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Abstract: The lambda architecture is widely used to implement streaming data processing systems. These systems create 
batch views (subsets of data) at the Serving Layer to speed up queries.  This operation takes significant time. 
The article proposes a novel approach to lambda architecture implementation. A new method for Approximate 
Query Processing in a system with Lambda Architecture (LA-AQP) significantly reduces aggregate (sum, 
count, avg) calculation error.  This is achieved by using a new way of calculating the reading segments 
probabilities.  The developed method is compared with the modern Sapprox method for processing large 
distributed data.  Experiments demonstrate that LA-AQP almost equals Sapprox in terms of volume and time 
characteristics.  The introduced accuracy measures (δ-accuracy and ε-accuracy) are up to two times better 
than Sapprox for total aggregate calculation. Aggregate values can vary greatly from segment to segment.  It 
is shown that in this case the LA-AQP method gives a small error in the total aggregate calculation in contrast 
to Sapprox. 

1 INTRODUCTION 

Real-time large data volume processing is an 
important requirement for modern high-load systems.  
Streaming data processing serves this task. Data 
stream processing applies to various fields: search 
engines, social networks, fraud detection systems, 
trade and financial systems, equipment monitoring 
systems, military and intelligence systems 
(Kleppmann, 2017). 

Lambda architecture enables implementation of 
streaming data processing (Marz et al., 2015).  
Sources (Kiran et al., 2015; Gribaudo et al., 2018)  
provide lambda architecture implementation for data 
processing backend in Amazon EC2.  It provides high 
bandwidth with low network maintenance costs.  The 
lambda architecture enables streaming processing 
implementation in many other areas: heatmap 
tracking (Perrot et al., 2017), query processing (Yang 
et al., 2017), medical surgery predictions 
(Spangenberg et al. 2017), etc.    

                                                                                                 
a  https://orcid.org/0000-0001-6128-9897 
b  https://orcid.org/0000-0001-6421-3353 
c  https://orcid.org/0000-0002-4080-8683 
d  https://orcid.org/0000-0002-7157-4541 

The lambda architecture (see Fig. 1 (Marz et al., 
2015)) has Batch, Speed and Serving Layers. 

 
Figure 1: Lambda Architecture. 

Apache Hadoop-based Data Lake typically 
represent a Batch Processing Layer.  This layer stores 
a dataset master copy.  The Serving Layer generates 
batch representations from the data.  Each batch is a 
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data chunk prepared for fast query processing.  The 
Speed Layer provides real-time data processing, since 
data cannot quickly reach the Serving Layer. 

The described lambda architecture 
implementation has a number of significant 
drawbacks: 

1. Effective implementation of different levels 
may require different databases. This in turn requires 
different development, support and data access 
software tools. Source (Marz et al., 2015) provides an 
example of the Batch Layer implementation based on 
the Hadoop Distributed File System (HDFS), while 
the Serving Layer is based on ElephantDB, and Speed 
Layer uses Cassandra database. 

2. A new request may require a new batch 
representation (data subset).  This will lead to 
searching the large Batch Layer database. 

3. The new data appears at the Serving Layer with 
a delay. This leads to introduction of a cumbersome 
Speed Layer in order to provide prompt access to such 
data (Psaltis, 2017). 

The article proposes a novel approach to building 
systems with lambda architecture. It allows the 
Serving Layer implementation in a form of metadata 
describing data segments of the Batch Layer. The new 
approach provides an approximate query processing 
based on this metadata. 

2 LAMBDA ARCHITECTURE 
WITH SERVING LAYER IN 
METADATA FORM 

The proposed new Lambda Architecture is shown on 
Fig. 2.  

 
Figure 2: New Lambda Architecture. 

First, new data blocks come from a source (e.g. 
Kafka/ Storm) to the changelog. The entries in each 
block are sorted by timestamp, but they are not sorted 
throughout different blocks. 

After a certain period of time, e.g. one second, the 
background process is started.  It sorts the incoming 
block records by timestamp (merge sort). This 
process then adds the sorted record segments to the 
main dataset (Batch Layer). 

