
Technical Debt Tools: A Systematic Mapping Study

Diego Saraiva a, José Gameleira Neto b, Uirá Kulesza c, Guilherme Freitas d,
Rodrigo Reboucas e and Roberta Coelho f

Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal, Brazil

Keywords: Systematic Mapping Study, Technical Debt, Technical Debt Management, Tools.

Abstract: Context: The concept of technical debt is a metaphor that contextualizes problems faced during software evo-
lution that reflect technical compromises in tasks that are not carried out adequately during their development
- they can yield short-term benefit to the project in terms of increased productivity and lower cost, but that may
have to be paid off with interest later. Objective: This work investigates the current state of the art of technical
debt tools by identifying which activities, functionalities and kind of technical debt are handled by existing
tools that support the technical debt management in software projects. Method: A systematic mapping study
is performed to identify and analyze available tools for managing technical debt based on a set of five research
questions. Results: The work contributes with (i) a systematic mappping of current research on the field, (ii)
a highlight of the most referenced tools, their main characteristics, their supported technical debt types and
activities, and (iii) a discussion of emerging findings and implications for future research. Conclusions: Our
study identified 50 TD tools where 42 of them are new tools, and 8 tools extend an existing one. Most of the
tools address technical debt related to code, design, and/or architecture artifacts. Besides, the different TD
management activities received different levels of attention. For example, TD identification is supported by
80% of the tools, whereas 30% of them handle the TD documentation activity. Tools that deal with TD identi-
fication and measurement activities are still predominant. However, we observed that recent tools focusing on
TD prevention, replacement, and prioritization activities represent emergent research trends.

1 INTRODUCTION

The concept of technical debt (TD) is a metaphor used
to represent technical compromises that can yield
short-term benefit to the project in terms of increased
productivity and lower cost, which may affect the
software maintenance and evolution (Avgeriou et al.,
2016).

In real-life software development, the presence of
technical debt is inevitable (Martini et al., 2015) and
even desirable to achieve short-term benefits. It can
be profitable (Allman, 2012) if the cost of the tech-
nical debt is manageable. Therefore, it is imperative
to keep the accumulated debts under control. In this
context, the purpose of technical debt management
(TDM) is to support informed decision-making about

a https://orcid.org/0000-0002-2512-6692
b https://orcid.org/0000-0002-7184-1187
c https://orcid.org/0000-0002-5467-6458
d https://orcid.org/0000-0003-0272-0071
e https://orcid.org/0000-0001-7829-9768
f https://orcid.org/0000-0003-0001-435X

the need to mitigate a TD item and the most suitable
time to do this (Guo et al., 2016). It has been emerged
as a new research area over the last years. It con-
sists of a series of activities that prevent the creation
of an unwanted technical debt or allows dealing with
existing debt to keep it below the permissible limit.
However, the efficient management of TD requires
the adoption of tools.

Recently, several tools to manage technical debt
in software projects have been proposed by academia
and industry. In this context, we identified that an in-
depth characterization of TD tools is missing in the
literature. Existing systematic reviews and mapping
studies focus on specific aspects of technical debt. (Li
et al., 2015) presents a systematic mapping study that
aims to understand the state of research on TD man-
agement. Their study found that TD was classified
into 10 types, 8 TDM activities were identified, and
29 tools for TDM were collected.

(Lenarduzzi et al., 2019) conducted a system-
atic literature review on technical debt prioritization.
They identified 12 tools related to TD prioritization.

88
Saraiva, D., Neto, J., Kulesza, U., Freitas, G., Reboucas, R. and Coelho, R.
Technical Debt Tools: A Systematic Mapping Study.
DOI: 10.5220/0010459100880098
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 88-98
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



The main purpose of their review is to understand how
the TD is prioritized in software organizations and
which approaches have been proposed. The authors
highlight a lack of a solid, validated, and widely used
set of tools specifically for TD prioritization. They
did not detail the tools’ features, limiting to present
a brief description of them, the papers that cite the
tools, and the context of their usage.

(Avgeriou et al., 2020) provide an overview of
the current landscape of existing TD measurement
tools. They analyze the features and popularity of
these tools, the existing empirical evidence on their
accuracy, and highlight current shortcomings. The
authors consider initially 26 tools and filtered them
to select only 9 for a complete analysis. Differently
from this work, they focus strictly on analysing tech-
nical debt measurement tools.

In order to mitigate the literature gap, we present
an overview of the currently available tools for tech-
nical debt. The purpose of this paper is to characterize
the state of the art of TD tools. To achieve this goal,
we have conducted a systematic mapping study of the
literature in the area. We synthesize the data obtained
to produce a clear overview of existing TD tools. Our
mapping represent a frame of reference for both: (i)
the academia to identify research opportunities; and
(ii) the industry to understand and to know existing
research results to possibly transfer and mature TD
tools to practice.

The remainder of this paper is structured as fol-
lows: Section 2 details he methodology of the map-
ping study. Section 3 presents the study results and
their implications to researchers and practitioners.
Section 4 presents the threats to validity of the study.
Section 5 discusses related work. Finally, Section 6
presents the paper conclusions.

