
Software Development Context: Critiquing Often Used Terms

Diana Kirk
Independent Researcher, Auckland, New Zealand

Keywords: Software Development Context, Situated Software Practices.

Abstract: Software development practices are carried out in a range of different contexts and there is little evidence to
support the likelihood that a specific practice will be effective in a specific context. The need to understand
the relationships between practice and context is pressing if we are to support industry in selecting a set of
practices that will provide maximum benefit for the project. An evidence based approach requires that, for
each practice, we associate a ‘context profile’ that describes the operating parameters for the practice. Our
earlier explorations resulted in a categorisation of the huge number of terms used when describing software
development context. We found that some terms could not be included in the context profile because the term
described context at a high level, was vague or its meaning was ambiguous. In this position paper, we overview
the findings from our explorations of context and present and critique the inadmissible terms with respect to
their application to situated software practices. The cataloguing of these terms will benefit researchers by
supporting discussion and thus a deeper understanding of context for situated software practices.

1 POSITION

Our position for this paper is stated as:

1. We are currently not in a position to support or-
ganisations make decisions about implementing a
software development practice because we do not
have evidence linking practice efficacy to specific
project context.

2. Accumulating such evidence requires a suitable
abstraction for context for situated software prac-
tices.

3. Such an abstraction is crucial if we are to progress
with supporting organisational decision-making.

4. There are many terms used to describe context
that are unsuitable for understanding situated soft-
ware practices.

5. A consideration of these terms will benefit re-
searchers by supporting discussion and thus
deeper understanding of context for situated soft-
ware practices.

2 INTRODUCTION

The architects and proponents of software processes
and methodologies have lagged behind industry in

understanding that, rather than being implemented
as prescribed, methodologies are inevitably adapted
for use in specific project environments (Avison and
Pries-Heje, 2008; Kuhrmann and Münch, 2019; Mac-
Cormack et al., 2012; Müller et al., 2009; Petersen
and Wohlin, 2009a; de Azevedo Santos et al., 2011;
Turner et al., 2010). Adaptation is often at the project
level and generally involves tailoring of specific prac-
tices based on the prior experience of project team
members. The inference is that investigating adap-
tation and tailoring at the level of the process or
methodology is probably not helpful and attention is
better focused at the level of the practice.

One result of the persistence of the prescriptive ap-
proach we have witnessed over the years is that the is-
sue of context has been either ignored or treated some-
what informally. For example, the term does not ap-
pear in the IEEE Standard Glossary of Software Engi-
neering Terminology (Institute of Electrical and Elec-
tronic Engineers., 1990) and, as far as we are aware,
context is not represented in the Software Engineer-
ing Body of Knowledge (SWEBOK). The lack of in-
clusion of quality terms in the Standards is also re-
ported by an ITiCSE Working Group (Börstler et al.,
2018). The relationship between process and context
has only recently become popular as a focus of serious
investigation in mainstream research (Klünder et al.,
2020).

340
Kirk, D.
Software Development Context: Critiquing Often Used Terms.
DOI: 10.5220/0010469903400347
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 340-347
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



As highlighted in Section 1, we believe a deeper
understanding of context is crucial if we are to sup-
port researchers investigating situated software prac-
tices with the longer term aim of advising practition-
ers. Our earlier work on this topic resulted in the
creation and refinement of a dimensional model for
context (Kirk and MacDonell, 2018). As the num-
ber and possible combinations of contextual factors is
enormous, our approach was to abstract the problem
space as a set of dimensions onto which each factor
might be mapped. The resulting model is now in the
‘evaluate-and-refine’ stage of development (see Sec-
tion 4).

