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Abstract: In this paper, we study the non-metric Online Facility Location with Service Installation Costs problem (OFL-
SIC), an extension of the well-known non-metric Online Facility Location problem. In OFL-SIC, we are
given a set of facilities, a set of services, and a set of requests arriving over time. Each request is composed
of a subset of the services. Facilities are enabled to offer a subset of the services when being opened and an
algorithm has to ensure that each arriving request is connected to a set of open facilities jointly offering the
requested services. Opening a facility incurs an opening cost and for each offered service, there is a service
installation cost that needs to be paid if the algorithm decides to install the service at the facility. Connecting a
request to an open facility incurs a connecting cost, which is equal to the distance between the request and the
facility. The goal is to minimize the total opening, service installation, and connecting costs. We propose the
first online algorithm for non-metric OFL-SIC and show that it is asymptotically optimal under the standard
notion of competitive analysis which is used to evaluate the performance of online algorithms.

1 INTRODUCTION

With the rapid growth in urbanization, the demand for
different services in cities has been significantly in-
creased. It is estimated that by the year 2050, about
66 percent of the world’s population will be living in
an urban environment (World Urbanization Prospects,
2014). With this trend, cities are expected to build fa-
cilities that offer various services not only to the peo-
ple currently residing in the city but also to the people
who are likely to move there in the future. Without ad-
equate information about the future, in regards to how
many people will move, when, and what services they
will request, decisions about where to locate facili-
ties and what services to assign to each facility, with
minimum possible costs, become more challenging.
At the heart of such decisions lie complex facility lo-
cation optimization problems, which we approach in
this paper from an algorithmic perspective. In partic-
ular, we are interested in developing algorithms that
can be proven to be optimal or best possible.

We consider the Facility Location with Ser-
vice Installation Costs problem (FL-SIC), which
is an extension of the well-studied Facility Lo-
cation problem (FL). FL-SIC was introduced by
Shmoys et al. (Shmoys et al., 2004) and is defined as
follows. We are given a set of facilities, a set of ser-
vices, and a set of requests. Each request is composed
of a subset of services. Facilities are enabled to of-
fer a subset of the services when being opened and an

algorithm has to ensure that a request is connected to
a set of open facilities jointly offering the requested
services. Opening a facility incurs an opening cost
and for each offered service, there is a service instal-
lation cost that needs to be paid if the algorithm de-
cides to install the service at the facility. Connecting
a request to an open facility incurs a connecting cost,
which is equal to the distance between the request and
the facility. The goal is to minimize the total opening,
service installation, and connecting costs.

Shmoys et al. (Shmoys et al., 2004) studied the
metric version of FL-SIC in which facilities and re-
quests are assumed to reside in a metric space. A
more general variant of FL-SIC, known as the Multi-
Commodity Facility Location problem (MCFL), has
been studied for both the metric (Poplawski and
Rajaraman, 2011; Ravi and Sinha, 2010; Shmoys
et al., 2004; Svitkina and Tardos, 2010) and non-
metric (Fleischer et al., 2006) versions. In MCFL,
one facility cost is given for opening a facility and
installing its services. In FL-SIC, facility costs are
split, so as we pay a fixed cost for opening a facility
and then for each service installed at the facility, we
pay a service cost associated with it. FL-SIC is also
known as MCFL with linear costs. FL-SIC becomes
a special case of MCFL if we set each facility cost (in
MCFL) to the sum of opening and service installation
costs (in FL-SIC).

