estimating the uniqueness of test sce-
narios derived from recorded real-world-driving-data
using autoencoders. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1860–1866.

Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., and
Maurer, M. (2018). Detailing a Keyword Based Sce-
nario Description for Execution in a Simulation Envi-
ronment Using the Example of Scenarios on German
Highways. In Workshop Fahrerassistenzsysteme und
automatisiertes Fahren, volume 12, pages 15–26.

Neurohr, C., Westhofen, L., Henning, T., de Graaff, T.,
Möhlmann, E., and Böde, E. (2020). Fundamental
considerations around scenario-based testing for auto-
mated driving. arXiv preprint arXiv:2005.04045.

OCUP2 ExaminationTeam (2017). Meta-Modeling
and the OMG Meta Object Facility (MOF).
https://www.omg.org/ocup-2/documents/
Meta-ModelingAndtheMOF.pdf. Accessed: 2020-
10-16.

Pegasus (2019). PEGASUS Abschlussveranstal-
tung. https://www.pegasusprojekt.de/de/pegasus-
abschlussveranstaltung.

Pfeffer, R., Sax, E., and Schmidt, S. (2019). Real-
datenbasierte simulationsgestützte absicherung
hochautomatisierter fahrfunktionen. ATZelektronik,
14(11):24–29.

Schreiber, M. (2012). Konzeptionierung und Evaluierung
eines Ansatzes zu einer manöverbasierten
Fahrzeugführung im Nutzungskontext Autobah-
nfahrten. PhD thesis, Technische Universität
Darmstadt.

Schuldt, F. (2017). Ein Beitrag für den methodischen
Test von automatisierten Fahrfunktionen mit Hilfe von
virtuellen Umgebungen . PhD thesis, TU Braun-
schweig.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2017).
On a formal model of safe and scalable self-driving
cars. CoRR, abs/1708.06374.

Stellet, J. E., Zofka, M. R., Schumacher, J., Schamm, T.,
Niewels, F., and Zöllner, J. M. (2015). Testing of ad-
vanced driver assistance towards automated driving:
A survey and taxonomy on existing approaches and
open questions. In 2015 IEEE 18th International Con-
ference on Intelligent Transportation Systems, pages
1455–1462.

VVM (2020). V&V Methoden. https://vvm.vdali.de/. Ac-
cessed: 2020-10-16.

Wachenfeld, W. and Winner, H. (2016). The release of
autonomous vehicles. In Autonomous driving, pages
425–449. Springer.

Wuellner, T., Feuerstack, S., and Hahn, A. (2019). Clus-
tering environmental conditions of historical accident
data to efficiently generate testing sceneries for mar-
itime systems. In Lect. Notes Comput. Sci. (includ-
ing Subser. Lect. Notes Artif. Intell. Lect. Notes Bioin-
formatics), volume 11842 LNCS, pages 349–362.
Springer.

Collection of Requirements and Model-based Approach for Scenario Description

645


