
A Text Similarity-based Process for Extracting JSON Conceptual
Schemas

Fhabiana T. Machado, Deise Saccol, Eduardo Piveta, Renata Padilha and Ezequiel Ribeiro
Federal University of Santa Maria, Santa Maria, Brazil

Keywords: JSON, Schema Extraction, Information Integration.

Abstract: NoSQL (Not Only SQL) document-oriented databases stand out because of the need for scalability. This
storage model promises flexibility in documents, using files and data sources in JSON (JavaScript Object
Notation) format. It also allows documents within the same collection to have different fields. Such differences
occur in database integration scenarios. When the user needs to access different datasources in an unified
way, it can be troublesome, as there is no standardization in the structures. In this sense, this work presents a
process for conceptual schema extraction in JSON datasets. Our proposal analyzes fields representing the same
information, but written differently. In the context of this work, differences in writing are related to treatment
of synonyms and character. To perform this analysis, techniques such as character-based and knowledge-based
similarity functions, as well as stemming are used. Therefore, we specify a process to extract the implicit
schema present in these data sources, applying different textual equivalence techniques in field names. We
applied the process in an experiment from the scientific publications domain, correctly identifying 80% of
the equivalent terms. This process outputs an unified conceptual schema and the respective mappings for the
equivalent terms contributing to the schema integration’s problem.

1 INTRODUCTION

Due to the increasing volume of data generated
by various applications, NoSQL document-oriented
databases models were created. Their main charac-
teristics are schemaless and there are no complex re-
lationships.

Despite the allowed schema flexibility, it is a
misconception to state that a schema does not ex-
ist. When using an application to access a NoSQL
database, it is assumed that certain fields exist with a
certain meaning and type. In this sense, there is an
implicit database schema: a set of assumptions about
the data structure in the code that manipulates it.

This storage model allows, for example, that a
field can be present in some documents and in oth-
ers not, or that there are fields with distinct names,
including between documents belonging to the same
collection. In this way, there may exist different fields
of the same domain that represent the same infor-
mation, as occurs in integration scenarios of JSON
datasets, as presented at Figure 1.

The example in Figure 1 points to some informa-
tion with the same meaning, but represented quite dif-
ferently: (1) scores, line 4A, and score, line 4B,

Figure 1: Motivating example.

present only one difference in the plural. This type
of change can occur with other suffixes and language
prefixes; (2) class id, line 3A, and id class, line
3B. The difference is that their terms are written in
reverse order, that is, one with the word “id” at the
beginning and another at the end of the word; (3)
student, line 2A, and learner, line 2B, however,
have different spellings, i.e., with synonymous words.

Other works on schema extraction in JSON data
sources, described in Section 3, are not concerned
with different spellings for equivalent fields or not
produces a conceptual schema. This issue become
important once a document oriented NoSQL database
has a flexible schema and could not have standardized
dataset.

Therefore, the purpose of this work is to extract

264
Machado, F., Saccol, D., Piveta, E., Padilha, R. and Ribeiro, E.
A Text Similarity-based Process for Extracting JSON Conceptual Schemas.
DOI: 10.5220/0010475102640271
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 264-271
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

the implicit schema in JSON data sources, identify-
ing equivalences between fields that are written dif-
ferently but representing the same information. In the
context of this work, being equivalent covers linguis-
tic similarity like characters, word stems and semantic
approach like synonyms resulting a unified concep-
tual scheme and mappings. This work it is validated
through an experiment that has as input documents
from digital libraries belonging to the domain of sci-
entific publications. At the end, recall and precision
indexes are discussed.

This paper is organized as follows. Section 2 de-
scribes the background. Section 3 related works. Sec-
tion 4 defines the process for extracting conceptual
schema from JSON datasets. Section 5 specifies an
experiment. Finally, Section 6 presents the conclu-
sions.