During model creation, we, as expected. encoun-
tered many terms describing contextual factors. How-
ever, when considering each term with respect to how
it might be applied in the case of a specific situ-
ated software practice, we realised that many of the
commonly stated terms were unhelpful or irrelevant,
In some cases, the factor described a high level no-
tion that might certainly affect decision-making about
project strategy, but was not directly applicable to a
specific implementation instance of a practice. For
example, the factor ‘going global’ might result in a
decision to establish off-shore teams. This would cer-
tainly affect practice selection, but in an indirect way.
We categorised these as strategic factors. In other
cases, the meaning of the term was unclear. There
were two types of unclear terms. Some were vague
in meaning. For example, the term ‘off shore de-
velopment’ does not help us understand whether or
not a practice might be useful, because we do not
know which teams are offshore, the degree of time
difference or whether political constraints apply. As
such factors can be broken down into more basic el-
ements, we categorised them as secondary. Other
terms were ambiguous in meaning. For example, ‘un-
certain requirements’ might mean the client doesn’t
really know what (s)he wants, or might mean the com-
munication between client and developers is problem-
atic. Each meaning would indicate different practices.

In this paper, we collect the unhelpful terms ex-
posed during earlier investigations, informally cate-
gorise similar terms and present these as a catalogue
of common terms. The objective is to provide a
deeper clarity in the area of situated software context
and to prove a starting point for discussion by other
researchers in this area.

In Section 3, we overview other work on estab-
lishing software context. In Section 4, we present
the model evolved from earlier investigations and
briefly discuss the model elements. In Section 5, we
present and discuss the terms that represent strate-
gic, vague and ambiguous ideas and provide rationale

and counter-examples In Section 6, we summarise the
contribution.

3 RELATED WORK

There have been many efforts to relate Software En-
gineering (SE) outcomes to specific key factors. We
overview a selection here.

Avison and Pries-Heje aimed to support selec-
tion of a suitable methodology that is project-specific
(Avison and Pries-Heje, 2008). For a given project,
the authors plotted position along each of eight di-
mensions on a radar graph and inferred an appropri-
ate methodology from the shape of the graph. We see
two limitations. First, the abstraction is based on a
specific organisation, resulting in missing contexts,
for example, temporal distance. Second, it is based
at the level of the project and so is inapplicable to,
for example, a ‘customer-driven’ environment, where
the on-going relationship between development group
and customer becomes key (Dingsøyr and Lassenius,
2016; Munezero et al., 2017; Stuckenberg and Heinzl,
2010).

Clarke and O’Connor propose a reference frame-
work for situational factors affecting software devel-
opment (Clarke and O’Connor, 2012). The frame-
work includes eight classifications: Personnel, Re-
quirements, Application, Technology, Organisation,
Operation, Management and Business, further di-
vided into 44 factors. Our critique of this approach
is that the meanings assigned to sub-factors do not
represent a consistent set with respect to practice suit-
ability. For example, the factor ‘Cohesion’ includes
“team members who have not worked for you”, “abil-
ity to work with uncertain objectives” and “team geo-
graphically distant”, each of which might indicate dif-
ferent kinds of practice. The framework may indeed
provide a comprehensive list of factors. However, the
approach remains discrete in nature and is unsuitable
for classifying factors in a theoretical way, as the cat-
egories are semantically inconsistent and there are no
clear rules on which to base abstraction.

Petersen and Wohlin provide a checklist for repre-
senting context for the purpose of aggregating studies
in industrial settings (Petersen and Wohlin, 2009b).
The facets of the structure include Product, Pro-
cesses, Practices, People, Organisation and Market.
The facets and context elements are presented as a
given, without justification. While likely useful, our
earlier critique exposed issues of clarity and com-
pleteness with the checklist. For example, the term
‘Language’ is ambiguous and could mean ‘the lan-
guage the product is coded in affects developer effi-

Software Development Context: Critiquing Often Used Terms

341



cacy’ or ‘there is an external constraint on the lan-
guage to be used for coding’. In the ‘People’ cate-
gory, team member experience is included but expe-
rience is only one of the aspects that might determine
efficacy. For example, terms relating to team member
motivation and empowerment are missing (Kirk and
MacDonell, 2018).