In many real-world scenarios, predicting future
events is difficult if not impossible, and yet, we are
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expected to make immediate wise decisions with as
few regrets as possible. From an algorithmic perspec-
tive, these scenarios are modeled as online problems
and are solved with online algorithms. Motivated by
such scenarios, we study the online variant of FL-SIC
which we refer to as the non-metric Online Facil-
ity Location with Service Installation Costs problem
(OFL-SIC), defined as follows.
Definition 1. (Non-metric Online Facility Location
with Service Installation Costs) We are given a set
of facilities, a set of services, and a set of requests
arriving over time. Each request is composed of a
subset of the services. Facilities are enabled to of-
fer a subset of the services when being opened and
an algorithm has to ensure that each arriving request
is connected to a set of open facilities jointly offering
the requested services. All decisions are to be made
irrevocably. Opening a facility incurs an opening cost
and for each offered service, there is a service instal-
lation cost that needs to be paid if the algorithm de-
cides to install the service at the facility. Connecting
a request to an open facility incurs a connecting cost,
which is equal to the distance between the request and
the facility. The goal is to minimize the total opening,
service installation, and connecting costs.
To the best of our knowledge, no online algorithm ex-
ists for this variant.

2 OUR CONTRIBUTION

We propose the first online algorithm for non-metric
OFL-SIC and analyze it under the standard notion
of competitive ratio. An online algorithm is c-
competitive or has competitive ratio c if for all se-
quences of demands, the cost incurred by the algo-
rithm is at most c times the cost incurred by an op-
timal offline algorithm, which knows the entire se-
quence of demands in advance.

Our algorithm is based on randomized rounding,
a technique commonly used in the design and analy-
sis of online algorithms. It has an O(log(nk) logm)-
competitive ratio, where m is the number of facilities,
n is the number of requests, and k is the number of
services. The competitive analysis of our algorithm is
based on ideas taken from the competitive analysis of
Meyerson for the Parking Permit problem (Meyerson,
2005).

We also show that the competitive ratio of our al-
gorithm is asymptotically optimal by giving a lower
bound of Ω(log(nk) logm) on the competitive ratio of
any polynomial-time randomized algorithm for non-
metric OFL-SIC, under the assumption that NP 6⊆
BPP. The latter is the result of two reductions from the

Online Set Cover problem (OSC), which was intro-
duced by Alon et al. (Alon et al., 2009). Korman (Ko-
rman, 2005) gave an Ω(logm logn) lower bound on
the competitive ratio of any polynomial-time random-
ized algorithm for OSC, under the assumption that NP
6⊆ BPP.

Outline. The rest of the paper is structured as fol-
lows. In Section 3, we give an overview of related
works. In Section 4, we present a lower bound on
the competitive ratio of any online polynomial-time
randomized algorithm for non-metric OFL-SIC. In
Section 5, we describe our online algorithm for non-
metric OFL-SIC and give its competitive analysis in
Section 6. We conclude with some open problems in
Section 7.

3 RELATED WORK

In the offline setting, Fleischer et al. (Fleischer et al.,
2006) studied the non-metric Multi-Commodity Fa-
cility Location problem (MCFL) and gave an ap-
proximation ratio logarithmic in the number of re-
quests, facility locations, and services. As for met-
ric MCFL, there were many works, mostly varying
in the facility cost function (Poplawski and Rajara-
man, 2011; Ravi and Sinha, 2010; Shmoys et al.,
2004; Svitkina and Tardos, 2010), including that of
Shmoys et al. (Shmoys et al., 2004) for the Facil-
ity Location with Service Installation Costs problem
(FL-SIC).

In the online setting, only the metric version of
the Online Multi-Commodity Facility Location prob-
lem (OMCFL), the online variant of MCFL, has been
studied, by Castenow et al. (Castenow et al., 2020).
Castenow et al. (Castenow et al., 2020) gave deter-
ministic and randomized online algorithms along with
a lower bound on the competitive ratio of any random-
ized online algorithm for metric OMCFL.

