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Abstract: Chaos is a phenomenon observable in many areas. Chaotic behaviours can be visualized in chaotic maps, which 
are deterministic iterative functions and sensitive to initial conditions. As a result, they are wildly adopted in 
random number generator, image encryption, etc. In this paper, two new chaotic maps inspired by information 
entropy are proposed. Through bifurcation diagram and Lyapunov exponent analysis, period doubling 
bifurcations are observed and chaos is suggested. Furthermore, these maps lead to a special case of the Frobenius-
Perron operator in their distributions and are extended to the complex plane to obtain the Julia set. 

1 INTRODUCTION 

Chaos is a nonlinear phenomenon in the physical 
world. First proposed by Lorenz (Lorenz, 1963), a 
chaotic system is a deterministic system sensitive to 
initial conditions: a small change at the beginning can 
magnify into large variations in the long term.   

Chaotic maps are iterative functions in dynamics 
systems that exhibit chaotic behaviour for special 
parameters of the related function. They can be 
classified as discrete or continuous for real or 
complex variables. The Lorenz system, for instance, 
is a continuous chaotic map. 

One-dimensional chaotic maps are discrete 
chaotic maps. They became popular research areas 
since the discovery of the Logistic Map in 1976. May 
discovered that these simple mathematical models 
could lead to complicated dynamics (May, 1976). 
Afterwards, more chaotic maps had been found, 
including classical maps like Tent Map (Devaney, 
1984), Sine Map (Strogatz, 1994), and Doubling Map 
(Hirsch et al., 2013). Chaotic maps are useful in 
random number generator and image encryption due 
to their deterministic properties and high sensitivities 
to initial conditions. 

In recent years, numerous additional chaotic maps 
have been proposed and analysed. Alpar constructed 
a simple fraction in a square map with one variable 
and two parameters, and studied this map through 
stability bifurcation, Lyapunov exponents, and 
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cobweb plot analysis (Alpar, 2014). A novel one-
dimensional sine powered chaotic map was proposed 
and applied in a new image encryption scheme by 
Mansouri et al. (2020). Lambić proposed a new 
discrete chaotic map according to the composition of 
permutations (Lambić, 2015). 

When discrete chaotic maps involve complex 
variables, they can be represented as Julia sets. In 
general, a Julia set is a fractal in the complex plane 
(Peitgen et al., 2004)  defined as the following 
(Falconer, 2014): First, take 𝑓: C → C  as mapping 
function with complex parameter. Usually, 𝑓୩ is the 
k composition 𝑓 ∘ ⋯ ∘ 𝑓 , and 𝑓୩ሺ𝜔ሻ  is the k-th 
iteration 𝑓ሺ𝑓ሺ⋯ ሺ𝑓ሺ𝜔ሻሻ ⋯ ሻሻ. Then, the filled-in Julia 
set becomes: 
 

𝐾ሺ𝑓ሻ = ሼ𝑧 ∈ 𝐶: 𝑓௞ሺ𝑧ሻ ↛ ∞ሽ (1)
 

The Julia set of 𝑓 is the boundary of filled-in Julia 
set, 𝐽ሺ𝑓ሻ ൌ 𝜕𝐾ሺ𝑓ሻ. If every neighbourhood of 𝑧 exists 
different points of 𝜔 and 𝜐, such that 𝑓௞ሺ𝜔ሻ → ∞, and 
𝑓௞ሺ𝜐ሻ ↛ ∞, then 𝑧 belongs to the Julia set 𝐽ሺ𝑓ሻ. 

Julia sets have a number of applications in the arts, 
computer science, and finance. For example, Cui et 
al. extended the Black-Scholes model to find the 
fractal in the model, which was a function for pricing 
European option (Cui et al., 2016).  

In this research, we propose two new iterative 
functions based on the information entropy formula. 
The main goal of this paper is to show that they are 
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chaotic through bifurcation diagram and Lyapunov 
exponent analysis. The rest of the paper is organized 
as follows. The new chaotic maps are proposed in 
Section 2. In Section 3, we verify these two maps are 
chaotic through bifurcation diagram and Lyapunov 
exponent. Their distributions are also analysed due to 
the emergence of an interesting phenomenon. In 
Section 4, we extend the new chaotic maps to 
complex plane to obtain the Julia sets. Finally, 
Section 5 concludes the paper with discussions. 