Klünder et al. apply a statistical approach to
investigate context for hybrid development methods
(Klünder et al., 2020). Data for the study was sourced
from a comprehensive questionnaire in which a set
of contexts was included for participant selection.
The authors created clusters of practices that corre-
lated with common contexts. They found that method
(practice) selection was influenced by only a few fac-
tors, for example, target application domain. As the
contexts were provided by the authors, the study does
not represent an exploration of context.

4 MODEL EVOLUTION

In this Section, we overview our earlier research into
context for software development and present the re-
sulting research framework. The study is reported
fully elsewhere (Kirk and MacDonell, 2018)

Although there exist several proposed frameworks
for context, we rejected these for two reasons. First,
none emphasises the properties that define category
membership and so categorisations are inconsistent
from a meaning perspective (see Section 3). Sec-
ond, we were concerned that the result would not
be sufficiently general given the fast-changing na-
ture of software development. For example, newer
paradigms such as software-as-a-service (Stucken-
berg and Heinzl, 2010) and continuous value deliv-
ery (Dingsøyr and Lassenius, 2016) have raised the
need to rethink software process. We believed a more
conceptual approach would result in a more compre-
hensive model. This perspective is in keeping with
the exploratory process where the researcher begins
with a “preliminary notion” of the object of study.
During the study the “provisional concepts ... grad-
ually gain precision” until a suitable conceptualisa-
tion is achieved (Routio, 2007). Routio suggests that
the journey may involve some “creative innovation”
(Routio, 2007). For this research, we adopted a mixed
method, sequential exploratory paradigm (Creswell,
2014), appying a combination of approaches to bet-
ter understand the problem space (Easterbrook et al.,
2008).

We scoped our research to a software initiative
which we define as “any endeavour that involves
defining, creating, delivering, maintaining or support-

ing software intensive products or services”. In Ta-
ble 1, we overview the activities carried out during
the evolution of our proposed framework. The ini-
tial concept was based on existing ideas (Dybå et al.,
2012; Orlikowski, 2002; Zachman, 2009). The sec-
ond step involved a small pilot where we categorised
into the structure contextual factors named in three
software engineering literature studies. We wanted
to test that our conceptualisation represented “a start-
ing point (e.g. a framework) that identifies aspects
of a topic” (Stol and Fitzgerald, 2015). This step
resulted in two main findings (Kirk and MacDonell,
2018). First, we found huge issues with terminology,
a problem more recently addressed by Clarke et al.,
who suggest that the “proliferation of language and
term usage” warrants the establishment of an ontolog-
ical model for software process terminology (Clarke
et al., 2016). This is a position we agree with and
have explored in relation to some software process
constructs (Kirk and MacDonell, 2016). Second, we
realised that named terms related to different kinds of
context i.e. had different meanings. This was a cru-
cial discovery as it led to the exposure of three kinds
of term that cannot be applied as-is when discussing
context in relation to situated practices. These cate-
gories are the topic of this paper, and we discuss in
Section 5. The result was an extension of the frame-
work to include these categories.

Table 1: Steps in model evolution.

Activity Source
Initial concept Prior work
Pilot categorisation Literature studies
Extend framework Results of pilot
Literature categorisation Literature studies
Small evaluation Industry projects

The pilot was followed by a more extensive ex-
amination of the literature. From each of the included
documents, we extracted into a dedicated document
words or terms that could be viewed as stating or de-
scribing a contextual factor. As in the pilot, our strat-
egy was to be as comprehensive as possible in our
identification of contextual factors. This meant that
we wanted to expose factors that may not be typically
considered as context. For example, the software-as-
a-service paradigm has revealed the need for different
kinds of practice, but this is not normally viewed as
a contextual factor. We thus chose to include studies
that contain any thoughts or description about what
might affect practice efficacy. We did not evaluate
the studies in which the elements were mentioned
for quality. We also did not ‘tidy up’ the found el-
ements by making value judgements about whether

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

342



two elements had the same meaning. We felt that
such evaluations would effectively remove some of
the nuances of identification and would thus compro-
mise our efforts. The underlying issue here is one
of a lack of common, agreed vocabulary for software
projects. Analysis resulted in a modification of the
base dimensions of the framework. This became the
Working context i.e. the dimensions that include those
terms that can be directly applied as ‘context’ for sit-
uated software practices. To evaluate the framework,
we carried out a small industry trial involving two or-
ganisations.