2 BACKGROUND

Schemas in NoSQL Datastores. The concepts of
entity, attribute and relationship have some specifici-
ties: an entity can be an abstraction of the real world
(Varga et al., 2016), as well as correspond to a JSON
document or object. An attribute can be represented
by fields of mono or multivalued arrays. NoSQL
databases have no explicit relationships; they use a
nested entity model, inferring implicit relationships.
Conceptual representation for NoSQL. The
IDEF1X (Integrated DEFinition for Information
Modelling) notation with adaptations characterize the
modeling suitable for NoSQL models (Benson, 2014)
(Jovanovic and Benson, 2013). This is done through
rules for representation. Its model is distinguished by
the fact that entities derive from a root.

Figure 2: Example of notation for aggregate-oriented data
models.

First item in Figure 2 points to a built-in aggregate
of one-to-many 1 : M relationship. The second item
illustrate cardinality relationships 0 : 1. The “REFI”
operator is positioned in the entity where only one
reference value will be “copied”, that is, referenced in
the other entity, thus generating a kind of connection
between the entities.

Techniques for Identification of Textual Equiva-
lence. The following measures of text similarity cal-
culation are quite distinct, and, in general, calculate a
score in the range {0,1} for a pair of values.

String-based similarity measures operate on se-
quences and character composition, comparing the
distance between two texts. The Levenshtein mea-
sure (Levenshtein, 1966) was chosen, as it is widely
used. The process, however, can be used with other
character-based similarity measures.

Knowledge-based measure is based on the simi-
larity degree according to the information meaning in
a semantic network. One of the most popular tools in
this regard is Wordnet (Miller, 1995). In this work,
we use the Lin (Lin, 1998) measure, which applies
the information content of two nodes using the LCS
(Lowest Common Subsumer).

Although stemming is not a measure of similarity,
the Porter Stemming Algorithm (Porter, 2006) is ap-
plied through the equivalence of their stem indicating
equivalence or not.

3 RELATED WORK

Related works on schema extraction in JSON data
sources are concerned with version inference (Ruiz
et al., 2015), extraction of a schema with cardinalities
in a proper representation format (Klettke et al., 2015)
and a unique semantic approach (Kettouch et al.,
2017). However, they do not address the issue of dif-
ferent spellings for equivalent fields. This issue be-
come important in integration scenarios, scheme flex-
ibility or for lack of standardization. In (Blaselbauer
and Josko, 2020) work, a linguistic approach is used
but generates only similarity graphics.

The work methodology uses a four-step process
that starts with JSON documents. Searches for fields
that have different spelling, but represent the same
information in the schema. This is accomplished
through techniques that identify equivalence in field
names, generating as output a unified conceptual
representation of the implicit schema present in the
database.

4 A PROCESS FOR SCHEMA
EXTRACTION

In order to access JSON documents in a unified way,
we propose a process to schema extraction analyzing
textual similarity of its fields. The process is appli-
cable to documents from the same domain to identify

A Text Similarity-based Process for Extracting JSON Conceptual Schemas

265

fields representing the same information but written
differently.

As input, the process receives documents stored in
NoSQL in JSON format. As output, it generates the
conceptual representation of an unified schema.

Some definitions are given as follow:
Definition 1. Structure. In a json format Json :=
[keya : valuea, ...], structure refers to the fields of a
JSON document where Struc := [keya,keyb, ...], in the
sense of differentiating what is not a value.
Definition 2. Schema. Schema has a more compre-
hensive sense than structure, as it is usually related to
entities, relationships and attributes.
Definition 3. Delimiters. A set of JSON grammar
symbols that mark the beginning and the end of an
object or array, this is Delimiter := ([,],{,}).
Definition 3. Block. A block is a set of attributes.

The extraction process process is divided into four
main steps.

The pre-processing in Section 4.1, stage initially
aim at preparing the files, eliminating the data, keep-
ing only the fields. After pre-processing, the word
set receives similarity techniques: knowledge based
string, character based string and stemming. Its aim
is identifying equivalences in fields that represent the
same information but are written differently. This is
the similarity analysis step, Section 4.2.

