
Information Flow Secure CAmkES

Amit Goyal, Akshat Garg, Digvijaysingh Gour, R. K. Shyamasundar and G. Sivakumar
Department of Computer Science and Engineering,

Indian Institute of Technology Bombay, Mumbai, India

Keywords: Access Control, Confidentiality, Integrity, Information Flow Security, seL4, CAmkES, RWFM.

Abstract: Component Architecture for microkernel-based Embedded Systems (CAmkES) is a framework used to build
embedded systems software on the top of seL4. seL4, a generalpurpose microkernel, uses the underlying
Discretionary Access Control (DAC) capability model to ensure confidentiality and integrity of the systems
built on it. These systems are not information flow secure as DAC model only considers direct read/write
accesses and does not consider the indirect accesses. In indirect access, an unauthorized subject can get access
to an object through another subject which has the direct access to that object. In this paper, we model and
implement information flow secure CAmkES (IFS-CAmkES) which ensures complete mediation by RWFM
monitor which is based upon Readers Writers Flow Model (RWFM), a Mandatory Access Control (MAC)
model. IFS-CAmkES can be considered as CAmkES enriched withMAC based security. Prototypes of some
real life examples have been implemented on IFS-CAmkES. We also compare the performance of CAmkES
and IFS-CAmkES based systems.

1 INTRODUCTION

In today’s digital world, security is one of the major
aspects that needs to be addressed, even though, in
the operating system (in use), there is no clear layer
for this attribute (Lampson, 2011). Additionally, in
the context of Internet of Things (IoT), consisting of
interconnected embedded systems, security cannot be
thought of as an add-on to a device, but rather inte-
gral to the reliable functioning of the device. Soft-
ware security controls need to be introduced at the
operating system level which takes off the onus from
device designers and developers to configure systems
to mitigate threats, and ensure their platforms are safe.
Further, there has always been a trade off between se-
curity and functionality (Jaeger, 2008). Most of the
secure systems are either hard or not usable in prac-
tice because of the limited functionality.

There have been several attempts towards prov-
ing security properties of the operating systems but
most of the proofs are either incomplete, require man-
ual intervention or work at the high level abstrac-
tion and not at the implementation level (Klein et al.,
2014). seL4 is a general purpose microkernel which
has been fully formally machine verified and proofs
carry through the high level abstractions down to the
C code implementation (Klein et al., 2009). seL4 has
small Trusted Computing Base (TCB) which makes it

embedded system friendly, and its verification feasi-
ble (Heiser et al., 2007). Its strong isolation enforce-
ment between mutually distrusting components, run-
ning on its top, makes it a perfect candidate to be used
as a hypervisor (to host virtual machines) (Klein et al.,
2018).

Systems built on seL4 have been verified to pro-
vide confidentiality, integrity, authority confinement
and availability (Klein et al., 2014) (Elkaduwe et al.,
2008). These systems only prevent the unauthorized
direct read/write accesses of a subject to an object
(owing to the capability based, Discretionary Access
Control (DAC) implementation of seL4) but do not
prevent the indirect accesses which lead to the infor-
mation leak. In indirect access, an authorized sub-
ject, having direct access to an object, helps an unau-
thorized subject to get access to that object. This
might involve multiple intermediary subjects and ob-
jects which ultimately aid an unauthorized subject in
getting the access.

Component Architecture for microkernel-based
Embedded Systems (CAmkES) is a platform which
aids in building embedded systems software on seL4.
It abstracts the low level mechanisms of the micro-
kernel, and allows to define components and connec-
tions (between the components for communication).
CAmkES based systems use the underlying seL4 se-

Goyal, A., Garg, A., Gour, D., Shyamasundar, R. and Sivakumar, G.
Information Flow Secure CAmkES.
DOI: 10.5220/0010462602370244
In Proceedings of the 6th International Conference on Internet of Things, Big Data and Security (IoTBDS 2021), pages 237-244
ISBN: 978-989-758-504-3
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

237

Table 1: Information leak examples.