We overview the framework in Figure 1. In
essence, a Software Initiative is a set of Practices that
take place within an Operational context.

Figure 1: Model for situated software practices.

The explorations described above led us to under-
stand that, in addition to the base dimensions of con-
text (Working context), there were many terms men-
tioned that can not be considered as directly applica-
ble for a consideration of practice efficacy. These are
the terms-of-interest for this paper and are shown in
red and decribed in Section 5. We overview working
context in Tables 2 and 3.

Table 2: Working context dimensions.

People Cultural characteristics affecting
peoples’ ability to perform

Place Peoples’ availability affecting logistics
and communication

Product Characteristics of the product that is
being developed

Process Processes external to the initiative

5 STRATEGIC AND
UNRESOLVED FACTORS

The three categories that we describe in this paper
are shown in Figure 1 as Strategic context and Un-

Table 3: Working context factors.

People Entity Capability
Motivation
Empowerment
Team cohesion

Interface Team cohesion
Place Entity Physical distance

Temporal distance
Availability

Interface Physical distance
Temporal distance
Availability

Product Product type e.g. embedded
Lifecycle stg eg new, mature
Standards eg safety
Requiremts eg clear, complete
Implementns eg consistent

Process Client eg specifcn, delivery
Parent org eg cultural
Legal eg licencing
Financial

resolved factors. Strategic context includes factors
that are stated at a high level and affect practice ef-
ficacy only in an indirect way, as a basis for decisions
about Objectives and/or Operational context. For ex-
ample, a factor such as ‘globalise’ certainly may have
an impact on development, but in an indirect way, for
example, by causing teams to be set up remotely. Un-
resolved factors are the operational factors that not
sufficiently detailed for direct use. They include Sec-
ondary factors (factors that can be broken down to
more basic elements) and Ambiguous factors (fac-
tors with multiple possible meanings). For example,
‘Company size’ is often cited as a contextual factor,
but when a specific practice within a specific con-
text is considered, the relevant factors relate to the
distribution of teams and organsational constraints on
process. ‘Company size’ is thus categorised as Sec-
ondary i.e. we need to know more detail. Another
commonly cited factor is ‘User participation’, but this
may mean, for example, the user helped in require-
ments definition, is available throughout the project
or carried out beta testing. Each of these meaning has
different repercussions for different practices and so
the term is Ambiguous i.e. we need to know which
meaning is intended.

In Table 4, we catalogue these factors. As the
number of terms found during our study was ex-
tremely large, we have grouped them into a smaller
number of umbrella concepts. For each concept, we
show its categorisation as Strategic, Secondary or
Ambiguous, some examples of the terms found, and
a short rationale for our viewing as not directly ap-

Software Development Context: Critiquing Often Used Terms

343



plicable when considering practice effectiveness. The
terms in bold font in the rationales map back to the
model described in in Figure 1 and Tables 2 and 3.
For example, the term ‘Proj. structure’ is an um-
brella term for the many terms we found that describe
structure, for example, ‘globally distributed project’
and ‘decentralised approach’. We classify as sec-
ondary and provide our reasons for this classification
i.e. in order to apply this structure to understand a spe-
cific software practice, we need specifics about which
teams are where and any stakeholder constraints. For
example, for a requirements elicitation practice, we
would need to know if the analysts and customers in
different locations with cultural differences, and any
customer constraints on availability for discussions.