After the similarity analysis, the next step is the
identification of equivalences, Section 4.3. This
phase is responsible for analyzing the results of the
resulting measures, testing and inferring the equiva-
lence between the terms. Finally, a visual representa-
tion of the conceptual schema is generated along with
a table representing the mappings of the terms that
have been consolidated. This is the step of structure
representation in Section 4.4.

4.1 Pre-processing

The pre-processing step, shown in Figure 3, prepares
the documents for the following steps. All the files
in the collection are traversed by joining the fields in
a single file. The repeated terms are eliminated by
keeping only the distinct fields. This process aims to
decrease the number of comparisons, improving effi-
ciency.

The extract fields activity is divided into two
steps. The first one separates only the fields, that
is, the [keya,keyb, ...] portion of the Json := [keya :
valuea, ...]. The second one merges the fields into a
single file. The source document is stored in a list of
references to enable future mappings. The following
step is described:

Figure 3: Pre-processing step.

Input. An existing JSON document collection be-
longing to the same domain. Each document must
be validated by the grammar.
Extract Fields. This activity has the purpose of
traversing the documents by separating only the dis-
tinct fields, merging into a single file and saving a list
of references.

The extract fields activity is detailed in other sub-
activities:

Separate Fields from the Data. This activity pro-
cesses the documents keeping only the field names
and the delimiter symbols doci[key|delimiters]. This
is done for each document, generating a unique text
file. At this stage no comparison is made.

Merge Structure. In this step, the intention is to
avoid element redundancy [keya,keya,keyb, ..], to re-
duce the number of entries for analysis of textual sim-
ilarity. Thus, it performs tests and comparisons to
merge and to maintain only the distinct fields. In this
process, the source reference of the different fields is
saved valuea := [doci,doc j].
Output. The first output artifact is a text-format
file containing a single document representing the
collection called the general structural document
Out1 := doci[key|delimiters],doc j[key|delimiters], ...
This should have, besides the delimiters that will as-
sist in the future steps, the fields with distinct names.
The hierarchy remains the same.

The second artifact is a list that contains the term
and the reference to which original documents it con-
tains Out2 := distinct valuea[doci,dock], ...

4.2 Similarity Analysis

The purpose of the similarity analysis step, indicated
in Figure 4 is to apply different techniques of text
similarity analysis to identify words that represent the
same information, but have different spellings.

There are applied three different techniques to
each pair of words that compose the general structural
document.
Input. General structural document.
Similarity Analysis. In this activity, the input file is
copied and serves as the initial artifact for the applica-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

266

Figure 4: Similarity analysis step.

tion of the three different techniques. These are exe-
cuted in parallel. The input passes through each tech-
nique and generates result matrices with values indi-
cating the similarity. The comparisons are made in
the form all with all, for earch pair [keya,keyb]∈Out1,
assuming that all can be equivalent.

The similarity analysis is detailed in other sub-
activities:

Analyze stem of the word. This sub-activity refers
to the technique of Stemming, that is, stem extrac-
tor. It is executed using the Porter Algorithm (Porter,
2006). By applying rules to remove suffixes and pre-
fixes from the English language, the result is a radical
one. This is not necessarily a valid word and may
have no meaning.

In the case of the stemming technique, the stem
of the words stem keya and stem keyb are compared
to define equivalence. If it is identical, the result will
be 1, as shown by Equation 1, otherwise it will be
0. Thus, in this technique, the resulting values will
always be integers 0 or 1.

Stemsim : (stem keya == stem keyb)−→ 1 (1)

Analyze Character-based Similarity. It consists of ap-
plying some similarity technique. The Levenshtein
(Levenshtein, 1966) function was chosen because it
was applied to short texts, through the minimum num-
ber of operations required to transform one string into
another and is represented by Equation 2.