Case C1 C2 C3 X
1 Client 1 Helper Client 2 Confidential Data
2 Bidder 1 Auctioneer Bidder 2 Bid
3 Voter 1 Voting Machine Voter 2 Vote

curity mechanism (DAC) and are thus not informa-
tion flow secure. Consider an example where a GPS
tracking device of a car sends the source and desti-
nation details to a navigation server which in return
provides the directions. The navigation server might
leak the location details to an intruder. Similarly, in-
formation leak might happen in the cases listed in Ta-
ble 1 where Component 1 (C1) sends information ‘X’
to Component 2 (C2) which then sends (leaks) it to
unauthorized Component 3 (C3).

The question which arises is, can we synthe-
size information flow secure, CAmkES based sys-
tems by augmenting a Mandatory Access Control
(MAC) model on the existing DAC model provided
by CAmkES? In an attempt to answer this, we aug-
ment CAmkES with Readers Writers Flow Model
(RWFM), a MAC model and coin the new framework
“Information Flow Secure CAmkES” (IFS-CAmkES)
as the systems built on it will be information flow
secure. IFS-CAmkES ensures complete mediation
by RWFM monitor on every read/write access. The
main contributions of this paper are:(i) modeling
and implementation of IFS-CAmkES,(ii) implemen-
tation of some real life examples (prototypes) on IFS-
CAmkES to justify its application,(iii) performance
comparison of CAmkES and IFS-CAmkES based
systems. To the best of our knowledge, no previous
work has integrated MAC based security in CAmkES
to make information flow secure, CAmkES based sys-
tems.

The rest of the paper is organised as follows: Sec-
tion 2 provides a review of the various attempts to-
wards secure operating system and a brief description
of CAmkES, relevant to this study. RWFM is dis-
cussed in Section 3. IFS-CAmkES model is presented
in Section 4. Section 5 provides its implementation
details, its application in real life examples, and per-
formance comparison of IFS-CAmkES and CAmkES
based systems. Finally, we conclude in Section 6
along with the future directions.

2 BACKGROUND

In this section, we provide a brief literature review on
efforts to build secure operating system, and briefly
describe features of CAmkES.

2.1 Attempts towards Secure Operating
System

Verification of security properties has been one of the
important objectives of the operating system verifi-
cation. Early work started with UCLA Secure Unix
which mainly focused on correctness, and Provably
Secure Operating System (PSOS) which focused on
formal kernel design but the proofs were not com-
pleted by both (Walker et al., 1980) (Feiertag and
Neumann, 1979).

Linux is susceptible to trojan horse and informa-
tion flow leaks as it is based on DAC. SELinux im-
plemented as a Linux security module is one of the
attempts to make Linux more secure (Loscocco and
Smalley, 2001) (Smalley et al., 2001). Proofs for ver-
ifying information flow goals in SELinux, work only
at higher level kernel abstractions and not at the code
level (Guttman et al., 2005). Similarly, EROS kernel
and the MASK project proofs do not proceed to the
implementation level (Farber and Smith, 1996) (Mar-
tin et al., 2000).

Flume, a capability based operating system, con-
siders the entire Linux kernel in its TCB. Further,
non interference proof is done manually (Krohn and
Tromer, 2009). INTEGRITY-178B provides the
proof for isolation and information flow but the proof
is manually connected to the source code (Richards,
2010).

To enforce information flow control, HiStar im-
plements simple semantics based on object labels and
category ownership. However, there is no proof to
show that the semantics correctly model the behaviour
of its implementation (Zeldovich et al., 2011).

seL4 is a general purpose microkernel that has an
automated and full proof of its functional correctness
from the high level specification to the C code imple-
mentation (Klein et al., 2014). Its capability based
access control correctly models the behaviour of its
implementation. It can be configured to enforce static
information flow security in the form of intransitive
non interference. In intransitive non interference if
the information is allowed to flow from A to B and B
to C, then if the information flows from A to C it must
flow via B.

