
Manipulatives for Teaching Introductory Programming to Struggling
Students: A Case of Nested-decisions

Tlou Ramabu1, Ian Sanders2 a and Marthie Schoeman2
1Department of Computer Science, Tshwane University of Technology, Pretoria, South Africa

2Department of Computer Science, University of South Africa, Pretoria, South Africa

Keywords: Programming, Nested-decision, Manipulatives, Struggling Students, Comprehension.

Abstract: Programming is one of the major subjects within the field of computing. In the higher education sector, some
introductory programming students succeed while others find it difficult to progress or learn the material.
Methods of teaching to program do not accommodate struggling students. Among introductory programming
issues, the nested-decision statement is one of the misconceived concepts. In the literature, there is evidence
that some programming educators make use of physical manipulatives to teach introductory programming.
However, there is no framework or validation methods used to identify and use the manipulatives. In this
study, we designed a manipulative called Nested-decider to assist struggling introductory programming
students to develop an appropriate conceptual knowledge about nested-decisions. The details of the design
and its functionalities are presented in this paper. We believe that teaching and learning nested-decisions with
the proposed Nested-decider manipulative could be a useful pedagogical intervention towards enhancing
struggling students’ comprehension. This is ongoing research where we identify and test various
manipulatives for struggling introductory programming students. The results will also help us to develop a
manipulatives – oriented pedagogical framework, which can be used to inform identification and use of
manipulatives.

1 INTRODUCTION

Programming is a major subject in the field of CS, but
is found to be difficult to learn by many Introductory
Programming Students (IPS) (Kelleher and Pausch,
2005; Jenkins, 2007). More specifically, certain
introductory programming concepts can be too
difficult or challenging for IPS to learn (Tuparov,
Tuparova and Tsarnakova, 2012). Qian and Lehman
(2017) say the source of some of students’ challenges
in programming are linked to incorrect prior
programming knowledge. In an attempt to help
students, some academic departments make use of
extra resources like tutors, mentors and assistants
(Forbes et al., 2017) as a supplement to formal
teaching in order to help Struggling Introductory
Programming Students (SIPS).

Teaching programming to IPS is a major
challenge (McDonald, 2018). Each topic may require
a special and relevant pedagogical approach. In the
literature we found few assistive methods that target

a https://orcid.org/0000-0001-9081-8145

a specific topic or concept within introductory
programming education. Our overall study focusses
on developing an alternative pedagogical approach
for teaching and learning certain introductory
programming concepts. The approach we adopt is to
develop a manipulatives-oriented pedagogy suitable
for SIPS. Manipulatives are physical objects used in
the classroom with the aim of improving teaching,
learning and comprehension.

This paper reports on the manipulative called
Nested-decider for teaching and learning nested-
decisions. The purpose of the manipulative is to help
SIPS acquire conceptual knowledge and comprehend
nested-decisions better. In order to describe the
proposed manipulative adequately, Section 2 outlines
issues of learning programming decisions, followed
by the design details of the Nested-decider in Section
3. The conclusion is addressed in Section 4.

Ramabu, T., Sanders, I. and Schoeman, M.
Manipulatives for Teaching Introductory Programming to Struggling Students: A Case of Nested-decisions.
DOI: 10.5220/0010477505050510
In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021) - Volume 1, pages 505-510
ISBN: 978-989-758-502-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

505

2 ISSUES OF LEARNING
PROGRAMMING DECISIONS

The struggle of learning to program often results in a
low retention rate, increasing dropout and academic
exclusion in the computing courses (Lister et al., 2004;
Gomes and Mendes, 2007; Rubio et al., 2014). Certain
programming concepts can be too difficult or
challenging to learn (Tuparov, Tuparova and
Tsarnakova, 2012). Some of the challenges include
misconceptions about assignments, tracing, decisions,
recursion, parameters, initialization and references
(Bayman and Mayer, 1983; Kahne, 1983; Samurça,
1989; Pea, 1986; Eckerdal and Thuné, 2005; Sajaniemi
and Kuittinen, 2008; Schoeman, Gelderblom and
Muller, 2013; Brown and Altadmri, 2017).