The catalogue includes a representative selection
only, with the objective of exposing the problem and
detailing the kinds of terms found.

As a consequence of the nature of the catalogue
entries i.e. many terms are similar and terms are often
used in the literature in different ways, each may have
multiple aspects i.e. a term may appear as represent-
ing more than one category. This is a consequence
of the lack of clarity of meaning discussed above. We
emphasise that the entries in the catalogue are not def-
initions, but rather serve to illustrate and raise aware-
ness of the kinds of term found in the literature that
claim to be contextual factors for software process,
but which cannot be used as-is when considering sit-
uated software practices.

5.1 Illustrative Examples

5.1.1 Strategic

These factors often relate to organisational context
that manifests as an organisaional goal.

The organisational goal to go global might result
in a decision to establish teams in the target countries
i.e. Operational context is affected.

The organisational goal to gain competitive lever-
age might result in a decision to establish product
quality as the key objective, to hire design experts,
to upskill staff to increase application area expertise,
or to overhaul development processes with a view
to shortening delivery times. Objectives and Oper-
ational context may be affected.

5.1.2 Secondary

The term large company does not inform us about
what this means for the project. A large traditional
company might have a) a small project to trial agile
principles, b) a small number of large projects with
teams in different places, c) a mix of large and small

projects with variations on how teams are constituted.
At the operational level, we need to know how the
teams are made up (e.g. cross-functional), b) where
they are located (spacial and temporal distance) and
c) whether the company places any constraints on the
project, for example, the need to adhere to company
processes.

The term product domain - health does not inform
us of the kind of product or any expectations and con-
straints from the client base. For example, software
to support patient administration will likely have dif-
ferent product quality expectations than software that
will be embedded in a machine to deliver radiation
treatment. In addition, the former may have many
users with expectations of regular updates whereas
the latter may have few users with little desire for up-
grades. Each of these aspects must be understood in
greater detail.

5.1.3 Ambiguous

The term uncertain requirements might mean any of
a) the customer doesn’t know what they want, b) there
are many customers and they want different things,
c) the communication between customer and team is
problematic, d) the communication among teams is
problematic, e) the customer knows what (s)he wants,
but is waiting for a third party before decisions can be
finalised. Creating a prototype for discussion with the
customer will be counter-productive if the issue is d)
or e).

The term stakeholder involved throughout might
mean a) the single customer is readily available for
consultation about requirements, b) the single cus-
tomer has expertise in software development and is
essentially part of the team, participating in design de-
cisions, c) the company stakeholder provides support,
d) some users are available for testing.

5.2 Discussion

Our long term objective is to provide decision sup-
port to practitioners involved in the creation and evo-
lution of software-intensive products by supplying
evidence based information about the indicated and
contra-indicated contexts for practice efficacy. The
objective for this paper is to raise awareness within
the software engineering community of the problems
involved in pinning down what are relevant contex-
tual factors and by highlighting and cataloguing terms
that are often used but are, in actual fact, unhelpful
when used as-is. Our intent is that researchers inves-
tigating situated software practices will use this cat-
alogue as support when aiming to understand how a
practice works within a specific context. Note that we

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

344



Table 4: Examples of strategic and unresolved factors.

Context factor
/ Type

Examples / Rationale

Business Hyper-competitive, innovative, dynamic, fast-moving, inflation, market maturity
Strategic Influence decisions relating to project Objectives.
Org. goals Desire to expand, gain competitive leverage, go global, new line of business, increase

portfolio, accelerate innovation
Strategic Influence decisions on Objectives, Product type, team locations (Place)
Org. support Num. IT professionals, num employees, govt. support, conflicting political beliefs
Strategic Influence Objectives, staffing, legal and financial decisions
Secondary Depends upon Process constraints from the org. and team locations (Place)
Org. type Software house, IT dept., wholly owned subsidiary, multi-national, product line com-

pany, public/private sector
Secondary Depends upon Process constraints resulting from the org, team locations (Place) and