Systems built on seL4 have been formally veri-
fied for providing the following security properties:

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

238

(i) Availability: An unauthorized application should
not be able to deny service in terms of the resources
(e.g. processor time and memory resources) that the
kernel manages (Klein et al., 2014).(ii) Authority
confinement: Without explicit authorization, the au-
thority cannot be escalated or transferred to another
entity (Sewell et al., 2011).(iii) Integrity: With-
out authorization, an application cannot write to or
change resource state (Sewell et al., 2011).(iv) Con-
fidentiality: No unauthorized read operations can be
performed (Murray et al., 2013).

seL4 is a capability based system (DAC) and sys-
tems built on it provide security only from direct ac-
cesses and not from indirect accesses. Thus, integrity
and confidentiality specifications consider only direct
write and read operations respectively.

2.2 CAmkES

CAmkES is an architecture to develop embedded sys-
tems software on the top of seL4 (Kuz et al., 2007).
It abstracts over the low-level kernel mechanisms
and allows us to define components, connections be-
tween the components and interfaces through which
the components communicate over the connections.
The components can be active or passive depending
on whether it has a control thread or not. CAmkES
provides 4 types of connections:

• RPC Connectionis used for making remote pro-
cedure calls via from-interface instance (of the
caller) to the to-interface instance (of the callee).
An interface may contain multiple procedures.
Components either provide (to-interface instance)
or use (from-interface instance) the interface. We
have used the terms interface and interface in-
stance interchangeably.

• RPC Call Connection is the extension of RPC
connection in which callee also replies back to the
caller. Both RPC and RPC Call are implemented
using seL4’s endpoint objects.

• Event Connectionis used for providing event no-
tifications between the components. It is imple-
mented using seL4 notification mechanism.

• Dataport Connection allows components to
communicate over shared pages.

In CAmkES, the entire system is defined as an as-
sembly composition. The CAmkES parser first gener-
ates the Abstract Syntax Tree (AST) for the CAmkES
assembly composition. There are templates for in-
terfaces and components which are then used by the
parser to produce the glue code (implementation)

which is their seL4 level code1 (Klein et al., 2018).
Figure 1 is an example of CAmkES based system

consisting of three components Client 1 (C1), Helper
(H) and Client 2 (C2). C1 is connected to H via
RPC connection (h1) and H is connected to C2 via
RPC connection (h4). Interface instances have also
been shown below the arrows. From the arrow direc-
tion, we can observe, h2 is the from-interface (use)
instance and h3 is the to-interface (provide) instance.
The assembly description for the system is given in
Listing 1.

Client 1 Helper Client 2
h1 (rpc)

h2 h3

h4 (rpc)

h5 h6

Figure 1: CAmkES based system.

Listing 1: Assembly description.

assembly{
composition{

component Client1 Client1;
component Client2 Client2;
component Help Helper;
connection seL4RPC h1(from Client1.h2, to Helper.

h3);
connection seL4RPC h4(from Helper.h5, to Client2.

h6);
}

}

Here, we can clearly see, information is only al-
lowed to flow from C1 to H and from H to C2. But
indirectly, it can flow from C1 to C2 also (which is
not specified in the composition). We use RWFM
(MAC) to prevent such indirect flows in CAmkES
based systems and present IFS-CAmkES. It is impor-
tant to note that we assume, the connections in the as-
sembly composition specify the access control policy.
IFS-CAmkES considers all other flows which are not
mentioned in the assembly composition as forbidden
(never allowed). Section 3 provides a brief descrip-
tion of RWFM.

3 RWFM

RWFM (Kumar and Shyamasundar, 2014) (Kumar
and Shyamasundar, 2017) takes into account the
Denning's information flow control model (Denning,
1976) and suggests a natural way of defining the se-
curity classes. It is a lattice based model which en-
sures both confidentiality and integrity, and can thus
capture the behavior of popular information flow con-
trol models like Biba (Biba, 1977) and Bell-LaPadula

1More details on structure and functionality of
CAmkES can be found at: https://github.com/seL4/camkes-
tool/blob/master/docs/index.md

Information Flow Secure CAmkES

239

(Bell and LaPadula, 1973). RWFM is represented as
an eight tuple< S,O,SC,→,⊕,⊗,⊤,⊥> where:

• Sare subjects andO are objects.