2 NEW ONE-DIMENSION 
CHAOTIC MAPS 

Information Entropy was introduced by Shannon in 
his famous paper “A Mathematic Theory of 
Communication”, where he estimated the uncertainty 
of random variable (Shannon, 1948): 
 

𝐻 = െ𝐾 ∑ 𝑝௜𝑙𝑜𝑔ሺ𝑝௜ሻ
௡
௜ୀଵ  (2)

 

where H denote information entropy, and K is a 
positive constant. 

Based on the above information entropy formula, 
we propose two new iterative functions (eq.3 and 
eq.4): 
 

𝑥௡ାଵ = െ𝛼𝑥௡𝑙𝑛𝑥௡ (3)
 

where n is the iteration number,  𝛼  the control 
parameter, 𝑥௡ ∈ ሾ0, 1ሿ, and 𝛼 ∈ ሺ0, 𝑒ሿ. And 
 

𝑥௡ାଵ = െ𝛼ሺ𝑥௡𝑙𝑛𝑥௡ ൅ 𝑥௡𝑙𝑛𝑥௡ሻ (4)
 

where, 𝑥௡ denotes (1 െ 𝑥௡),  𝛼 the control parameter, 

𝑥௡ ∈ ሾ0, 1ሿ, and 𝛼 ∈ ሺ0,
ଵ

௟௡ଶ
ሿ. 

3 ANALYSIS 

3.1 Bifurcation Diagram 

Bifurcation diagram is used to analyse the behaviour 
of chaotic map, which plots possible long-term values 
of the dynamic system as a function of one of its 
parameters. Normally, there are period doubling 
bifurcation and “period of 3”. Observance of the 
“period of 3” in the bifurcation diagram implies chaos 
(Li et al., 1975). 

The bifurcation diagrams of eq.3 and eq.4 are 
given in fig.1-2 and fig.3-4, respectively. There are 
clear period doubling bifurcation and chaotic region 
on the right size with a few numbers of periodic 

windows on the left. In the bifurcation diagrams fig.2 
and fig.4, the window of “period of 3” can be clearly 
observed. 

 

Figure 1: Bifurcation diagram of eq.3. 

 

Figure 2: “Period of 3” of eq.3. 

 

Figure 3: Bifurcation diagram of eq.4. 

 

Figure 4: “Period of 3” of eq.4. 

3.2 Lyapunov Exponent 

The Lyapunov exponent 𝜆 is a strong instrument to 
measure a system’s sensitivity to slight changes in the 
initial condition. 𝜆 quantifies the average increment 
of an infinitely small error at the initial point. 𝜆 ൐ 0 
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indicates that the dynamic system is sensitive to the 
initial condition; 𝜆 ൌ 0 means the system is stable; 
and 𝜆 ൏ 0 reflects that the system tends to stabilize.  
If the 𝜆 for a one-dimensional chaotic map is positive, 
chaos is implied (Hao, 1993). 

According to Peitgen et al. (2004), 𝜆  can be 
calculated as follows: 
 

𝜆 = 
ଵ

௡
∑ 𝑙𝑛|

ாೖ

ாೖషభ
|௡

௞ୀଵ  (5)
 

where n is the iteration number and 𝐸௞ the error in the 
k-th iteration. 

Fig.5 and fig.6 show that the largest 𝜆 of these two 
maps are around 0.014, which is relatively small.  
Results suggest that the chaotic maps of information 
entropy are less chaotic compared to other chaotic 
maps. 

 

Figure 5: Lyapunov exponent of eq.3. 

 

Figure 6: Lyapunov exponent of eq.4. 

3.3 Distribution 

Previous results indicate that eq.3 and eq.4 have 
chaotic regions. In the chaotic region, let parameter 𝛼 

equal to 𝑒 in eq.6 and 
ଵ

௟௡ଶ
 in eq.7.   

 

𝑥௡ାଵ = െ𝑒𝑥௡𝑙𝑛𝑥௡ (6)
 

𝑥௡ାଵ = െ
ଵ

௟௡ଶ
ሺ𝑥௡𝑙𝑛𝑥௡ ൅ 𝑥௡𝑙𝑛𝑥௡ሻ (7)

 

Fig.9 and fig.10 show the approximate 
distributions for eq.6 and eq.7. One interesting 
phenomenon is that the distribution of eq.7 is not 
symmetric while the function has an axis of symmetry 
around 𝑥 ൌ 0.5. 