The background process analyzes each record 
segment. It extracts the attributes, calculates the 
aggregated values, and stores them as metadata 
(Serving Layer). One line of metadata corresponds to 
one segment of the Batch Layer. The processed 
blocks are removed from the change log (the log is 
compacted), and the background process goes into a 
waiting state.  The new blocks received during the 
execution of the background process will be 
processed in the next period of this process activation. 
Batch level segment records are stored as <key> 
<value>, where "key" is a timestamp and "value" is a 
JSON document. All records of the main data set are 
sorted by key (by analogy with LSM trees based on 
SS tables (Kleppmann, 2017; O’Neil, 1996)). 

Metadata is used to approximate the aggregated 
values (sum, avg, count) of some JSON document 
attributes. As noted, one metadata record corresponds 
to one segment of the Batch Layer. Metadata records 
are stored as <key><value>, where “key” is the 
number of the corresponding segment, “value” is a 
JSON field. 

The search attributes for which the search is 
performed will be denoted as SA. The attributes by 
which the aggregation is performed will be 
designated as AA. The information for each search 
attribute SAi is stored in the metadata record as JSON 
field elements. This item has the following structure: 

<k is the SAi value number> <number of 
records in the g segment with the kth SAi 
value> {<aggregate value by the AAm 
attribute for the kth SAi value in the g 
segment>}m = <Zi

k><Mig
k>{<Aigm

k>}m 

(1)

The values of each SAi search attribute are stored 
in a dictionary, which is common for all segments.  
The dictionary is a hash table located in RAM.  The 
hash table elements have the following form: <SAi 
value> <k - number of SAi value> = < Ci

k> <Zi
k>.  

The dictionary is populated as new values of the 
search attribute appear in the data stream when 
parsing data segments.  The length of a numeric field 
<k - the number of the SAi value> is often much 
shorter than the length of the character field <SAi 
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value>.  Therefore, the size of the metadata record 
will be smaller. 

 The following data is additionally stored in the 
metadata record: 

<g-th segment timestamp> <g-th segment 
number of records> <g segment number of 
search attributes> {<aggregate value by 
attribute AAm for this segment g>}m= 
<Tg><Sg><Qg>{<Agm>}m 

(2)

The Aigmk and Agm aggregate values in (1) and (2) 
accumulate as records are retrieved from the data 
stream. 

The considered lambda architecture organization 
has the following advantages over the classical 
scheme (see Fig. 1): 

1. One database can be used to implement the 
Package and Serving Layer. 

2. There is no need to build batch views at the 
Serving Layer. The Approximate Query Processing is 
fast, and it only requires changing the view which 
means only changing the SELECT query.  Moreover, 
aggregate values computation is usually performed at 
some time interval. Having a timestamp index at the 
Serving Layer allows quick reading of the required 
segments from the main data set. 

3. The Speed Layer is optional. For example, let 
us assume that a background compaction process is 
invoked every second.  If the minimum statistics 
collection interval is one minute, then the Speed 
Layer is not needed. This Layer would be required if 
statistics was collected every second. 

3 RELATED WORK 

Modern clusters provide enormous processing power. 
But querying large-scale datasets remains 
challenging. To solve this problem, approximate 
calculations are used in big data analytics 
environments (Laptev et al., 2012; Agarwal et al., 
2013; Pansare et al., 2011; Goiri et al., 2015; Kandula 
et al., 2016). 

There are various ways of dataset approximate 
query processing (Cormode et al., 2011): data 
sampling, histograms, wavelets. 

Histogram and wavelet application presents the 
following issues: 1) it is difficult to distribute data 
across several nodes and process them in parallel, 2) 
it is very difficult to perform the table join operation. 

Therefore, the most acceptable way of 
Approximate Query Processing is selecting data from 
the general population.  Let us consider some 
methods in this area. 

BlinkDB (Agarwal et al., 2013) generates patterns 
on the most commonly used column sets (QCS) in 
WHERE, GROUP BY, and HAVING clauses. If the 
query does not match the pattern, then the aggregate 
calculation error can be large. But the important thing 
is that it is not possible to generate separate samples 
for all data subsets. 

The data sampling system ApproxHadoop (Goiri 
et al., 2015) works on the assumption that the 
requested datasets are evenly distributed across the 
entire dataset.  Unfortunately, in many real cases, 
dataset subsets are actually spread unevenly across 
the entire dataset partitions. The system suffers from 
inefficient sampling and large variance in the 
computed aggregate value. 