• SC(security classes/labels) are defined asS x 2S

x 2S (owner x{set of readers} x {set of writers}).
These labels form a lattice (on permissible flow
ordering) and are assigned to all the subjects and
objects by the labelling functionλ. Object labels
are static while subject labels are dynamic. Owner
is required only while considering the downgrade
operation and has nothing to do with other opera-
tions. We can get first, second and third compo-
nents of subject/object label using the functions:
Owner(), Readers() and Writers() respectively.

• → (permissible flow ordering) is defined as (-,⊇,
⊆). Information always flows up in the lattice.

• ⊕ (join) is defined as (-,∩, ∪) and⊗ (meet) is
defined as (-,∪, ∩).

• ⊤ (maximum label) is defined as (-,φ, S) and⊥
(minimum label) is defined as (-,S, φ).

The default/initial label for a subject s is (s,S, {s})
and the objects labels are assigned based on the access
rights. Rules (determine permissible flow of informa-
tion) are defined for the basic operations as follows:

• Read Rule: When a subject (s) with label (s1, r1,
w1) wants to read from an object (o) with label
(s2, r2, w2) then:(i) s must belong to r2,(ii) the
label of s should be updated to the join of the la-
bels of s and o as s has gained information.
Algorithm 1 defines the read rule. It takes subject
(s) and object (o) as inputs, and returns whether
read operation is allowed or not. Once the read
operation is complete, the subject label is updated
to (s1, r1∩ r2, w1 ∪ w2).

Algorithm 1: Read rule.

Input: s, o
Output: Read is allowed or not

1 if s∈ r2 then
2 return 1;
3 end
4 else
5 return 0;
6 end

• Write Rule: When a subject (s) with label (s1, r1,
w1) wants to write on an object (o) with label (s2,
r2, w2) then:(i) s must belong to w2,(ii) the la-
bel of s must be lower in the lattice than o as the
information is flowing from s to o.
Algorithm 2 defines the write rule. It takes subject
(s) and object (o) as inputs, and returns whether
write operation is allowed or not.

Algorithm 2: Write rule.

Input: s, o
Output: Write is allowed or not

1 if s∈ w2∧ r1 ⊇ r2 ∧ w1⊆ w2 then
2 return 1;
3 end
4 else
5 return 0;
6 end

RWFM helps in preventing indirect read and write
accesses in the system. The detailed model for IFS-
CAmkES is presented in Section 4.

4 INFORMATION FLOW SECURE
CAmkES MODEL

Out of the four types of connections in CAmkES
based systems, we have secured the information flow
on RPC and RPC Call connections. Dataport con-
nection could not be secured because in CAmkES,
dataport access rights are frozen in page table of the
process (component), and then access is completely
controlled by the hardware (MMU) during execution.
Thus, it would not be feasible to trace the read and
write operations at the software level and use RWFM.
Moreover, dataport write access is implemented as
both read and write accesses, which is inconsistent
even with the direct access (due to the extra read ac-
cess). Event connection is used for single bit com-
munication in CAmkES, so we have not considered
it.

To secure RPC and RPC Call connections using
RWFM, we have not used shared variables to store
the RWFM labels as this may lead to inconsistency in
the labels, and the labels may be misused, resulting
in information leaks. Also, we have not changed the
existing system calls or added new system calls for
RWFM checks (rules) as this might interfere with the
underlying seL4 proofs.

We have added an another component called
RWFM Monitor at the CAmkES level. It is connected
with all other components of the system using RPC
Call connections. To prevent the information leak
from client 1 to client 2 in Figure 1, RWFM moni-
tor is used as shown in Figure 2.

The initials labels for subjects (components) and
objects (interfaces) are generated from the AST
and are fed into the RWFM monitor which stores
and manages these labels. On its interface in-
stances, RWFM monitor provides three procedures:
can i read(), cani write() and updatemy label().
can i read() is same as Algorithm 1 except that it

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

240

Client 1 Helper Client 2

RWFM Monitor

h1 (rpc)

h2 h3

h4 (rpc)

h5 h6

h7 (rpc call)

h8

h9

h10 (rpc call)

h11

h12

h13 (rpc call)

h14

h15

Figure 2: RWFM monitor.

only takes one input i.e. the object. The subject is
not needed since the monitor can infer it from the
interface used for the call. Similar argument holds
for can i write and Algorithm 2. updatemy label up-
dates the subject’s label on successful read operation.
RPC and RPC Call interface templates are modified
to ensure RWFM monitor completely mediates all the
read/write requests during RPC and RPC Calls be-
tween the components. The details are presented in
Section 4.1-4.3.