Levsim : (keya,keyb)−→ {0,1} (2)

Analyze Knowledge-based Similarity. It targets the
semantic focus. The implementation of the Wordnet
Similarity for Java is used applying the semantic mea-
sure Lin (Lin, 1998) that is based on information con-
tent and represented by Equation 3.

Linsim : (keya,keyb)−→ {0,1} (3)

In this case, the word indicated by keyi must be valid
in Wordnet, otherwise the result will be assigned a
zero value.
Output. Three result arrays are generated with inte-
ger values in the range from zero to one. Each ar-
ray contains information about the result of a given
similarity function for each pair of words. The cor-
responding output Out3 := Mstem,Mlev,Mlin is repre-
sented in an array whose main diagonal will always

be one. This also has the characteristic of being sym-
metrical both below and above the main diagonal.

After the end of the similarity analysis step, the
three generated arrays follow to identify equivalences.

4.3 Identification of Equivalence

The step of identifying equivalences, shown in Fig-
ure 5, is decisive in the schema unification process.

Figure 5: Identification of equivalence step.

Its purpose is to perform tests and comparisons to de-
fine the equivalence between fields. It uses the values
resulting from each measure applied in the previous
step.
Input. Matrices of results of applied techniques.
Identify Equivalence. In this activity, calculations
and tests are performed from a threshold. Afterward,
these results are synthesized in a unified structure. In
this same process are stored the consolidated fields
and to which others correspond.

The identify equivalence activity is detailed in
other sub-activities:

Calculate Equivalence. This sub-activity repre-
sented by Algorithm 1, is performed for each pair
values. Tests, comparisons and calculations are per-
formed and generate a single matrix Mres where
Mres ∈ {0,1}.

Algorithm 1: Calculate equivalence.

input : Mstem,Mlev,Mlin
output: Mres

1 for ei j ∈Mstem and Mlev and ,Mlin do
2 if estem or elev or elin == 1 then eres = 1 ;
3 if estem or elev or elin == 0 then eres = 0 ;
4 if estem == 0 and elin == 0 then
5 if elin > Ta then eres = 1 ;
6 end
7 if e avgres > Tb then eres = 1 ;
8 end

This sub-activity is based on the following premises:

• When a word is not valid according the the gram-
mar, it will not have a value in the radical and syn-
onym measures, that is, Stemsim : (a,b) = 0 and

A Text Similarity-based Process for Extracting JSON Conceptual Schemas

267

Linsim : (a,b) = 0. In this case, the threshold Ta is
defined to the character measure.

• When the three measures have values in the
{0,1} interval, the equivalence is given through
a weighted average Avg with threshold Tb where
weights are an arbitrary choice.

• For the definition of the threshold, the following
test was performed: given a set of 14 word pairs,
where 10 are equivalent and 4 are not, the recall
and precision indices were calculated for combi-
nations of the thresholds Ta and Tb, according to
Table 1.

Table 1: Threshold definition tests.

Ta Tb Recall Precision
0,75 0,50 0,636 0,700
0,70 0,50 0,909 0,714
0,70 0,45 0,909 0,667
0,60 0,50 1,18 0,591

Thus the defined threshold were Ta = 0,70 and
Tb = 0,50.

• When the weighted average is applied, it is rep-
resented by the Equation 4. If Avg ≥ Tb then its
considered equivalent.

Avg = (1∗Stemsim +2∗Levsim +3∗Linsim)/6 (4)
Consolidate Structure. This sub-activity aims to gen-
erate a single listing of fields unifying those that were
considered equivalent in the previous step.

It has as input a Mres analyzing each pair of
words (keya,keyb) corresponding to the element eres ∈
{0,1}. When eres = 1 the keya is kept and the map-
ping is saved. The element to be maintained is chosen
arbitrarily, being considered the first occurrence.

This sub-activity generates a second list of refer-
ences with the terms and their equivalents Out4 :=
keyb ⇐⇒ keya.
Rebuild Structure. This sub-activity rearranges the
consolidated terms into a single document, called uni-
fied structure, using Out4. This sub-activity is based
on the following premises:

• The unified structure is built from a collection
document considered base.