Product type.
Org. structure Flat, matrix, hierarchical, decentralised
Secondary Depends upon Process constraints from the org. and team locations (Place)
Org. culture Agile, traditional, cooperative, learning culture, maturity, supports quality
Secondary Depends upon Process constraints from the org. and team locations (Place)
Proj. size Project size, project complexity, number of clients
Strategic Influence decisions about how to structure and resource project
Secondary Depends upon team locations (Place)
Ambiguous Many stakeholders? the product is large? new technologies are being used?
Proj. structure Globally distributed, geographically dispersed teams, decentralised, offshore
Secondary Depends upon Process constraints from the stakeholders. and team locations (People,

Place)
Proj. stability Technological progress, market change rate, dynamism, uncertainty
Strategic Influence Objectives, Product type
Ambiguous Is the instability due to fast moving technlogy? unproven teachnologies? lack of

experienced staff?
Proj. defn Clarity of proposal, requirements stability, conflicting requirements
Ambiguous Is the issue due to stakeholders with different viewpoints? client unsure about what is

wanted? technology changing?
Proj. mgmnt Style, well balanced staffing, PM capabiliy, informal communication, agile
Secondary Depends upon Process constraints from the PM
Ambiguous stakeholders with different viewpoints? unsure client? technology changing?
Proj. strategies Communication mechanism, design approach, work contracted out, on-the-fly team,

OS project
Secondary Depends upon Process constraints
Stakeholderst User involvement, client involved throughout, participate in design, capability
Secondary Depends upon Client availability and capability, the nature of participation and Pro-

cess constraints
Ambiguous Client available throughout for requirements consultation? users available at specific

times for testing?
Clients OS developers, system administrators, individuals, inhouse, early adopter charlities
Strategic Influence decisions about Objectives, and team locations
Secondary Depends upon Process constraints from client base and team locations (Place)
Product domain Medical health, education, insurance, research, corporate, telecommunications
Secondary Depends upon Product type and Process constraints from client base

do not view the catalogue as a taxonomy. The kinds
of term included are inherently lacking in strict def-
inition and cannot be used for the purpose of formal
categorisation. The catalogue is an informal listing of

problematic terms aimed at raising awareness and en-
gendering discussion and understanding. We believe
this represents an important contribution to evidence
gathering.

Software Development Context: Critiquing Often Used Terms

345



A major limitation of the catalogue as presented
is, of course, a lack of formal evaluation of its con-
tents. Rather, we have made a case based on argu-
ment and illustrative example. However, the cata-
logue is part of a larger model that is currently sub-
ject to refinement as part of an accepted process for
developing models, i.e. where an initial model is cre-
ated based in a pragmatic way and then undergoes
ongoing evaluation and refinement until stabilisation
occurs (Routio, 2007). We are currently implement-
ing an industry-focused project to deepen our under-
standing of software development context and would
expect both framework and catalogue to be modified
and/or extended according to findings.

6 SUMMARY

Software developers do not implement software pro-
cesses as-is, but rather adapt these according to spe-
cific project circumstances. This means we must un-
derstand the relationships between specific practices
and contextual factors. Earlier investigations revealed
that a large number of contextual factors claimed as
being relevant for tailoring are unhelpful in that the
terms applied cannot be used as-is, but must be under-
stood more deeply. Some terms represent high level
factors that affect decisions about operational strat-
egy and objectives but only indirectly affect practice
efficacy at the project level. Others are vague in that
they can be split into several more basic factors or
are ambiguous in meaning. For example, the use of
vague terminology in the software engineering liter-
ature has been observed in the area of Global Soft-
ware Engineering (GSE), where a lack of definition
of terms such as ‘outsourcing’ and ‘offshoring’ causes
confusion in meaning which results in an “inability to
judge the applicability and thus transferability of the
research into practice” (S̆mite et al., 2014).