Source (Zhang et al., 2016) proposed a more 
effective method for processing large distributed data 
(Sapprox method) and presented comparison results 
of Approximate Query Processing in Sapprox, 
ApproxHadoop and BlinkDB.  The Sapprox method 
was the most effective.  Let us consider it in more 
detail. 

The Sapprox method uses the following metadata 
storage structures: 

1. List of attributes of the dataset table: 
{<name of the search attribute of the SAi 
of the dataset table> <pointer to the hash 
table with the values of the search attribute 
of the SAi>}i. 
2. Hash table with the search attribute SAi 
values: 
{<k-th value of SAi> <pointer to the table 
of occurrences of the k-th value of SAi>}k. 
3.Table of occurrences of the k-th SAi 
value: 
<k-th value of SAi> {<g - segment 
number> <number of records in the g-th 
segment with k-th value of SAi>}g= 
<Ci

k>{<g><Mig
k>}g. 

4. Table of segment offsets in the HDFS 
file system: {<segment number> 
<segment offset in HDFS (bytes)>} 

(3)

Sapprox allows approximate aggregate value 
calculation (agg - sum, count) in the following 
queries: 

SELECT {agg(AAm) as Am}m 

FROM table 

WHERE SA1=C1
k1 and SA2=C2

k2 and ... 
and SAh=Ch

kh 

(4)
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The algorithm is provided below: 
1. For all i=1..h, g=1 ... N, calculate the 

probability that the record of the g-th segment 
satisfies the condition for the i-th search attribute (SAi 
= Ci

ki): Pig = Mig
ki/S, where Mig

ki is the number of 
records in the g-th segment with the ki-th value of the 
SAi (see (3)), S is the number of records in the 
segment (it is the same for all g), N is the total number 
of segments in the HDFS data array. 

2. For each g=1...N calculate the probability that 
the record of the g-th segment satisfies the condition 
specified after the WHERE keyword (see (4)): 

 1
h

g igiP P== ∏  

3. For each g = 1 ... N calculate the probability 

1/ N
g g jjP Pπ ==  . 

4. Get a sample of 'n' segment numbers using the 
probability distribution function {πg}. 

5. Read these 'n' segments. Find records in each 
segment that satisfy the WHERE clause. Calculate 
the aggregated value τj (j=1..n) for each AAm attribute 
of the found records (see (4)). 

6. Estimate each desired aggregate Am value with 
the formula: 

1

1( ) ( )
n j

j j
n

n
τ

τ
π=

=   (5)

Estimate (5) is unbiased. For a sufficiently large 
‘n’ value (5) has normal distribution (Zukerman, 
2020) (Lyapunov theorem). It was shown in (Liese et 
al., 2008) that the random variable 
t= 1 ( ( ) ) / ( )n n D nτ τ− ⋅ −  has Student’s 

distribution with n-1 degrees of freedom, where τ is 
the mathematical expectation τ(n), i.e. the true value 
of Am, 2

1( ) ( ( ( )) ) /n
j jjD n n nτ π τ== −  is an 

estimate of the sample variance. We derive the 
following formula: 

2
1,

1

1| ( ) | ( ( ))
( 1)

n j
n

j j
n t n

n nα
τ

τ τ τ
π−

=
− <= −

−


, 
(6)

where α is the degree of confidence of inequality 
(6). For n>121 the coefficient tn-1,α practically does 
not depend on ‘n’, and for α=0.9; 0.95; 0.99 it is equal 
to 1.645, respectively; 1,960; 2.576. 

The Sapprox method has several serious 
disadvantages: 

1. The probability distribution {πg} depends only 
on the probabilities {Pg} that the segment records 
satisfy the WHERE condition.  This can lead to a 
large estimation error if the aggregated values of τj 

differ significantly for different segments (see the 
Discussion section). 

2. It is possible to calculate the aggregated 
attribute values of only one table (table joins are not 
supported). The search term includes elementary 
terms with the logical operation 'and'. The query does 
not explicitly support the GROUP BY clause. 

3. When executing a query, it is necessary to read 
and analyze metadata for all N segments that are 
stored in the main data set (indexing by timestamps is 
not supported). 