A closely related online problem is the non-metric
Online Facility Location problem (OFL), the online
variant of non-metric FL, due to Alon et al. (Alon
et al., 2006). Non-metric OFL is a special case of
non-metric OFL-SIC in which the number of ser-
vices is 1. Alon et al. (Alon et al., 2006) proposed
a randomized algorithm for non-metric OFL, with
asymptotically optimal O(logm logn)-competitive ra-
tio, where m is the number of facilities and n is
the number of clients. The metric variant of On-
line Facility Location has been intensively studied.
Meyerson (Meyerson, 2001) introduced a random-
ized algorithm with O(logn)-competitive ratio. Fo-
takis (Fotakis, 2003) later proved that the algorithm

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

738



is O( logn
log logn )-competitive and showed that this is the

best possible competitive ratio for any online algo-
rithm. He also gave a deterministic algorithm with the
same competitive ratio. Fotakis (Fotakis, 2007) also
provided a simpler online algorithm with an O(logn)-
competitive ratio.

4 LOWER BOUND

In this section, we give an Ω(log(nk) logm) lower
bound on the competitive ratio of any online
polynomial-time randomized algorithm for non-
metric OFL-SIC, under the assumption that NP 6⊆
BPP.

The lower bound is achieved by two reductions
from the Online Set Cover problem (OSC), intro-
duced by Alon et al. (Alon et al., 2009), and defined
as follows.

Definition 2. (Online Set Cover). We are given a
universe of n elements and m subsets of this universe,
each associated with a cost. Elements are revealed to
the algorithm over time and as soon as one arrives,
the online algorithm needs to make sure that there is
at least one subset purchased that contains the ele-
ment. The goal is to minimize the total cost of subsets
purchased.

Korman (Korman, 2005) gave an Ω(logm logn)
lower bound on the competitive ratio of any
polynomial-time randomized algorithm for OSC,
where m is the number of subsets and n is the number
of elements, under the assumption that NP 6⊆ BPP.

Our lower bound is based on the following two
observations.

Observation 1. No randomized online polynomial-
time algorithm for the non-metric Online Facility Lo-
cation with Service Installation Costs problem (OFL-
SIC) can achieve a competitive ratio better than
Ω(logm logn), under the assumption that NP 6⊆ BPP,
where m is the number of facilities and n is the num-
ber of requests.

Proof. Let I be an instance of Online Set Cover. We
transform I into an instance I′ of non-metric OFL-SIC
as follows. We set the number of services to 1. We
represent each subset of I as a facility offering the
service and set its opening cost to the corresponding
subset cost. Service installation costs are all set to 0.
We represent each element as a request with the (one)
service. For each request, we let the distance from
the request to the facility be 0 if the corresponding el-
ement belongs to the subset, and infinity otherwise.
Now, every solution to I′ corresponds to a solution to

I of the same cost, and vice versa. Due to the lower
bound of Korman (Korman, 2005), we can imply the
result, where n is the number of requests (elements)
and m is the number of facilities (subsets).

Observation 2. No randomized polynomial-time on-
line algorithm for the non-metric Online Facility Lo-
cation with Service Installation Costs problem (OFL-
SIC) can achieve a competitive ratio better than
Ω(logm logk), under the assumption that NP 6⊆ BPP,
where m is the number of facilities and k is the num-
ber of services.

Proof. Let I be an instance of Online Set Cover. We
transform I into an instance I′ of non-metric OFL-SIC
as follows. Each element is represented as a service.
Each subset is represented as a facility with opening
cost equal to the corresponding subset cost and offer-
ing the services of the corresponding elements. Ser-
vice installation costs are all set to 0. In each step,
a request with the (one) service arrives. In the I′ in-
stance, the algorithm is allowed to open any facility
and install at it any subset of the services. The OSC
instance I need not include all such combinations and
so for each facility with a subset of services that is
not yet created, we create it and set its opening cost to
infinity. Now, every solution to I′ corresponds to a so-
lution to I of the same cost, and vice versa. Due to the
lower bound of Korman (Korman, 2005), we can im-
ply the result, where k is the number of services (ele-
ments) and m is the number of facilities (subsets).

By combining the two observations, we conclude
the following.