2 STUDY DESIGN

We conducted a systematic mapping study based
on well-established guidelines in software engineer-
ing (Petersen et al., 2015) (Kitchenham and Char-
ters, 2007). The purpose of this study is to provide an
overview of the currently available tools for managing
technical debt for professionals and researchers. In
particular, we focus on the following research ques-
tions (RQs):

RQ1: What Are the Publication Trends of Re-
search Studies about TD Tools?

RQ2: What Are the Main Characteristics of the
Tools?

RQ3: What Are the TD Tools Reported in the Lit-
erature?

RQ4: Which TD Types and Activities Are Ad-
dressed by the Proposed Tools?

RQ5: What Kind of Studies Have Been Conducted
to Evaluate TD Tools?

Figure 1: Overview of the search and selection process.

Figure 1 shows the search and selection process of
the systematic mapping study. The search process of
our study considered journal, conference, book chap-
ter and workshop papers indexed in the following dig-
ital libraries: ACM, IEEE, Science Direct, Research
Gate and Scopus. These databases were selected be-
cause they are the largest and most complete scien-
tific databases in software engineering (Petersen et al.,
2015) (Kitchenham and Charters, 2007). They have
been recognised as being an effective means to con-
duct systematic literature studies in software engi-
neering (Petersen et al., 2015). Our search string is
shown in the Listing 1. For consistency, the search
string has been applied to the title, abstract, and key-
words of papers in the selected electronic databases
and indexing systems. The search in the selected
databases was conducted in February 05 - 2020.

Listing 1: Search string used for automatic research studies.

("Technical Debt") AND
("Tool" OR "Software Solution")

Based on our research questions, we defined in-
clusion and exclusion criteria. These criteria are es-
sential to identify relevant primary studies that answer
the RQs. We devised the following inclusion criteria:
(i) the paper was written in English, (ii) the paper was
published in conference proceedings, workshop pro-
ceedings, book chapters or journal; and (iii) the pa-
per proposes, extends or evaluates one or more TD
tools. We retrieved 1479 primary papers in the initial
search. Next, in the merge and removal step, we re-
moved invalid results returned by the execution of the
search query, given that some results are duplicates or

Technical Debt Tools: A Systematic Mapping Study

89



are not research papers (patents, standards, etc). We
include papers that address the inclusion criteria (i)
and (ii) for each database. Finally, we join all the pa-
pers in a single set having as a result of total of 1075
papers. However, only 85 candidate papers were ob-
tained after applying the inclusion criteria based upon
title and abstract in the stage of selection by abstract
and applying the criterion (iii). Finally, we selected
only 47 primary papers after reading the full paper.
Additional information about the study protocol and
its results can be found in (td-tools study, 2020).

3 RESULTS AND DISCUSSION

In this section, we discuss the answers to our RQs
presented in Section 2. In each case, we highlight the
utility of these results for researchers and practition-
ers. Additional information about the study results
can be found in (td-tools study, 2020).

3.1 RQ1: What Are the Publication
Trends of Research Studies about
TD Tools?

2012 2013 2014 2015 2016 2017 2018 2019
0

2

4

6

8

10

12

14

2
1

3

1

5 5 5

11
8

1

3

2

Conference Paper Journal Article Chapter Book

Figure 2: Distribution of selected studies over publication
types.

The purpose of this research question is to provide
an overview of the number and types of publications
on the topic during the last years. Figure 2 presents
the distribution of publications on technical debt tools
over the years. We can see that conference papers
are the main kind of publication selected in our study
with 83% (39/47) of the papers. The journal pa-
pers represent 12.8% (6/47) of the selected studies.
Finally, only 4.3% (2/47) fall into the category of
the book chapter. The high number of conference
and journal papers indicate that technical debt tools

is a trending research topic and indicates researchers
target more scientifically-rewarding publication when
working with tools to support technical debt. Figure
2 emphasizes an explicit confirmation of the scien-
tific interest on technical debt tools in the years 2015
through 2019. Since 2015, there are at least five stud-
ies per year, which represents a good increment com-
pared with the years before 2015. One reason for that
could be that technical debt becomes a more known
and popular concept, increasing the interest of incor-
porating TD tools in the daily practice of software
development. The most recurrent places for publi-
cations about TD tools were: (i) the International
Conference on Technical Debt (TechDebt) and (ii) the
International Workshop on Managing Technical Debt
(MTD) with a total of 15 papers. The TechDebt con-
ference is an evolution of the MTD workshop. Sec-
ondly, the Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA) with 5
papers. Following by textitSymposium on Applied
Computing (ACM) and Journal of the Brazilian Com-
puter Society with 2 papers. We can observe a frag-
mentation in terms of publication venues, where re-
search on TDM tools is spread across 20 venues.

The results of this research question help re-
searchers and practitioners: (i) to estimate the en-
thusiasm of scientific engagement on technical debt
tools; (ii) to identify the academic venues where re-
lated papers about technical debt tools are published;
and (iii) to identify the academic venues where new
results about technical debt tools may be better re-
ceived and recognized by the scientific community.