4. It is necessary to read both metadata and data 
segments even when a search condition is specified 
for only one attribute. 

5. Only HDFS file system is used, which makes it 
difficult to move to other systems for storing the main 
data and metadata. 

6. The record number in different segments must 
be the same (S).  This can result in reading the same 
segment from different nodes. 

7. When adding a new value of the search 
attribute or a new segment it is necessary to modify 
the metadata created earlier (see (3)). 

4 NEW APPROXIMATE QUERY 
PROCESSING METHOD 

Structures (1) and (2) describe metadata of the system 
with the proposed lambda architecture (see Fig. 2). 
These include the aggregated values calculated for 
each search attribute value in the segment (Aigm

k) and 
for the segment as a whole (Agm). They can be 
obtained by processing streaming data entering the 
system. 

A method of Approximate Query Processing in a 
system with Lambda Architecture (LA-AQP) was 
developed. It allows approximately calculation of the 
aggregated values (agg - sum, count, avg) when 
executing queries of the following form: 

SELECT  SAr,{agg(AAm) as Am}m 

FROM array JSON-documents 

WHERE TSR and [Predicate(SA1,SA2, ..., 
SAh)] GROUP BY SAr, 

(7)

TSR defines timestamp search condition (time 
slot, multiple time slots), 

Predicate (SA1, SA2, ..., SAh) includes elementary 
conditions for search attributes {SAi}, logical 
operations AND, OR, NOT, and parentheses. 

The low level Aigm
k and Agm values are known 

(see (1) and (2)).  But the problem is how to use them 
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to quickly estimate the total aggregate Am in 
accordance with query (7).  So the Aigm

k or Agm 
metadata values cannot be simple added because only 
a part of the segment records match the WHERE 
search condition. The challenge is calculating the 
aggregate value that is linked to this part of the 
records. The problem of estimating the number of 
record parts that satisfy the search condition is also 
not trivial.  A probabilistic approach is used to solve 
it. 

The algorithms for query (7) execution are 
provided below: 

Algorithm 1. No predicate. 
1. Read metadata records for TSR using a 

timestamp index. 
2. Check all found metadata records.  Accumulate 

the values Am
rk += Argm

k for each k-th value of the 
search attribute SAr and each aggregated attribute 
AAm (see (1)). SAr is an attribute by which grouping 
is performed (see (7)). 

Algorithm 2. Predicate is present. 
1. For TSR, read metadata records using a 

timestamp index. 
2. For each metadata record found, calculate the 

probability Pg that the segment record satisfies the 
condition specified in the Predicate.  This requires the 
following steps: 

- calculate the probability that the segment record 
satisfies the elementary condition for the i-th search 
attribute (SAi = Ci

{ki}): Pig= Mig
{ki}/Sg, where Ci

{ki} is 
one or several values {ki} from the search dictionary 
the SAi attribute, Mig

{ki} is the number of records in 
the g-th segment with the values {ki} of the SAi 
search attribute, Sg is the number of records in the g 
segment (see (1), (2)); 

- calculate the probability Pg that the record of the 
g-th segment satisfies the condition specified in the 
Predicate. For this one should use recursive functions 
for calculating probabilities (Table 1). 

Table 1: Probabilities for elementary conditions. 

Condition Probability 
<condition>AND<condition > <P>·<P> 
<condition>OR<condition > <P>+<P>-<P>·<P> 
NOT<condition> 1-<P> 

Pig probabilities for elementary conditions 
initially act as <P>. 

3. Calculate the probability πgm for each g 
segment and each aggregated attribute AAm: 

- calculate dgm=(Agm/Sg)·(Pg·Sg) - this is an 
estimare of an aggregate value in the segment; indeed, 
the expression in the first parentheses is an estimate 

of the aggregate value per segment record (see (2)); 
and the expression in the second parentheses is an 
estimate of the number of segment records that satisfy 
the condition specified in the Predicate; 

- calculate the probability gm gm gm{g}π =d / d , 

where {g} is the set of segment numbers obtained 
from the read metadata. 

Perform the following steps of the algorithm for 
each AAm. 