In this paper, we have catalogued an example set
of these unhelpful terms and suggested some reasons
for their requiring further attention before use. The
main contribution is to expose the plethora of unhelp-
ful terms commonly stated as ‘contextual factors’.
The objective is to support discussion by providing
an illustrative set of terms that we suggest cannot be
directly applied for understanding situated software
practices. We hope the outcome will be increased
clarity. This study is part of a set of studies in which
we will evaluate and refine the model presented in
Section 4. We would expect the catalogue presented
in this paper will be modified and/or extended as new
terms and understandings arise.

REFERENCES

Avison, D. and Pries-Heje, J. (2008). Flexible informa-
tion systems development: Designing an appropriate
methodology for different situations. In Filipe, J.,
Cordeiro, J., and Cardoso, J., editors, Enterprise infor-
mation systems : 9th International Conference, ICEIS
2007, pages 212–224, Berlin, Heidelberg. Springer.

Börstler, J., Störrle, H., Toll, D., van Assema, J., Duran, R.,
Hooshangi, S., Jeuring, J., Keuning, H., Kleiner, C.,
and MacKellar, B. (2018). ”i know it when i see it”
perceptions of code quality: Iticse ’17 working group
report. In Proceedings of the 2017 ITiCSE Conference
on Working Group Reports, ITiCSE-WGR ’17, page
70?85, New York, NY, USA. Association for Com-
puting Machinery.

Clarke, P., Mesquida, A.-L., Ekert, D., Ekstrom, J., Gornos-
taja, T., Jovanovic, M., Johansen, J., Mas, A., Mess-
narz, R., Villar, B. N., O’Connor, A., O’Connor, R. V.,
Reiner, M., Sauberer, G., Schmitz, K.-D., and Yilmaz,
M. (2016). An Investigation of Software Development
Process Terminology. volume 609 of Communications
in Computer and Information Science (CCIS), pages
351–361. Springer International Publishing, Switzer-
land.

Clarke, P. and O’Connor, R. V. (2012). The situational fac-
tors that affect the software development process: To-
wards a comprehensive reference framework. Infor-
mation and Software Technology, 54:433–447.

Creswell, J. W. (2014). The Selection of a Research Ap-
proach, pages 31–55. Sage Publications Inc.

de Azevedo Santos, M., de Souza Bermejo, P. H.,
de Oliveira, M. S., and Tonelli, A. O. (2011). Ag-
ile practices: An assessment of perception of value of
professionals on the quality criteria in performance of
projects. Journal of Software Engineering and Appli-
cations, 4:700–709.

Dingsøyr, T. and Lassenius, C. (2016). Emerging themes in
agile software development: Introduction to the spe-
cial section on continuous value delivery. Information
and Software Technology, 77:56–60.

Dybå, T., Sjøberg, D. I., and Cruzes, D. S. (2012). What
Works for Whom, Where, When and Why? On the
Role of Context in Empirical Software Engineering.
In Proceedings of the 6th International Symposium
on Empirical Software Engineering and Measurement
(ESEM 2012), pages 19–28, Lund, Sweden.

Easterbrook, S., Singer, J., Storey, M., and Damian, D.
(2008). Selecting empirical methods for software en-
gineering research. In F. Shull and J. Singer and D.I.K
Sjøberg, editor, Guide to Advanced Empirical Soft-
ware Engineering, pages 285–311. Springer Interna-
tional Publishing, London, UK.

Institute of Electrical and Electronic Engineers. (1990). Std
610.12-1990: IEEE Standard Glossary of Software
Engineering Terminology. In IEEE Standards Collec-
tion - Software Engineering. The Institute of Electrical
and Electronic Engineers, Inc., New York, USA.