Since CAmkES allows us to define components
and connections over a single system we have as-
sumed that all the components exist as virtual ma-
chines over a single system (with seL4 as hypervisor).
In general, even if the components do not exist on a
single system the communication between the sub-
components of a component might lead to informa-
tion leak and to prevent it, we can apply RWFM at the
sub-component level. Further, information leak over
the network can be prevented by applying RWFM
monitor on the access control policy of the network.

4.1 Label Generation

Label generation is done using Algorithm 3 which
takes AST as the input and generates the RWFM
labels which are then stored in the RWFM moni-
tor. Labels are generated for the components (sub-
jects) and interfaces (objects).C, I andN represent
the set of components, interfaces and connections re-
spectively in the original system (without including
RWFM monitor).

The algorithm assigns the default label to all the
components. Initially, for each interface, the parent
component is assigned as the owner, and readers and
writers set are kept empty.

For RPC connection, the parent component of the
from-interface acts as the writer and is thus added in
the writers set of both the interfaces of the connection.
The parent component of the to-interface acts as the
reader and is thus added in the readers set of both the
interfaces of the connection.

For RPC Call connection, the parent components
of both the interfaces act as readers and writers (both)

Algorithm 3: Label generation.

Input: AST
Output: Generates the RWFM labels.

1 for each component cx ∈ C do
2 λ(cx) = (cx, C,{cx})
3 end
4 for each interface iy ∈ I do
5 λ(iy) = (parent component,{}, {})
6 end
7 for each connection nz ∈ N do
8 if nz type == rpc then
9 Readers(nz to interface) =

Readers(nz to interface)∪
nz to interfaceparentcomponent
Writers(nz to interface) =
Writers(nz to interface)∪
nz from interfaceparentcomponent
Readers(nz from interface) =
Readers(nz from interface)∪
nz to interfaceparentcomponent
Writers(nz from interface) =
Writers(nz from interface)∪
nz from interfaceparentcomponent

10 end
11 if nz type == rpc call then
12 Readers(nz to interface) =

Readers(nz to interface)∪
nz to interfaceparentcomponent∪
nz from interfaceparentcomponent
Writers(nz to interface) =
Writers(nz to interface)∪
nz to interfaceparentcomponent∪
nz from interfaceparentcomponent
Readers(nz from interface) =
Readers(nz from interface)∪
nz to interfaceparentcomponent∪
nz from interfaceparentcomponent
Writers(nz from interface) =
Writers(nz from interface)∪
nz to interfaceparentcomponent∪
nz from interfaceparentcomponent

13 end
14 end

and are thus added in both the readers and writers set
of both the interfaces of the connection.

Note that no labels are assigned to RWFM moni-
tor, its interfaces and any interface involved in com-
munication with the RWFM monitor.

The labels generated for the system shown in Fig-
ure 1 are as follows:
λ(C1) = (C1,{C1,H,C2},{C1})
λ(H) = (H,{C1,H,C2},{H})
λ(C2) = (C2,{C1,H,C2},{C2})
λ(h2) = (C1,{H},{C1})
λ(h3) = (H,{H},{C1})
λ(h5) = (H,{C2},{H})
λ(h6) = (C2,{C2},{H})

Information Flow Secure CAmkES

241

If both the connections in Figure 1 are replaced by
RPC Call connections then the labels of the interfaces
are as follows:
λ(h2) = (C1,{C1,H},{C1,H})
λ(h3) = (H,{C1,H},{C1,H})
λ(h5) = (H,{C2,H},{C2,H})
λ(h6) = (C2,{C2,H},{C2,H})

4.2 RPC Template

RPC to-interface template has seL4Recv() system
call to read (receive) the data. It is modified to do
RWFM read check as shown in Listing 2. If it fails,
the data is not read. Otherwise, the component label
is updated once the read operation is completed.