• The largest document belonging to the entry col-
lection is chosen as the basis, as it contains the
largest number of fields.

• Base document delimiters are kept/added in the
unified structure and field values are ignored.

From the base document, each term is analyzed and
replaced by its equivalent if necessary. Terms that
have been consolidated but are not present in the
base document are added to the end of the structure.

Its generates the unified structure, that is, Out5 :=
uniq doc[keys,delimiters].
Output. The activity identify equivalence consists of
more extensive and represents the core of the work.
Two outputs are generated: Out4 - a second list of
references containing equivalences between fields and
Out5 - a unified structure.

After this step, it is necessary to generate a visual
conceptual representation, as well as to organize the
mappings.

4.4 Structure Representation

The structure representation step, shown in Figure 6,
aims to generate a visual notation and the mappings.
The first is accomplished through the unified struc-
ture by applying conversion rules. The second gener-
ates the mappings of the consolidated terms to their
equivalents and their source documents.

Figure 6: Structure representation step.

Input. Unified structure, that is Out5 and references
lists corresponding to the Out2 and Out4.
Generate Representation. This activity produces the
conceptual schema and the mappings of the consoli-
dated terms to the equivalents identified in the pro-
cess. The generate representation activity is detailed
in other sub-activities:
Generate Mappings. This sub-activity aims to con-
sult both lists of references to infer new equivalences
between the fields, generating a final table with the
consolidated term path represented by the JSONPath
notation (Goessner, 2007), the other matching terms
and occurrences in documents.

This activity is based on the following premises:

• The consolidated term path column is generated
from the unified structure.

• The matching terms column is generated based on
Out4 and are checked new equivalences like A =
B,B =C⇒ A =C

• The occurrences in documents column is gener-
ated based on Out2.

Adapt to Aggregate Notation. This sub-activity create
the representation through IDEF1X notation adapted

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

268

to the NoSQL model. It applies the defined rules of
conversion, described in Section 4.4.1, in a text file
that corresponds to the unified structure.

An algorithm, represented by Algorithm 2, similar
to a parser is applied whose delimiters indicate the
transformation into a class or attribute, for example.

Algorithm 2: Adapt to aggregate notation.

input : Uniq doc[key,delimiters] and Rules
output: Schema

1 for event ∈Uniq doc do
2 switch event do
3 case { do R1⇒ new class;
4 case keyi do R2⇒ attribute;
5 case [do R3⇒ new class with one

attribute;
6 case [{ do R4⇒ new class;
7 end
8 end

This sub-activity is based on the following premises:
• Some rules have been defined for converting the

unified structure into a conceptual scheme.
• The first object in unified structure is considered

root entity.
• The delimiters assist in the assembling the con-

ceptual scheme and also indicate the type of rela-
tionship.

4.4.1 Rules

This new artifact, also represented by Algorithm 2,
presents some rules defined during the work, to gener-
ate the conceptual schema and a visual representation.
These are used in the identification of the blocks in
objects or arrays that help in the definition of classes,
attributes and relationships.

The following are briefly described:
• The R1 Rule is applied to generate a new class

with relationship 0 : 1. This rule occurs when
identifying ‘{’, i. e., the beginning of a JSON ob-
ject.

• The R2 Rule transforms fields into corresponding
attributes of a class.

• The R3 Rule is applied to generate a new class
with relationship O : M. This class contains only
a single attribute represented by att. Occurs when
was found ‘[’, i.e., an array with enumeration of
items inside is opened.

• The R4 Rule also generates a new class with rela-
tionship 0 : M. Occurs when identifying ‘{[’, i.e.,
the beginning of an object with many arrays.

Figure 7: Example of applying the rules.

To illustrate the application of the rules, the Figure 7
is displayed that demonstrates each case described.
Output. This activity ends the extraction process
generating the two final artifacts: the mappings and
the unified conceptual schema.