Here we show that the probability density 
function of eq.7 would not be symmetric if it is 
monotone in [0, 0.5]. Let y denote 𝑋௡ାଵ and x denote 
𝑋௡. Let 𝜐ሺ𝑦ሻ denote the probability density function 
of y and 𝜐ሺ𝑥ሻ denote the probability density function 
of x. Based on the Frobenius-Perron function (Peitgen 
et al., 2004): 
 

𝜐ሺ𝑦ሻ = 
జሺ௫ሻ

|௙ᇱሺ௫ሻ|
൅

జሺଵି௫ሻ

|௙ᇱሺଵି௫ሻ|
 (8)

 

Assume that 𝜐ሺ𝑥ሻ ൌ 𝜐ሺ1 െ 𝑥ሻ, then: 
 

𝜐ሺ𝑦ሻ = 
ଶజሺ௫ሻ௟௡ଶ

|௟௡
భషೣ

ೣ
|

 (9)
 

Integrate from 0 to 1: 
 

׬ 𝜐ሺ𝑦ሻ𝑑𝑦 ൌ ׬
ଶజሺ௫ሻ௟௡ଶ

|୪୬
భషೣ

ೣ
|

𝑑𝑥
ଵ

଴
ଵ

଴
=1 (10)

 

׬
జሺ௫ሻ௟௡ଶ

|୪୬
భషೣ

ೣ
|

𝑑𝑥
଴.ହ

଴
 = 

ଵ

ସ
 (11)

 

Using Chebyshev integral inequalities: 
 

න 𝜐ሺ𝑥ሻ
଴.ହ

଴
𝑑𝑥 න

𝑙𝑛2

|ln
1 െ 𝑥

𝑥 |

଴.ହ

଴
𝑑𝑥

൑
1
2

න
𝜐ሺ𝑥ሻ𝑙𝑛2

|ln
1 െ 𝑥

𝑥 |
𝑑𝑥

଴.ହ

଴
 

(12)

 

We show that ׬
୪୬ଶ

|୪୬
భషೣ

ೣ
|

଴.ହ
଴

𝑑𝑥 should be no larger 

than 
ଵ

ସ
 while simple calculation shows it is. There is 

clearly a contradiction. So the probability density 
function would not be symmetric if it is monotone in 
[0, 0.5]. 

 

Figure 7: Distribution of eq.6. 

 

Figure 8: Distribution of eq.7. 

0

0,02

0,04

0,06

0,08

0
,0
1

0
,0
7

0
,1
3

0
,1
9

0
,2
5

0
,3
1

0
,3
7

0
,4
3

0
,4
9

0
,5
5

0
,6
1

0
,6
7

0
,7
3

0
,7
9

0
,8
5

0
,9
1

0
,9
7

0

0,02

0,04

0,06

0,08

0,1

0
,0
1

0
,0
7

0
,1
3

0
,1
9

0
,2
5

0
,3
1

0
,3
7

0
,4
3

0
,4
9

0
,5
5

0
,6
1

0
,6
7

0
,7
3

0
,7
9

0
,8
5

0
,9
1

0
,9
7

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

88



4 JULIA SET 

In this part, we calculate for the Julia set by 
constructing two iterative functions (eq.13 and eq.14) 
on the complex plane. 
 

𝑧௡ାଵ = െ𝑧௡ln𝑧௡ ൅ c (13)
 

𝑧௡ାଵ = െ𝑧௡lnሺz௡ ൅ cሻ (14)
 

Fig.9 and fig.10 display the Julia sets for eq.12 
and eq.13 with different values of c, respectively.  

 
(a) (b) 

 
(c) (d) 

(e) (f) 

Figure 9: Julia set of eq.13. (a) c = 0; (b) c=0.75; (c) c = -
0.15; (d) c=1; (e) c = 0.8+0.6i; (f) c=0.7i. 

(a) (b) 

(c) (d) 

Figure 10: Julia set of eq.14.  (a) c = -0.42i; (b) c=3; (c) c = 
4; (d) c=2+1i. 

 

 

5 CONCLUSIONS AND 
DISCUSSION 

In this study, we propose two new chaotic maps, 
which are inspired by information entropy. Test and 
analysis results suggest that they are chaotic, with 
relatively small positive Lyapunov exponents around 
0.014. In addition, we extend the chaotic maps to the 
complex plane and obtain the Julia sets. 

In the distribution of eq.7, asymmetry seems to 
arise from a symmetry map. This might be caused by 
the computational software, or the map itself. This 
special Frobenius-Perron question remains unknown. 
Future work can attempt to calculate the exact 
distribution to answer this question and apply these 
chaotic maps and Julia sets to new applications in 
image encryption, finance, random number 
generation and other applications.  
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