Theorem 1. (Lower Bound). No online polynomial-
time randomized algorithm for the non-metric On-
line Facility Location with Service Installation Costs
problem (OFL-SIC) can achieve a competitive ratio
better than Ω(log(nk) logm), where m is the number
of facilities, n is the number of requests, and k is the
number of services, under the assumption that NP 6⊆
BPP.

5 ONLINE ALGORITHM

In this section, we present an online randomized al-
gorithm for non-metric OFL-SIC.

We formulate non-metric OFL-SIC as a directed
edge-weighted graph, as follows. We generate a node
for each of the k services, called service nodes. For
each facility, we generate a node, called facility nodes.
We add an edge from each facility node to each ser-
vice node. Each edge from a facility node to a ser-
vice node has weight equal to the corresponding ser-
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vice installation cost. We make a copy of each facil-
ity node, called duplicate facility nodes. Each facil-
ity node will be connected to its duplicate through an
edge of weight equal to the opening cost of the facil-
ity.

Since requests are not given all at once, a request
node will be created as soon as a request arrives. We
add an edge from the request node to each facility du-
plicate node and set its weight to the distance between
the request and the facility (the connecting cost).

Figure 1: Graph formulation of Non-metric OFL-SIC.

Figure 1 gives an example of two requests, three fa-
cilities, and three services. Assume request r arrives
and asks for the services 1 and 3. To serve r, the algo-
rithm needs to find two paths: a path from the request
node r to the service node 1 and another path from the
request node r to the service node 3. It is easy to see
that the edges on these paths represent a feasible so-
lution for r. Let p be a solution path. p would contain
an edge that corresponds to some duplicate facility -
the algorithm will connect the client to that facility
and open the facility, if it is not already open. More-
over, the algorithm will install a service at a facility if
the outgoing edge from the facility node to the service
node is on p and if it is not already installed.

Remark. It is worth noting that the solution paths
can be found by running any online algorithm for
the well-known Online Steiner Forest problem (OSF).
In OSF, we are given an edge-weighted graph and
pairs of nodes arriving over time. As soon as a
pair arrives, the online algorithm needs to ensure that
there is at least one path, whose edges are purchased
by the algorithm, that connects the pair. The goal
is to minimize the total weights of the edges pur-
chased. The best competitive ratio achievable for OSF
is O(log2 n), where n is the number of nodes in the
graph. There exists an online algorithm in the liter-
ature with this ratio, due to Awerbuch et al. (Awer-
buch et al., 2004). Nevertheless, this algorithm will
not imply a desirable asymptotically optimal compet-
itive ratio for our problem, without further analysis.

This is because the number of nodes in our formu-
lated graph can get as many as n+ k+mk, implying
a competitive ratio of O(log2(km+n)) for non-metric
OFL-SIC. Hence, a different approach is required.

Random Variable α. Before any request arrives,
the algorithm chooses α to be the minimum among
2dlog(kn)e independently chosen random variables,
distributed uniformly in the interval [0,1].

The algorithm finds the solution paths as follows.
It initially knows k, the number of services, and n, the
number of requests. Let G be the formulated graph,
growing over time as new requests arrive. We assign
to each edge e in G of weight we, a fraction fe. We
set the values of all fractions to 0 initially. The online
algorithm will increase these fractions throughout its
execution. We define the max-flow from node u to
node v in G to be the smallest total fractions of edges
which if removed would disconnect u from v. These
edges form a min-cut from u to v in G.

Whenever a new request arrives, a request node
and its outgoing edges are added to G. A fraction set
initially to 0 is assigned to each new edge. The weight
of a path is the sum of the weights of its edges.

For each service requested, the algorithm executes
the following. Let r be the request node and s the
service node requested.