Listing 2: RPC to-interface template.

if (!can i read(interface);)
return ;

seL4Recv();
updatemy label();

RPC from-interface template has seL4Send()
system call to send the data. It is modified to do
RWFM write check as shown in Listing 3. If it fails,
the data is not sent.

Listing 3: RPC from-interface template.

if (!can i write(interface);)
return ;

seL4Send();

Note that, cani read(), cani write() and up-
datemy label() will be called as h11can i read(),
h11 can i write() and h11updatemy label() respec-
tively, by H in all its RPC to/from-interfaces imple-
mentations (seL4 code). C1 and C2 also use their own
interfaces, h8 and h14 respectively as shown in Fig-
ure 2. The argument for these procedures will be the
interface whose implementation is being done. As an
example, for h5 interface (RPC from-interface) im-
plementation, h11can i write(h5) is used.

Now, when C1 makes an RPC to H, RWFM write
check for C1 at h2 is performed which succeeds.
RWFM read check for H at h3 also succeeds and the
label of H is updated to:λ(H) = (H,{H},{C1,H}).
Now, when H makes an RPC to C2, RWFM write
check for H at h5 fails and thus information leak (in-
direct write from C1 to C2) is avoided.

4.3 RPC Call Template

RPC Call to-interface template has seL4Recv() sys-
tem call to receive the data and seL4Reply() system
call to send the data (reply back to the caller). RWFM

read check is added before seL4Recv() as shown in
Listing 4. If it fails, the data is not received. Oth-
erwise, the component label is updated once it re-
ceives. Further, RWFM write check is added before
seL4Reply().

Listing 4: RPC Call to-interface template.

if (!can i read(interface);)
return ;

seL4Recv();
updatemy label();
if (!can i write(interface);)

return ;
seL4Reply();

RPC Call from-interface template has seL4Call()
system call to send the data and receive the reply. It
is modified to do RWFM write check as well as read
check as in shown in Listing 5. If any of the check
fails, the data is not sent and the reply is not received.
Otherwise, the component label is updated once it re-
ceives the reply.

Listing 5: RPC Call from-interface template.

if (!can i write(interface);)
return ;

if (!can i read(interface);)
return ;

seL4Call();
updatemy label();

It is important to note that the object (interface) la-
bels do not change during execution and they contain
the access control policy which is derived from the
connections (RPC/RPC Call) specified in the assem-
bly composition. Section 5 provides the implementa-
tion details.

5 IMPLEMENTATION DETAILS

We have implemented IFS-CAmkES by modifying
CAmkES 3.5.0 (built on seL4 10.0.0). We used Intel
Core i7, 8th generation machine with 16 GB of RAM
and Ubuntu 16.04 LTS operating system. We used
QEMU emulator version 2.5.0 to run CAmkES/IFS-
CAmkES.

The example stated in Figure 1 when implemented
on IFS-CAmkES, stops the indirect write by client 1
to client 2 via a helper (preserves integrity of client 2
data). Similarly, the example stated in Figure 3 when
implemented on IFS-CAmkES, stops the indirect read
by client 1 from client 2 via a helper (preserves confi-
dentiality of client 2 data).

In auctioning example shown in Figure 4, an auc-
tioneer accepts the bids from bidder 1, bidder 2 and

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

242

Client 1 Helper Client 2
h1 (rpc)

h3 h2

h4 (rpc)

h6 h5

Figure 3: Client 1 indirectly reads from client 2.

bidder 3. The connections from bidders to auction-
eer are used for making the bid while the connec-
tions from auctioneer to bidders are used for declaring
the result. All the connections are RPC connections.
Once the auctioneer starts getting the bids, he should
not convey those bids to other bidders, and should not
declare the result apriori. We cannot assure these con-
ditions on CAmkES while on IFS-CAmkES we can.
Once the auctioneer gets a bid, his label gets updated
in such a way, that he cannot write to other bidders.
For declaring the result, auctioneer can request the
RWFM monitor to be turned off and only then the re-
sult can be declared. Also, we can implement RWFM
at the language level (where each variable is given a
RWFM label and every operation on the variable hap-
pens as per the information flow policy) and apply de-
classification on theresultvariable in auctioneer in or-
der to declare the result. Similar scenario holds for the
electronic voting system (replace auctioneer by voting
machine, bidders by voters and bids by votes).