Kirk, D. and MacDonell, S. G. (2016). An Ontological
Analysis of a Proposed Theory for Software Devel-
opment. In et al., P. L., editor, Software Technologies

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

346



- ICSOFT 2015, volume 586 of Communications in
Computer and Information Science (CCIS), pages 1–
17. Springer International Publishing, Switzerland.

Kirk, D. and MacDonell, S. G. (2018). Evolving a Model
for Software Process Context: An Exploratory Study.
In Proceedings of the 13th International Conference
on Software Technologies (ICSOFT 18), pages 296–
303, Porto, Portugal. SCITEPRESS.

Klünder, J., Karajic, D., Tell, P., Karras, O., Münkel,
C., Münch, J., MacDonell, S. G., Hebig, R., and
Kuhrmann, M. (2020). Determining Context Factors
for Hybrid Development with Trained Models. In IC-
SSP ’20, Proceedings of the 2013 International Con-
ference on Software and System Processes, pages 61–
70. Association for Computing Machinery.

Kuhrmann, M. and Münch, J. (2019). SPI is Dead, isn’t it?
Clear the Stage for Continuous Learning! In ICSSP
’19, Proceedings of the 2019 International Confer-
ence on Software and System Processes, pages 9–13,
Montréal, Canada. Association for Computing Ma-
chinery.

MacCormack, A., Crandall, W., Henderson, P., and
Toft, P. (2012). Do you need a new product-
development strategy? Research Technology Man-
agement, 55(1):34–43.

Müller, S. D., Kræmmergaard, P., and Mathiassen, L.
(2009). Managing Cultural variation in Software Pro-
cess Improvement: A Comparison of Methods for
Subculture Assessment. IEEE Transactions on Engi-
neering Management, 56(4):584–599.

Munezero, M., Yaman, S., Fagerholm, F., Kettunen, P.,
Mäenpää, H., Mäkinen, S., Tiihonene, J., Riungu-
Kalliosaari, L., Tuovinen, A.-P., Oivo, M., Münch, J.,
and Männistö, T. (2017). Continuous Experimentation
Cookbook. DIMECC Oy, Helsinki, Finland.

Orlikowski, W. (2002). Knowing in Practice: Enabling a
Collective Capability in Distributed Organizing. Or-
ganization Science, 13(3):249–273.

Petersen, K. and Wohlin, C. (2009a). A comparison of is-
sues and advantages in agile and incremental develop-
ment between state of the art and an industrial case.
Journal of Systems and Software, 82:1479–1490.

Petersen, K. and Wohlin, C. (2009b). Context in Industrial
Software Engineering Research. In Proceedings of the
Third International Symposium on Empirical Software
Engineering and Measurement (ESEM 2009), pages
401–404, Orlando, Florida. The Institute of Electrical
and Electronic Engineers, Inc.

Routio, P. (2007). Models in the Research Process.
http://www2.uiah.fi/projects/metodi/177.htm.

Stol, K.-J. and Fitzgerald, B. (2015). Theory-oriented soft-
ware engineering. Science of Computer Program-
ming, 101:79–98.

Stuckenberg, S. and Heinzl, A. (2010). The Impact of
the Software-as-a-Service concept on the Underlying
Software and Service Development Processes. In Pro-
ceedings of the 2010 Pacific Asia Conference on Infor-
mation Systems (PACIS 2010), pages 1297–1308.

Turner, R., Ledwith, A., and Kelly, J. (2010). Project
management in small to medium-sized enterprises:

Matching processes to the nature of the firm. Interna-
tional Journal of Project Management, 28:744–755.

S̆mite, D., Wohlin, C., Galviņa, Z., and Priladnicki, R.
(2014). An empirically based terminology and taxon-
omy for global software engineering. Empirical Soft-
ware Engineering, 19:105–153.

Zachman, J. A. (2009). Engineering the Enterprise: The
Zachman Framework for Enterprise Architecture.
http://www.zachmaninternational.com/index.php/the-
zachman-framework.

Software Development Context: Critiquing Often Used Terms

347