5 RESULTS

This section presents the extraction process in an ex-
periment and the results found. The application do-
main is related to scientific publications; entries are
exported references from academic libraries files in
JSON format. The execution of this extraction pro-
cess treats fields as a whole.
Evaluation. Precision and recall measures are used.
The recall is the proportion of the total of similar ex-
isting pair that appears in the final result. On the other
hand, precision indicates the proportion of pairs of
values correctly identified as similar that appear in the
result.

5.1 Execution of the Extraction Process

The process consists of executing the sequence
of sub-activities presented in the four steps: pre-
processing, similarity analysis, equivalence identifi-
cation and structure representation.

A implementation was developed in Java language
with libraries such as Simmetrics-core and Wordnet.
The project, executable and test files are available on
GitHub1. It accept as input, the folder containing the
JSON documents and the thresholds definition. Out-
puts a list of references, that is Out4 and a matrix re-
sults Mres. The process is terminated manually and
produces a visual representation.

The extraction process is based on the following
premises:

• It is considered that the fields in general mode can
be equivalent to any other, regardless of the hier-
archy level that they are and that represent infor-
mation of the same context.

1https://github.com/ftmachado/schema-similarity

A Text Similarity-based Process for Extracting JSON Conceptual Schemas

269

Figure 8: Conceptual schema extracted by the process.

• The data hierarchy in this case is not being con-
sidered, as it would be necessary to have a domain
expert to assist the matching.

This experiment was carried out with the extraction of
50 files from each library, namely: Bibsonomy, DBLP
and Pubmed. These inputs and the thresholds were
submitted to our implementation, that shows which
fields are considered equivalent.

In the pre-processing step, the fields are sepa-
rated and consolidated into a single text file, called the
general structural document. Also generate the list of
references that contains the fields and the reference of
which documents occur.

Thus, in the similarity analysis step, matrices are
generated for each analysis. This step results in three
matrices with the results of each field pair textual sim-
ilarity technique applied.

The next step of the process is identify equiva-
lences. It calculates equivalences resulting an matrix
with zero or one values and a second list of references
containing terms that were considered equivalent.

Table 2: Output list of references 2.

types = type Publication = Issue Tag = label
count = number Hour = Minute User = user
author = authors author = Author title = Title
editor = editors volume = Volume year = Year

journal = Journal number = Issue

Table 2 is the output of list of references. The sub-
activities of consolidating structure and rebuilding the
structure are performed manually, where the source
document containing the largest number of fields is
chosen for base.

Thus, the structure representation phase gener-
ates the two final artifacts of the extraction process:
the mappings and the conceptual schema.

Table 3: Mapping result example.

Consolidated term path Matching term Occurr
$..pubmedarticle. Doc1
medlinecitation. Year Doc2
datecreated.year Doc3

The mappings, exemplified in Table 3 present the con-
solidated term path, the matching term, and the occur-
rence in original dataset.

The conceptual schema, shown in Figure 8, is
genereated based on the defined rules starting from
a root element identified by the ROOT label, in this
case, the term pubmedarticle.

In Figure 8, the entities at the right side of the
root term represent nested arrays with relationships
of type 1 : M, identified by EMBED, and 1 : 1 indicated
by REFI. Fields that are not found in the structure of
the chosen base document are considered as a sepa-
rate block, ‘entity1’, at the left of the root element.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

270

5.2 Evaluation

In this experiment, 15 fields could be considered as
relevant, that is, that represent the same information.
A total of 14 was retrieved according to Table 2. The
unidentified terms would be Tags⇒ tags.

The revocation and precision rates are shown in
Table 4 together with the number of terms retrieved,
terms relevant retrieved and terms relevant repre-
sented by Ret, Rel Ret and Rel respectively.

Table 4: Recall and precision values.