4. Get a sample of ‘n’ segment numbers {g} using 
the probability distribution function {πgm}g. Sampling 
should be done with repetition. Otherwise, estimate 
(5) will be biased and the confidence interval 
calculated using formula (6) will be erroneous. 
Samples of segment numbers for different AAm may 
have a non-empty intersection. 

5. Read these 'n' segments from the main dataset. 
Find JSON documents in each segment that satisfy 
the condition specified in the Predicate. Calculate the 
aggregated value τj (j = 1..n) for them for the AAm 
attribute (ie select the AAm values from JSON 
documents). For each k-th value of the SAr search 
attribute, accumulate the values Am

rk += AAm
jrk. 

6. Estimate the aggregated Am value (without 
grouping) using the formula (5). Calculate the 
confidence interval using formula (6). The confidence 
interval for the group aggregate Am

rk (see clause 5) 
does not exceed this value. This is derived from the 
fact that the variance D(n) for Am is equal to the sum 
of the variances calculated for Am

rk. 
The LA-AQP method has the following 

advantages: 
1. The confidence interval, calculated using the 

formula (6), decreases. The quantity djm/πjm  (see item 
3 of Algorithm 2) is some approximation of the 
quantity τj/πj in D (n) (see (6)). Since 

jm jm gm{g}d /π = d  these relationships are the 

same for different j. Therefore, the variance D (n) can 
be expected to be smaller. 

2. It is not necessary to read segments from the 
main data set of the Batch Layer to obtain the result 
in some important cases (see Algorithm 1). 

3. An arbitrary Predicate for search attributes of 
JSON documents and use the GROUP BY clause (see 
(7)) can be specified in a query. 

4. There is a timestamp index that allows reducing 
the number of analyzed metadata records and, 
thereby, reducing the sample size. 

5. The number of Sg JSON documents in the 
segments can be different (see (2)). 

6. The old metadata records are not changed when 
new records are added during the data stream 
processing. 
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7. Different distributed file systems (not 
necessarily HDFS) can be used to implement the 
method.  The required segments of the main dataset 
are read at offset. 

8. There is no need to develop a method for 
related tables approximate query processing.  
Suppose it is necessary to approximately process the 
following query: 

SELECT sum(Cost) FROM Customer T1, 
Purchases T2 WHERE T1.id1=T2.id1 AND Name= 
“José”.  

If linked tables are used (Figure 3, left), then the 
tables "Customer" and "Purchases" need to be split 
into segments. Let their number be N1 and N2 
respectively. In further processing, it is necessary to 
consider pairs of segments in order to take into 
account the relationship of segments by the common 
attribute id1. The number of such pairs (new 
segments) equals N1×N2. 

The JSON document stores all information 
related to the client (see Figure 3, right). So that the 
tables were already joined by the id1 attribute in these 
documents.  In this case, the number of segments is 
reduced to N1. 

 
Figure 3: Related tables and the corresponding structure of 
the JSON document. 

5 COMPARISON OF SAPPROX 
AND LA-AQP APPROXIMATE 
QUERY PROCESSING 
METHODS 

The comparison was carried out on a computer with 
a four-core processor and 16 GB RAM.  Testing of 
Sapprox and LA-AQP methods was done on synthetic 
dataset. The system received a stream of financial 
transactions in JSON format.  Each document 
included the following fields: 

- sum is the payment amount (random value from 
0 to 10,000), 

- city is the client's city (one of 1000 random 
cities), 

- user_id is the id of a specific client (one of 
1,000,000 random user IDs), 
- factor is deposit / withdrawal (one of 2 values), 
- a variable number of additional fields. 
Outlying peak values were generated to simulate 

the trend of increasing payments in different cities.  
They did not coincide with the distribution function 
of payment amounts at the previous points in time. 

The developed system prototype consists of three 
main components: balancer, database, and 
multithreaded daemon for segment processing. 

The balancer splits the incoming JSON 
documents into segments and writes them to the 
database (Data table). 

The database is implemented with PostgreSQL 
DBMS. Each segment is an inheritor of the base table.  
Each new segment is a separate table where JSON 
documents are stored.  Segment reading performs 
read operation of the blocks associated with the table.  
Metadata is stored in a separate table. This table key 
is the segment index, and the value is a JSON field.  
The value is saved in the metadata instead of the 
search attribute value number for the LA-AQP 
method. The dictionary was not implemented in the 
developed prototype.  It also stores aggregated values 
for search attributes and for the segment as a whole 
(see (1), (2)). 