Online Algorithm for Non-metric OFL-SIC.
1. While the max-flow from the request node r to the

service node s in G is less than 1, construct a min-
cut K from r to s in G; for each edge e ∈ K, make
the following increment:

fe = fe · (1+1/we)+
1

|K| ·we

2. Purchase each edge e with fe > α.

3. If there is no purchased path from r to s in G, find
a minimum-weight such path and purchase it.

Notice that the last step guarantees that the algorithm
achieves a feasible solution.

6 COMPETITIVE ANALYSIS

In this section, we show that our algorithm has an
O(log(nk) logm)-competitive ratio, where m is the
number of facilities, n is the number of requests, and
k is the number of services.

The algorithm makes purchases in Step 2 and Step
3. We will measure the cost of the algorithm in each
step separately. Note that the cost of the algorithm is
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equivalent to the total weight of the edges purchased
in the formulated graph.

Algorithm’s Cost in Step 2. Let E ′ be the set of
the edges purchased in the second step of the algo-
rithm and let CostE ′ be the expected cost. Recall that
an edge is purchased if its fraction exceeds α. We fix
any i : 1 ≤ i ≤ 2dlog(kn+1)e and an edge e. We de-
note by Xe,i the indicator variable of the event that e is
purchased by the algorithm. Let we be the weight of
edge e and fe its fraction. We have that:

CostE ′ = ∑
e∈E ′

2dlog(kn+1)e

∑
i=1

we ·Exp [Xe,i] = 2dlog(kn+1)e ∑
e∈E ′

we fe

(1)

Next, we give an upper bound for ∑e∈E ′ we fe in terms
of the optimal offline solution. Let E be the set of all
edges in the graph. ∑e∈E we fe (i.e., with all edges in-
cluded) is the cost of the so-called fractional solution
of the algorithm. In a fractional solution, the algo-
rithm is allowed, for each edge, to buy a fraction of
it and pay the corresponding fraction of its cost. The
cost of a fractional solution is called the fractional
cost of the algorithm. When fractions are either 0
or 1, then the solution is called an integral solution.
The algorithm’s goal is to ultimately find a feasible
integral solution. To achieve that, the algorithm pro-
duces, in the first step, a fractional solution, which is
rounded into an integral solution in the second step.
The integral solution in the second step is not neces-
sarily feasible. In the third step, the algorithm ensures
that the final integral solution is feasible.

Now, we compare the cost of the fractional solu-
tion to the cost of the optimal integral solution. The
following lemma will be used in the comparison.

Lemma 1. Every min-cut constructed in Step 1 con-
tains at least one edge of the optimal integral solution.

Proof. Assume there is no such edge. Given a pair
that needs to be connected. The optimal solution
needs to connect this pair through at least one path,
p. By the definition of a cut, every cut should contain
at least one of the edges of p.

We call it a min-cut construction every time the al-
gorithm constructs a min-cut. Observe that, each op-
timal edge, i.e., an edge in the optimal solution, can
appear in zero, or more min-cut constructions, which
do not have to be consecutive. We look into all the
optimal edges that appeared in at least one min-cut
construction. We calculate the costs paid by the frac-
tional solution during all the min-cut constructions in
which each of these edges appeared. By doing so, we
would have measured the total cost of the fractional

solution. This is true because an increment is only
made after a min-cut construction and due to Lemma
1.

Let e be an edge that appeared in more than one
min-cut construction. The optimal algorithm pays we.
We calculate now what the online algorithm pays dur-
ing the min-cut constructions in which e appeared.

Lemma 2. Each increment increases the fractional
cost by at most 2.