Ret Rel Ret Rel Recall Precision
14 12 15 80% 85,71%

Among the terms retrieved, two were identified in-
correctly: Publication⇒ Issue and Hour⇒Minute.
This happened because the semantic metric found
high values for these cases. Some difficulties encoun-
tered in correctly identifying the equivalent terms are
due to particularities of the chosen techniques.

Some words are not valid in the language and
therefore can not be analyzed semantically, just as
they can not be radical in Porter’s algorithm. How-
ever, they will always be analyzed for the variation of
characters having an appropriate threshold for each
case. Thus, from the indexes found, the process pre-
cision is considered good.

6 CONCLUSION

The main contribution concerns the process for ex-
tracting conceptual schemas that has as input a collec-
tion of documents in JSON format. These files may
be stored in a NoSQL database or in the Web in gen-
eral.

In order to exploit the flexibility of schemas, the
process aims to identify equivalences in the fields that
are written differently or at integration scenarios, ei-
ther for lack of standardization or for misunderstand-
ing, but that represent the same information. In this
way, it uses similarity techniques that cover simi-
lar spelling, synonyms and radical equivalence of the
word. The process is applied between documents and
within the document, generating relationships of type
1 : M or 0 : M, once in an NoSQL model these are
indicated about a entity nested in a root element.

The tests indicate that the process has more scope
as a greater number of variations, maintaining good
rates of revocation and precision. Inconsistencies oc-
curred in cases of words that even have the same
spelling, have different meanings, or questions of the
Wordnet library.

The extraction of a unified schema can also be
useful in future work to allow the submission of
queries about it, since a mapping indicates to which
other terms that consolidated term refers and points
the respective origin documents of the corresponding
terms. A future solution could be investigating the use
of algorithms to deal with homonyms.

With the growth in the volume of data and the
popularization of the data of the mono structured as
JSON, it is need to be concerned about schemes so
that it can develop applications that access them in a
coherent way. This proposal differs by exploring the
flexibility of schemas, identifying equivalent fields in
terms of synonymous, word radical and character gen-
erating a unified schema.

REFERENCES

Benson, S. R. (2014). Polymorphic data modeling. Master’s
thesis, Georgia Southern University.

Blaselbauer, V. M. and Josko, J. M. B. (2020). Jsonglue: A
hybrid matcher for json schema matching. Proceed-
ings of the Brazilian Symposium on Databases.

Goessner, S. (2007). Jsonpath - xpath for json.
http://goessner.net/articles/JsonPath/. Acessed in
2016, November.

Jovanovic, V. and Benson, S. (2013). Aggregate data mod-
eling style. SAIS 2013, pages 70–75.

Kettouch, M. S., Luca, C., Hobbs, M., and Dascalu, S.
(2017). Using semantic similarity for schema match-
ing of semi-structured and linked data. In 2017 Inter-
net technologies and applications (ITA), pages 128–
133. IEEE.

Klettke, M., Störl, U., Scherzinger, S., and Regensburg, O.
(2015). Schema extraction and structural outlier de-
tection for json-based nosql data stores. In BTW, vol-
ume 2105, pages 425–444.

Levenshtein, V. I. (1966). Binary codes capable of cor-
recting deletions, insertions and reversals. In Soviet
physics doklady, volume 10, page 707.

Lin, D. (1998). An information-theoretic definition of sim-
ilarity. In ICML, volume 98, pages 296–304. Citeseer.

Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.

Porter, M. (2006). An algorithm for suffix
stripping. Program: electronic library
and information systems, 40(3):211–218.
https://doi.org/10.1108/00330330610681286.

Ruiz, D. S., Morales, S. F., and Molina, J. G. (2015). Infer-
ring versioned schemas from nosql databases and its
applications. In International Conference on Concep-
tual Modeling, pages 467–480. Springer.

Varga, V., Jánosi-Rancz, K. T., and Kálmán, B. (2016).
Conceptual design of document nosql database with
formal concept analysis. Acta Polytechnica Hungar-
ica, 13(2).

A Text Similarity-based Process for Extracting JSON Conceptual Schemas

271