Bidder 1 Auctioneer Bidder 2

Bidder 3

h1
h2 h3

h4
h6 h5

h10
h11 h12

h7
h9 h8

h13

h14

h15

h16

h17

h18

Figure 4: Auctioning.

In GPS tracking example shown in Figure 5, GPS
tracking device of a car makes an RPC Call (using
connection h1) to a navigation server with source and
destination as arguments, and navigation server re-
turns the directions. The navigation server may leak
these location details to an intruder via RPC connec-
tion h4. When implemented on IFS-CAmkES such a
leak can be avoided.

GPS Device Navigation Server Intruder
h1 (rpc call)

h2 h3

h4 (rpc)

h5 h6

Figure 5: GPS tracking.

We made a simple system consisting of only two
components and made a single RPC/RPC Call con-
nection between them and measured the number of
RPC/RPC Call communications that happened be-
tween the two components in 100 seconds (both on
CAmkES and IFS-CAmkES). The experiment was
performed multiple times to find the average. Table

2 shows the results.

Table 2: Performance comparison (in terms of number of
RPC/RPC Call communications in 100 seconds).

RPC RPC Call
IFS-CAmkES 195872 153056
CAmkES 310615 403036

It is observed that the performance (with respect
to time) of IFS-CAmkES based system as compared
to that of CAmkES, reduces by approximately 37%
in case of RPC and by 62% in case of RPC Call.
This is due to the extra RPC Calls made by the com-
ponents (to the RWFM monitor for performing the
RWFM checks) involved in the communication. The
reduction in performance in case of RPC Call com-
munication is higher than that of RPC as the former
makes more RPC Calls to the RWFM monitor. To im-
prove the performance, we can implement RWFM at
the seL4 level where RWFM checks can be performed
inside the system calls. This would require us to redo
the seL4 correctness proofs in order to ensure that the
correctness still holds.

6 CONCLUSION AND FUTURE
SCOPE

Capability based (DAC) systems built using CAmkES
on seL4, cannot prevent the indirect accesses and
thus cannot prevent information leak in the system.
To capture the information leak, one has to imple-
ment the labelled MAC. To make CAmkES based
systems information flow secure, we have proposed
a model (inspired from RWFM) which generates
initial labels based on components, RPC and RPC
Call connections (assuming the connections specify
the access control policy) specified in the CAmkES
assembly composition. All read/write accesses in
the system are completely mediated by the RWFM
monitor which also updates the label of the subject
when a read operation happens. The proposed model
has been successfully implemented and integrated in
CAmkES. We term this modified framework as Infor-
mation Flow Secure CAmkES (IFS-CAmkES) as the
systems built on it are information flow secure. From
application point of view, we have implemented, real
life examples (prototypes) like auctioning, electronic
voting, GPS tracking, etc., on IFS-CAmkES. Al-
though, the performance (with respect to time) of IFS-
CAmkES based systems is less than that of CAmkES
but there is always a trade off between security and
performance.

To overcome the performance penalty and to pro-

Information Flow Secure CAmkES

243

vide information flow security at the microkernel
level, we can implement RWFM at the level of seL4.
To introduce information flow security restrictions at
a fine grained level, language level RWFM implemen-
tation can also be considered.

REFERENCES

Bell, D. E. and LaPadula, L. J. (1973). Secure computer
systems: Mathematical foundations. Technical report,
MITRE CORP BEDFORD MA.

Biba, K. J. (1977). Integrity considerations for secure com-
puter systems. Technical report, MITRE CORP BED-
FORD MA.

Denning, D. E. (1976). A lattice model of secure informa-
tion flow. Communications of the ACM, 19(5):236–
243.

Elkaduwe, D., Klein, G., and Elphinstone, K. (2008). Ver-
ified protection model of the sel4 microkernel. In
Working Conference on Verified Software: Theories,
Tools, and Experiments, pages 99–114. Springer.

Farber, D. J. and Smith, J. M. (1996). State caching in the
eros kernel–implementing efficient orthogonal persis-
tence in a pure capability system. InProceedings of
7th International Workshop on Persistent Object Sys-
tems. Citeseer.