The misconceptions about decision-statement
issues date as far back as the 80’s where Pea (1986)
referred to them as a “conceptual” bug. Pea (1986)
says these kind of issues are caused by lack of
conceptual understanding of programming concepts
which can occur to all primary to college (HEIs)
students. Decisions and nested-decisions can be
challenging to comprehend (Sirkiä and Sorva, 2012).
In a study conducted by Sleeman et al. (1988) about
errors in introductory Pascal programming, the
authors found that students thought that the contents
of both the if-then and else clauses can be executed at
the same time. A similar study by Sirkiä and Sorva
(2012) also found that some students thought that if-
then can execute regardless of whether it evaluates to
true or false. A comprehensive study by Altadmri and
Brown (2015) investigated common programming
errors. The authors studied Java compilations of
250 000 novice programs across the world. Part of the
findings include misconceptions about operators in a
decision statement such as comparison operators (= =),
assignment (=) operators, short-circuits operators (&&
and ||) and conventional operators (& and |). A lack of
conceptual knowledge about decisions contributes to a
lot of mistakes during programming (Qian and
Lehman, 2017). The following section gives the design
and functionality of the proposed manipulative.

3 NESTED-DECIDER
MANIPULATIVES

3.1 The Scope

The main purpose of the Nested-decider manipulative
is to:

- Demonstrate how the short-circuit (&&)
operator works.

- Demonstrate how the short-circuit (||) operator
works.

- Demonstrate how the else clause works and
when to use it.

- Make SIPS understand that a nested decision
stops evaluating the rest of the conditions if
one condition evaluates to true.

- Make SIPS understand when to construct a
nested decision instead of an array of
separated or non-nested decisions.

- Enhance SIPS conceptual understanding about
how the nested-decision statement works.

In order to make SIPS understand gradually, we
start modelling a simple non-nested if (x) then {p}
statement with components of the manipulatives and
without short-circuit operators. Thereafter, short-
circuit operators are incorporated in the nested-
decision statement and modelled accordingly. The
manipulative does not consider or model the contents
within a decision statement.

3.2 Background on the Nested-decider
Manipulative

The components for assembling the manipulative are
modelled and named for the sake of referencing
purposes. Fig. 1 below shows the components used to
build the manipulative.

Figure 1: Components of the manipulative.

In Fig. 1, Decider-manip is a main component that
allows a ball to take a true or false route based on an
appropriate condition of a decision statement. It is a
transparent tube which should help SIPS to easily see
and comprehend the movements of the ball within it.
Else-manip represents an else clause and must be
connected to a Decider-manip if necessary. An Exit-
cover is used to connect at the bottom of the Decider-
manip and Else-manip. The Exit-cover allows a user
to remove the ball and restart the process repeatedly.
The top end of each component is bit thinner in order
to allow a smooth assembly of another component. A
ball represents the flow within a decision statement.
Decider-rod is used to block the ball at the
intersection within a Decider-manip. The small holes

CSEDU 2021 - 13th International Conference on Computer Supported Education

506

where Decider-rods are to be inserted are pointed out
in Fig. 2 below.

Figure 2: Nested-decider holes’ positions.

Basically, a Nested-decider consists of assembled
components based on the nature of a given decision
statement. The Nested-decider is assembled by a
lecturer and can later be assembled by SIPS. When
the manipulative is fully assembled, a lecturer should
demonstrate how a certain decision statement works.
In addition, SIPS can later do a demonstration under
the supervision of a lecturer. Practically, a user places
a ball in the transparent tube then makes use of
Decider-rods to navigate the ball along necessary
routes. The ball is always blocked by the Decider-
rods on the intersection of the Decider-manip. The
user is expected to make informed decisions based on
a given programming code (decision statement) by
removing the correct number of Decider-rods from
the correct side of the Decider-manip. For better
understanding of how a ball and Decider-rods work,
a manipulative for a simple decision statement is
given in the following section. Given a decision
statement like if (x) then {p}, the user is expected to
develop an appropriate manipulative by following the
steps in Fig. 3 below.

Figure 3: Simple decision-manipulative.