Fix any min-cut K constructed. Each edge e in K in-
creases the cost by we ·

(
fe

we
+ 1
|K|·we

)
. Before an in-

crement, the max-flow is less than 1 (or ∑e∈K fe < 1).
Hence, adding up over all |K| edges, we get for each
increment a total cost of:

∑
e∈K

we ·
(

fe

we
+

1
|K| ·we

)
< 2

The fraction fe of e will become 1 after a finite num-
ber of min-cut constructions and this number can be
upper bounded as follows. Based on the increment
equation of the algorithm, after O(we log |K|) min-cut
constructions, fe becomes 1 and e cannot appear in
any further min-cut construction. Due to Lemma 2
and since each min-cut construction is accompanied
with only one increment, we imply that the algorithm
pays at most O(we log |K|) during the min-cut con-
structions in which e appeared. This is O(log |K|)
times what the optimal has paid. Moreover, we have
that |K| is at most m, which is the number of paths be-
tween any pair, each containing one facility node. The
same analysis holds for every optimal edge appearing
in at least one min-cut construction. By summing up
over all these edges, we achieve an upper bound for
the fractional cost of the algorithm:

∑
e∈E

we fe ≤ O(logm ·Opt) (2)

Since ∑e∈E ′ we fe ≤ ∑e∈E we fe and from Equations 1
and 2, we conclude that:

CostE ′ ≤ O(log(nk) logm ·Opt) (3)

Algorithm’s Cost in Step 3. Now, we measure the
cost of the algorithm in the third step. Let CostE ′′ be
the expected cost of this step.

We fix a pair (request node r, service node s) and
1≤ i≤ 2dlog(kn+1)e accompanied with the random
variable α chosen before the arrival of requests. We
record the time at which the algorithm has already
completed the second step. We fix any min-cut K
from r to s at this point. The probability that the al-
gorithm did not purchase a path from r to s in the
second step is equal to the probability that it did not
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purchase any of the edges in K. To see why this holds,
we let e be an edge in K. All the edges in every path
containing e must have a fraction equal to at least the
fraction of e (Max flow - Min Cut theorem). So if e
is purchased, i.e., e > α, then all the other edges on
the paths containing e are purchased too, since they
have a higher fraction than e. Hence, the probability
is equal to:

∏
e∈K

(1− fe)≤ e−∑e∈K fe ≤ 1/e

The second inequality holds since the algorithm en-
sures that ∑e∈K fe ≥ 1 at this point. Thereby, the
expected cost of purchasing a path in the third step,
for all 1 ≤ i ≤ 2dlog(kn+1)e, would be less than
1/(kn)2 ·Opt, where the optimal solution cost Opt
can be used as an upper bound for the minimum-
weight path constructed by the algorithm in the third
step.

The total number of pairs the algorithm receives
is at most kn, since each of the n requests can ask for
at most k services. Summing up over all these pairs,
we conclude the expected cost of the algorithm in the
third step:

CostE ′′ ≤ 1/(kn) ·Opt (4)

By combining Equations 3 and 4, we conclude the
following.

Theorem 2. (Upper Bound). There is an online ran-
domized algorithm for the non-metric Online Facility
Location with Service Installation Costs (OFL-SIC),
that has an asymptotically optimal competitive ratio
of O(log(nk) logm), where m is the number of facili-
ties, n is the number of requests, and k is the number
of services.

7 CONCLUDING REMARKS &
FUTURE WORK

In this paper, we have studied the non-metric On-
line Facility Location with Service Installation Costs
problem (OFL-SIC), which could also be called the
non-metric Online Multi-Commodity Facility Loca-
tion with linear costs problem (non-metric OMCFL
with linear costs). A next step would be to consider
the non-metric Online Multi-Commodity Facility Lo-
cation problem (OMCFL) for other facility cost func-
tions, such as the cost functions defined for the metric
case in (Castenow et al., 2020). It seems like other
techniques than the ones used in this paper would be
needed to achieve results for these cost functions.

Moreover, unlike in the offline setting, for the gen-
eral facility cost function, there are no online algo-
rithms in the literature for both the metric and non-
metric cases. So there is a lot to investigate in this
direction.

Another direction is to assume facilities with ca-
pacities, for both the metric and non-metric variants.
This would reflect a more natural real-world facil-
ity location problem, in which the number of clients
served by each facility is limited by the resources
available at the facility (Cygan et al., 2018).
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