Feiertag, R. J. and Neumann, P. G. (1979). The founda-
tions of a provably secure operating system (psos). In
1979 International Workshop on Managing Require-
ments Knowledge (MARK), pages 329–334. IEEE.

Guttman, J. D., Herzog, A. L., Ramsdell, J. D., and Sko-
rupka, C. W. (2005). Verifying information flow goals
in security-enhanced linux.Journal of Computer Se-
curity, 13(1):115–134.

Heiser, G., Elphinstone, K., Kuz, I., Klein, G., and Petters,
S. M. (2007). Towards trustworthy computing sys-
tems: Taking microkernels to the next level.ACM
SIGOPS Operating Systems Review, 41(4):3–11.

Jaeger, T. (2008). Operating system security.Synthesis
Lectures on Information Security, Privacy and Trust,
1(1):1–218.

Klein, G., Andronick, J., Elphinstone, K., Murray, T.,
Sewell, T., Kolanski, R., and Heiser, G. (2014). Com-
prehensive formal verification of an os microkernel.
ACM Transactions on Computer Systems (TOCS),
32(1):2.

Klein, G., Andronick, J., Fernandez, M., Kuz, I., Murray,
T., and Heiser, G. (2018). Formally verified soft-
ware in the real world.Communications of the ACM,
61(10):68–77.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolan-
ski, R., Norrish, M., et al. (2009). sel4: Formal ver-
ification of an os kernel. InProceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Prin-
ciples, pages 207–220. ACM.

Krohn, M. and Tromer, E. (2009). Noninterference for a
practical difc-based operating system. In30th IEEE

Symposium on Security and Privacy, pages 61–76.
IEEE.

Kumar, N. N. and Shyamasundar, R. (2014). Real-
izing purpose-based privacy policies succinctly via
information-flow labels. InProceedings of IEEE
Fourth International Conference on Big Data and
Cloud Computing (BdCloud 2014), pages 753–760.
IEEE.

Kumar, N. N. and Shyamasundar, R. (2017). A complete
generative label model for lattice-based access con-
trol models. In International Conference on Soft-
ware Engineering and Formal Methods, pages 35–53.
Springer.

Kuz, I., Liu, Y., Gorton, I., and Heiser, G. (2007). Camkes:
A component model for secure microkernel-based
embedded systems.Journal of Systems and Software,
80(5):687–699.

Lampson, B. (2011). Technical perspective making un-
trusted code useful.Communications of the ACM,
54(11).

Loscocco, P. and Smalley, S. (2001). Integrating flexible
support for security policies into the linux operating
system. InUSENIX Annual Technical Conference,
FREENIX Track, pages 29–42.

Martin, W., White, P., Taylor, F., and Goldberg, A. (2000).
Formal construction of the mathematically analyzed
separation kernel. InProceedings of Fifteenth IEEE
International Conference on Automated Software En-
gineering (ASE 2000), pages 133–141. IEEE.

Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke,
T., Seefried, S., Lewis, C., Gao, X., and Klein, G.
(2013). sel4: from general purpose to a proof of infor-
mation flow enforcement. In2013 IEEE Symposium
on Security and Privacy, pages 415–429. IEEE.

Richards, R. J. (2010). Modeling and security analysis
of a commercial real-time operating system kernel.
In Design and Verification of Microprocessor Sys-
tems for High-Assurance Applications, pages 301–
322. Springer.

Sewell, T., Winwood, S., Gammie, P., Murray, T., Andron-
ick, J., and Klein, G. (2011). sel4 enforces integrity.
In International Conference on Interactive Theorem
Proving, pages 325–340. Springer.

Smalley, S., Vance, C., and Salamon, W. (2001). Imple-
menting selinux as a linux security module.NAI Labs
Report, 1(43):139.

Walker, B. J., Kemmerer, R. A., and Popek, G. J. (1980).
Specification and verification of the ucla unix security
kernel.Communications of the ACM, 23(2):118–131.

Zeldovich, N., Boyd-Wickizer, S., Kohler, E., and
Mazières, D. (2011). Making information flow
explicit in histar. Communications of the ACM,
54(11):93–101.

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

244