In Step 1 you take a Decider-manip, Step 2 you
connect the Exit-covers at both bottom ends of the
Decider-manip. Step 3 displays a complete set-up after
step 2 is completed. In Step 4, you insert the Decider-
rods through the small holes that cross the center of the
Decider-manip. In step 5, a ball is inserted and is in a
complete mode. On the intersection, the left side (the
side where Decider-manip is curved) represents a true
evaluation from an if condition. Alternatively, the right
side (non-curved straight exit) represents a false

evaluation. If the condition of a simple decision
statement evaluates to true, the user is expected to
remove the Decider-rod on the left side then the ball
will take a left curved direction and drop at the bottom
inside the Exit-cover. At the end, the user is expected
to understand that one side of the path has opened and
has made an informed decision by removing the correct
Decider-rod. In the case of a complex (Nested)
decision statement when the use of manipulative
becomes more useful, the components can be
assembled as depicted in Fig .4 below.

Figure 4: A nested manipulative build-up.

The first depiction of the design in Fig. 4 attempts
to assemble an if (x) then {y} elseif (p) then {r}
statement and can be nested as long as necessary by
connecting another Decider-manip at the end of the
last Decider-manip. The first depiction in Fig.4
doesn’t necessarily need to face the same direction, it
can be turned clock- or anti-clock-wise if necessary.
The second depiction in Fig. 4 represents a compound
decision statement like if (x) then {y} if (p) then {r}.
The nesting within a compound decision statement
can also be as long as necessary by connecting other
Decider-manips. The last depiction in Fig. 4 shows an
Else-manip with a possible connection to Decider-
manip. The connection represents a …if (x) then {y}
else {q} kind of statement. An Exit-cover can be fitted
anytime during the assembling phase to indicate the
end of the decision statement. For more information,
the following section explains a complete Nested-
decider with short-circuit operators included.

3.3 Nested-decider with Short-circuit
Operators

In this section, we demonstrate how short-circuit
operators can be taught using the manipulative. We do
that by building a complete Nested-decider
manipulative with an else clause included. The Nested-
decider is intended to be used primarily by the lecturer
to teach nested-decisions to SIPS. If necessary, SIPS
can play around with the manipulative for more
understanding. The manipulative should be used in an
appropriate scenario and nested-decision program. In

Manipulatives for Teaching Introductory Programming to Struggling Students: A Case of Nested-decisions

507

order to understand the overall manipulative
functionality, a Java/C++ decision statement depicted
in Fig. 5 is considered.

Figure 5: Nested-decision statements.

Now the teacher has assembled the Nested-
decider manipulative in Fig. 6 based on the code
depicted in Fig. 5. The process of assembling the
components can yield some enhancement in
comprehension, therefore SIPS should later attempt
to build the manipulative based on a given code.
Another important process is for a lecturer to unblock
the paths by removing Decider-rods based on the
conditions. Note that the purple Decider-rods are for
true conditions and the orange Decider-rods are for
false conditions. The same unblocking exercise can
be practiced later by SIPS.

Figure 6: The intersections of the manipulative.

On the first part of the manipulative in Fig. 6
(condition A), you can see that there are 2 Decider-
rods that blocked the tube on the left side and 1
Decider-rod that blocked the tube on the right side.
All the Decider-rods have blocked the tube on the
intersection within a Decider-manip. When the
correct pattern of removing the Decider-rods is
applied, the ball will automatically take the
unblocked path.

A condition 1 in Fig. 5 represents condition A in
Fig. 6, because 2 conditions are expected to evaluate
to true for the content of an if-statement to execute.
Hence, true && true = true. If value1 = 5, then
value1 > 0? is true, and the lecturer/student is
expected to remove one of the 2 purple Decider-rods
from the left side. The ball will still be trapped on the
intersection because of the remaining Decider-rods
on both sides. On the very same first line in Fig. 5, the
right side condition says value1 < 9? This evaluates
to true, therefore the user should remove the second
purple Decider-rod, then the ball will instantly take a
path of the left side. Now the lecturer is expected to
be able to explain condition 1 better with actions
taken on the intersection of the manipulative. SIPS
are expected to see and understand that the && short-
circuit operator requires both conditions to be true for
the contents of the decision statement to execute.
Hence 2 purple Decider rods that represent true
condition on the left side are removed when each
condition becomes true. SIPS should be able to see
that it is now impossible for the ball to reverse in
order to get into other tubes. Therefore, the same
scenario must be explained in relation to the real
programming code. Furthermore, it should be clear
that the ball can’t move into the next intersection if
the Decider-rod on the right side (orange Decider-rod
for false condition) is not removed. A lecturer must
also emphasize that a compound decision statement
such as (if (value1 >9) if (value2 > 20)) can also be
used to represent condition 1, and it will not affect
how the user interacts with the manipulative. This
will help SIPS to play around decision statements and
manipulatives for further improvements and
understanding.