The multithreaded daemon scans for new 
database segments.  It starts the process of building 
metadata for these segments (generates metadata 
records). The balancer and daemon were written in 
the Golang (Go) language, which was chosen due to 
the ease of writing asynchronous code (Donovan et 
al., 2015; Cox-Buday et al., 2017). 

68 million records (JSON documents) were 
generated for the test, the segment size was set to 
S=10,000 records. The following query was tested 
(no timestamp constraints): 

SELECT sum(Data.sum)  

FROM Data  

WHERE city = ‘City_1’ and factor = 
‘Expense’; 

(8)

The experiments were repeated 3 times for each 
method and each sample size (10% and 30%). 

Table 2 shows the averaged volume-time 
characteristics of SQL (exact execution of the query 
(8)), as well as the Sapprox and LA-AQP methods. 
According to these data, the Sapprox and LA-AQP 
methods performed on par. 
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Table 2: The averaged volume-time characteristics of SQL 
for Sapprox and LA-AQP methods. 

Characteristic SQL Sapprox LA-AQP 
LA-AQP/ 
Sapprox 

Difference

Time to 
include one 

segment 
(10,000 

records) into 
the database 

(ms) 

242 373 384 +3% 

Time to build 
metadata for 
one segment 

(ms) 

 31 31 0% 

Request 
execution 
time (ms) 

33,372    

Request 
execution 
time (ms), 

sample size 
10% 

 1,132 1,143 +1% 

Request 
execution 
time (ms), 

sample size 
30% 

 2,833 2,847 +0,5% 

Total database 
size (GB) 12 12 12 0% 

Table 3 shows the characteristics of the sum 
aggregate calculation accuracy. The accuracy was 
evaluated in two ways: 

1. δ=max (1-L/E, U/E-1), 
where L is the lower limit of the calculated 

aggregate; E is the aggregate exact value; U is the 
upper bound of the calculated aggregate. 

2. ε is the value of the confidence interval (this is 
the doubled value of the right-hand side of inequality 
(6)) divided by 5,000. The exact value of the 
aggregate sum divided by 5,000 is 63,014,300/5,000 
= 12,603. 

Table 3 demonstrates that the developed LA-AQP 
method is almost two times better in δ-accuracy than 
the Sapprox method.  Moreover, the LA-AQP method 
with a 10% sample is better in δ-accuracy than the 
Sapprox method with a 30% sample.  In terms of ε-
accuracy, the LA-AQP method is almost 1.8≈2 times 
better than Sapprox. 

Table 3: The characteristics of the sum aggregate 
calculation accuracy. 

Characteristic Sapprox LA-AQP 

LA-AQP 
difference 

from 
Sapprox

δ, 10% sample 
volume 0.12 0.07 -42% 

δ, 30% sample 
volume 0.09 0.04 -56% 

ε, 10% sample 
volume, 

α=0,9/0,95/0,99
1209/1440/1896 704/838/1106 -42% 

ε, 30% sample 
volume, 

α=0,9/0,95/0,99
1050/1253/1647 544/648/847 -48% 

6 DISCUSSION 

In the developed LA-AQP method, when calculating 
the probabilities πgm, the values of the aggregates in 
the segment are taken into account.  This is the 
fundamental difference between LA-AQP and 
Sapprox as well as other methods. As shown in 
Section 4, this allows reducing the confidence 
interval (6) when estimating τ. 

The aggregated values of τj can differ 
significantly for different segments.  The Sapprox 
method in this case can lead to a large estimation error 
τ. Let us give a small example. 

Let the number of segments be N=2000 and the 
sample size n=100.  Suppose that Pg=0.1, g = 1 ... N, 
i.e. 10% of the records in each segment satisfy the 
WHERE search condition.  Let the aggregated values 
τj of any attribute of these records be distributed over 
segments significantly unevenly: τ1= 10000, τj=1, j=2 
... 2000. 