If value1 = 12, the left-hand side of condition 1
(Fig. 5) will be true and one of the right side Decider-
rod will be removed. On the right-hand side of
condition 1, value1 is not less than 9, therefore the
user is expected to remove the only Decider-rod, and
then the ball will automatically roll into the next
intersection (condition 2 in Fig. 5 and condition A in
Fig. 6). Therefore, SIPS will see that true && false =
false. They will also understand that it did not matter
whether one of the Decider-rod was removed or not,

CSEDU 2021 - 13th International Conference on Computer Supported Education

508

one false condition will cause a ball to roll into the
next intersection. This is because short-circuit
operators do not evaluate all its operands when
necessary. This promotes unnecessary evaluations
and promotes efficient memory saving when coding.
The other possibilities that can be demonstrated and
understood through ball movements are false && true
= false and false && false = false. The kind of ball
movements will also help SIPS with comprehending
how short-circuit (&& and ||) operators work.

If the ball is in the second intersection (condition
B) in Fig. 6, note that there are 2 Decider-rods on the
right side and one Decider-rod on the left side. The
Decider-rods are put in such way that they represent
condition 2 in Fig. 5. The reason behind a single
Decider-rod on the left side is because true || true =
true, true || false = true and false || true = true, hence
in the || evaluation true is required to be the common
denominator for a true evaluation. The only way a
ball can move to the next intersection is through false
|| false = false. Just like a short-circuit evaluation in
the && works, the || applies the same logic because
whenever a true evaluation is detected first, the right
side evaluation is automatically ignored because it is
unnecessary. The evaluation of short-circuit operators
starts from left to right. Therefore, in the case of if
(true || whatever.) and if (false && whatever.), the
“whatever” word indicates that whether it is true or
false, it doesn’t matter and is not even evaluated.

If the intersection is blocked with a single
Decider-rod on the right side and a left side as well, it
means a condition is not compound nor tied by a
logical operator. See condition 3 and condition 3.1 in
Fig. 5 which should be represented by a condition C
and condition C1 in Fig. 6.

Another important aspect in the Nested-decider
manipulative is the else clause. On the else clause of
the decision statement, the question mark is put there
to indicate that the condition is not necessary even
though it can be placed as value1 > 20 (line number
17 in Fig. 5). If one decides to put elseif value1 > 20
in line 17 instead of an else clause only, the program
will still work fine. However, with the Nested-decider
now SIPS can see and understand that the process of
removing pins will unnecessarily delay the
completion time of a nested-decision and will waste
computer memory during real code execution. In Fig.
6, the Else-manip at the end of the manipulative is
important because it indicates the else clause, and the
ball can be blocked with a Decider-rod just to
demonstrate an unnecessary delay during the
demonstration.

We believe that when we apply the proposed
Nested-decider to real SIPS, the overall manipulative

will give them more insight and conceptual
understanding about nested-decisions, short-circuit
operators and the else clause. Furthermore, the
manipulative can be adjusted in any way required by
the lecturer/student to fit the applicable scenarios of
nested decisions.

4 CONCLUSION

The main objective of this paper was to share a
designed manipulative which is meant to help
struggling introductory programming students with
conceptual knowledge and comprehending nested-
decisions better. We demonstrated the design details
of the manipulative (called Nested-decider) and its
functionalities. We demonstrated the Nested-
decider’s ability to show the critical aspects of nested-
decisions. We believe that the manipulative will serve
as an assistive tool for struggling students to learn
nested-decisions and ease their cognitive load. The
proposed manipulative has not yet been implemented
to teach struggling introductory programming
students. This will be done by following an
appropriate pedagogical framework (not reported in
this paper) in the form of action research with SIPS at
a higher education institution. During the action
cycles, both the lecturer and SIPS are expected to use
the manipulative. As part of future work, we will
share the implementation results in our next
publication.

REFERENCES

Altadmri, A., & Brown, N. C. (2015, February). 37 million
compilations: Investigating novice programming
mistakes in large-scale student data. In Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education, 522-527. ACM.

Forbes, J., Malan, D. J., Pon-Barry, H., Reges, S., &
Sahami, M. (2017, March). Scaling Introductory
Courses Using Undergraduate Teaching Assistants. In
Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, 657-658.
ACM.

Jenkins, T. (2007). On the Difficulty of Learning to
Program. Proceedings of the 3rd Annual Conference of
the LTSN Centre for Information and Computer
Sciences, 53–58.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Computing Surveys (CSUR), 37(2), 83-137.

Manipulatives for Teaching Introductory Programming to Struggling Students: A Case of Nested-decisions

509

McDonald, C. (2018). Why Is Teaching Programming
Difficult?. In Higher Education Computer Science, 75-
93. Springer, Cham.

Pea, R. D. (1986). Language-independent conceptual
“bugs” in novice programming. Journal of Educational
Computing Research, 2(1), 25-36.

Qian, Y., & Lehman, J. (2017). Students’ misconceptions
and other difficulties in introductory programming: a
literature review. ACM Transactions on Computing
Education (TOCE), 18(1).

Sirkiä, T., & Sorva, J. (2012). Recognizing Programming
Misconceptions: An Analysis of the Data Collected
from the UUhistle Program Simulation Tool. Master's
thesis, Department of Computer Science and
Engineering, Aalto University.

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1988).
An introductory Pascal class: A case study of students'
errors. Teaching and Learning Computer
Programming: Multiple Research Perspectives. RE
Mayer. Hillsdale, NJ, Lawrence Erlbaum Asociates,
237-257.

Tuparov, G., Tuparova, D., & Tsarnakova, A. (2012).
Using interactive simulation-based learning objects in
introductory course of programming. Procedia-Social
and Behavioral Sciences, 46, 2276-2280.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., ... & Simon, B. (2004, June). A multi-
national study of reading and tracing skills in novice
programmers. In ACM SIGCSE Bulletin, 36(4), 119-
150.

Gomes, A., & Mendes, A. J. (2007, September). Learning
to program-difficulties and solutions. In International
Conference on Engineering Education–ICEE.

Rubio, M. A., Romero-Zaliz, R., Mañoso, C., & Angel, P.
(2014, October). Enhancing an introductory
programming course with physical computing modules.
In Frontiers in Education Conference (FIE), 1-8. IEEE.

Bayman, P., & Mayer, R. E. (1983). A diagnosis of
beginning programmers' misconceptions of BASIC
programming statements. Communications of the ACM,
26(9), 677-679

Kahney, H. (1983, December). What do novice
programmers know about recursion. In Proceedings of
the SIGCHI conference on Human Factors in
Computing Systems, 235-239. ACM.

Samurçay, R. E. N. A. N. (1989). The concept of variable
in programming: Its meaning and use in problem-
solving by novice programmers. Studying the novice
programmer, 9, 161-178.

Brown, N. C., & Altadmri, A. (2017). Novice Java
programming mistakes: large-scale data vs. educator
beliefs. ACM Transactions on Computing Education
(TOCE), 17(2), 7.

Schoeman, M., Gelderblom, H., & Muller, H. (2013).
Investigating the effect of program visualization on
introductory programming in a distance learning
environment. African Journal of Research in
Mathematics, Science and Technology Education,
17(1-2), 139-151.

Sajaniemi, J., & Kuittinen, M. (2008). From procedures to
objects: A research agenda for the psychology of
object-oriented programming education. Human
Technology: An Interdisciplinary Journal on Humans
in ICT Environments.

Eckerdal, A., & Thuné, M. (2005, June). Novice Java
programmers' conceptions of object and class, and
variation theory. In ACM SIGCSE Bulletin,37(3), 89-
93. ACM.

CSEDU 2021 - 13th International Conference on Computer Supported Education

510