Then for Sapprox πg= Pg /(N⋅ Pg)=0.0005, g = 1 ... 
N (see item 3 of the algorithm in Section 3).  The 
probability that in n = 100 trials the 1st segment will 
not be selected equals (1-π1)n=0,95. From formula 
(5), we obtain an aggregate estimate: 

1st option - 1st segment is not selected: 

τ(n)=(1/n)⋅n⋅((τj=1)/(πj=0.0005)=2,000; 

2nd option - 1st segment will be selected with 
probability 1-0.95 = 0.05: 

τ(n)=(1/n)⋅( (τ1=10,000)/π1 +(n-1)⋅(τj=1)/πj)= 
201,980. 
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In fact τ=(τ1=10,000)+(N-1)⋅(τj=1)=11,999. The 
estimation error τ is large in options 1 and 2. 

Let us show that with the same initial data, the 
LA-AQP method allows estimating τ with a much 
smaller error. In this case, we obtain (see item 3 of the 
algorithm 2 in Section 4): 

π1=((τ1=10,000)⋅P1)/ 
((τ1=10,000)⋅P1+ (N-1)⋅(τj=1)⋅Pj)= 0.83; 

πj=((τj=1)⋅Pj)/ 
((τ1=10,000)⋅P1+(N-1)⋅(τj=1)⋅Pj)=8.33E-5, j=2...N. 

The probability that for n=100 trials the 1st 
segment will not be selected is (1-π1)n=1.1E-77 (i.e. 
it is practically 0). We derive an aggregate value 
estimate from formula (5): 

Option 1 - the 1st segment will be selected only 
one time out of n = 100: 

τ(n)=(1/n)⋅((τ1=10,000)/ 
π1+(n-1)⋅(τj=1)/πj)=12,005; 

Option 2 - the 1st segment will be selected 100 
times out of n=100: 

τ(n)=(1/n)⋅(n⋅(τ1=10,000)/π1)= 12,048. 

Option 3 - the 1st segment is not selected (this is 
an almost impossible event): 

τ(n)=(1/n)⋅(n⋅(τj=1)/πj)= 12,004. 

Therefore the error in calculating the aggregate is 
small (exact value τ=11,999) in options 1, 2 and 3 for 
LA-AQP. The sample size 'n' is not important in this 
example, and it can be equal to one.  It also does not 
matter which segment numbers are selected for 
processing.  The calculation error using the LA-AQP 
method will be small in any case. 

To achieve the same level of error in Sapprox,  
it is necessary to significantly increase the sample 
size n.  It should be comparable to N. 

The LA-AQP method allows specifying a more 
complex search condition and a GROUP BY clause 
in a query (see (7)).  Sapprox allows only AND (see 
(4)) connection of elementary conditions. 

7 CONCLUSIONS 

The existing systems with lambda-architecture 
requires constantly repeat package updates for new 
analytical queries execution acceleration.  This 
consumes large time since it searches in a large 
database. The developed approach allows avoiding 
creation of package representations due to the 

introduction of metadata level.  The queries are 
executed promptly but with a certain error.  The 
developed LA-AQP method reduces this error. 

Expression (5) gives an unbiased estimate of the 
τ aggregate for any probability distribution function 
{πg}, πg>0. The issue is in the sample size. The 
developed method for calculating {πg} makes it 
possible to obtain a good aggregate estimation 
accuracy for small n values.  This is achieved due to 
the fact that when calculating {πg}, estimates of the 
values of the aggregates in the segment are used. As 
a result, the values τj/πj in (5) become approximately 
the same. This allows minimizing the sample 
variance D(n) (see (6)). 

The LA-AQP method allows executing queries 
with a general search condition and with a grouping 
(see (7)). For calculations, aggregate values are used 
at the level of individual attributes and segments.  The 
overhead costs of obtaining such aggregates are low: 
they accumulate as data arrives in the stream.  The 
accuracy of the general aggregates increases 
approximately twofold as compared with the Sapprox 
method.  

The future work includes development a method 
for processing queries at the Speed Layer in a Lambda 
Architecture system. 

REFERENCES 

Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, 
S., and Stoica, I. (2013). Blinkdb: Queries with 
bounded errors and bounded response times on very 
large data. In Proceedings of the 8th ACM European 
Conference on Computer Systems, EuroSys ’13, pages 
29–42, New York, NY, USA, 2013. ACM. 

Cormode, G. et al. (2011). Synopses for massive data: 
Samples, histograms, wavelets, sketches // Foundations 
and Trends® in Databases. – 2011. – Vol. 4. – №. 1–3. 
– P. 1-294. 

Cox-Buday, K. (2017). Concurrency in Go: Tools and 
Techniques for Developers. "O'Reilly Media, Inc.", 
2017. 

Donovan, Alan AA, and Kernighan B. W. (2015). The Go 
programming language. Addison-Wesley Professional, 
2015. 

Gribaudo, M., Iacono, M., Kiran M. A. (2018). 
Performance modeling framework for lambda 
architecture based applications // Future Generation 
Computer Systems. – 2018. – Vol. 86. – pp. 1032-1041. 

Goiri, R., Bianchini, S., Nagarakatte and Nguyen, T. D. 
(2015). Approxhadoop: Bringing approximations to 
mapreduce frameworks. In Proceedings of the 
Twentieth International Conference on Architectural 
Support for Programming Languages and Operating 

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

260



Systems, ASPLOS ’15, pages 383–397, New York, NY, 
USA, 2015. ACM. 

Kandula, S., Shanbhag, A., Vitorovic, A., Olma, M., 
Grandl, R., Chaudhuri, S. and Ding, B. (2016). Quickr: 
Lazily approximating complex adhoc queries in bigdata 
clusters. In Proceedings of the 2016 ACM SIGMOD 
International Conference on Management of Data, 
SIGMOD ’16, New York, NY, USA, 2016. ACM. 

Kiran, M. et al. (2015). Lambda architecture for cost-
effective batch and speed big data processing // 2015 
IEEE International Conference on Big Data (Big 
Data). – IEEE, 2015. – pp. 2785-2792. 

Kleppmann, M. (2017). Designing data-intensive 
applications: The big ideas behind reliable, scalable, 
and maintainable systems. "O'Reilly Media, Inc.", 
2017. 

Laptev, N., Zeng, K. and Zaniolo, C. (2012). Early accurate 
results for advanced analytics on mapreduce. Proc. 
VLDB Endow., 5(10):1028–1039, June 2012. 

Liese, F., Miescke, K.J. (2008). Statistical Decision Theory 
Estimation, Testing, and Selection. Springer Series in 
Statistics, 2008. 

Marz, N., and James W. (2015). Big Data: Principles and 
best practices of scalable real-time data systems. New 
York; Manning Publications Co., 2015. 

O’Neil, P. et al. (1996). "The log-structured merge-tree 
(LSM-tree)." Acta Informatica 33.4 (1996): 351-385. 

Pansare, N., Borkar, V. R., Jermaine, C., and Condie, T. 
(2011). Online aggregation for large mapreduce jobs. 
Proc. VLDB Endow, 4(11):1135–1145, 2011. 

Perrot, A. et al. (2017). HeatPipe: High Throughput, Low 
Latency Big Data Heatmap with Spark Streaming // 
2017 21st International Conference Information 
Visualisation (IV). – IEEE, 2017. – pp. 66-71. 

Psaltis, A. G. (2017). Streaming Data: Understanding the 
Real-Time Pipeline. Manning Publications, 2017. 

Spangenberg, N., Wilke M., Franczyk B., 2017. A Big Data 
architecture for intra-surgical remaining time 
predictions // Procedia computer science. – 2017. – 
Vol. 113. – pp. 310-317. 

Yang, F. et al. (2017). The RADStack: Open source lambda 
architecture for interactive analytics // Proceedings of 
the 50th Hawaii International Conference on System 
Sciences. – 2017. - pp. 1703-1712. 

Zhang, X., Wang, J., Yin, J. (2016). Sapprox: enabling 
efficient and accurate approximations on sub-datasets 
with distribution-aware online sampling // Proceedings 
of the VLDB Endowment. – 2016. – V. 10. – №. 3. – pp. 
109-120. 

Zukerman, M. (2020). Introduction to Queueing Theory 
and Stochastic Teletrac Models. [Online]. Available:    
http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf.  
[Accessed: Sept. 22, 2020] 

Approximate Query Processing for Lambda Architecture

261