3.2 RQ2: What Are the Main
Characteristics of the TD Tools?

In this subsection, we present the obtained results
when analyzing the main characteristics of the se-
lected tools. We analyzed the following aspects of
the selected tools: (I) main purpose; (II) target lan-
guages; and (III) the tool was developed as stand-
alone or it represents an extension of an existing tool.
Table 1 presents the identified tools considering their
main purpose.

Concerning the primary purpose of the tools, we
classify them using a categorization, inspired and
adapted from the Li et al. study (Li et al., 2015). Fig-
ure 3 shows the categorization, which aggregates the
background approaches that support the investigated
TD tools. It also presents the distribution of tools
considering the different categories for their main pur-
pose.

Our study identified that 28% (14/50) of the
TD tools aims of quantifying code metrics. These

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

90



Quantifying code properties - 28.00% (14)
Architectural smell detection - 14.00% (7)
Pattern matching - 12.00% (6)
Cost benefit analysis - 12.00% (6)
Project management - 6.00% (3)
Code smell detection - 6.00% (3)
Gamification - 4.00% (2)
Checking code standards - 4.00% (2)
Calculating Architectural metrics - 4.00% (2)
Quantifying model metrics - 4.00% (2)
Decision-making - 4.00% (2)
Requirements issues - 2.00% (1)

Figure 3: Distribution of tools over the categories.

tools quantify TD using code metrics, and/or ana-
lyze source code to identify coding rules violations,
detect potential bugs, and many other specific code
issues. Architectural smell detection represents the
second most common category, with a total of 14%
(7/50) of the tools. This result was expected because
architectural problems, such as modularity violations,
are a common source of the perception of technical
debt in software industry (Apa et al., 2020). These
results indicate that most of the existing TD tools fo-
cus on the quality assurance over source code and re-
lated services, i.e. quantifying code metrics, archi-
tectural smell, code smell, and checking code stan-
dards. This mainly occurs because there is a consoli-
dated set of metrics to the measurement of the source
code quality; therefore, static code analysis tools can
be used to extract TD indicators. For example, by us-
ing source code analysis tools, it is possible to identify
refactoring opportunities, detect security vulnerabili-
ties, highlight performance bottlenecks, and identify
bad programming practices, such as code smells. An-
other potential explanation for emphasis of the tools
in the source code is that the body of knowledge in
technical debt is still consolidating on software devel-
opment (Alves et al., 2016). Issues related to source
code are more visible to developers as they are more
focused on implementation artifacts.

It is also possible to observe that there are tech-
nical debts throughout many software artifacts of dif-
ferent stages of software development. However, few
tools utilise non-code artifacts as input. More specifi-
cally, only 4% (2 tools) of them apply a model-driven
approach to calculate technical debt related to model
elements, and only 1 tool addresses TD related to re-
quirements specifications. These tools have the ad-
vantage of acting on early phases of software devel-
opment, avoiding technical debt later consequences in
the projects (Giraldo and Osorio, 2017).

The literature reports that developers often lack
the motivation to address technical debt (Foucault
et al., 2018). In this context, some tools apply gam-
ification techniques to manage TD providing sugges-
tions for developers on where to focus their effort,
visualizations to track technical debt activities, and

Table 1: Technical Debt Tools by Main Purpose.

Main Purpose Tool Name

Architectural smell
detection

Arcan, Arcan C++, Desig-
nite, Designite Java, DV8,
Lattix, Sonargraph

Quantifying Architec-
tural metrics

Dependency Tool, Structure
101

Quantifying code met-
rics

CBRI Calculation, Code
Analysis, CodeScene,
DBCritics, DeepSource,
inFusion, Jacoco, ProDebt,
Sonarcloud, SonarQube,
Squore, Teamscale,
TEDMA, VisminerTD

Quantifying model
metrics

EMF-SonarQube, BPMN-
spector

Code smell detection CodeVizard, JSpIRIT, Nde-
pend, FindBugs, checkstyle

Cost benefit analysis AnaConDebt, CAST, FIT-
TED, JCaliper, MIND, TD
Tool

Decision-making Georgios Tool, TD-Tracker
Tool

Gamification Build Game, Themis
Pattern matching SAApy, DebtFlag, Debt-

grep, eXcomment, MAT,
SATD Detector

Project management Hansoft, Jira, Redmine
Requirements issues Requirements Specification

Tool

stimulating TD prevention. However, this kind of ini-
tiative is in an early phase since only 4% (2/50) of the
tools implement this approach.

The pattern matching approaches analyze the
source code to identify patterns that characterize tech-
nical debt. 12% (6/50) of the selected tools imple-
ment a solution based on pattern matching. Most of
pattern matching tools (3/6) are intended to recog-
nize self-admitted technical debt (SATD) from source
code comments. This kind of technical debt considers
that they are intentionally introduced and admitted by
developers.

The above-cited approaches, such as code smell
detection, have been developed to identify particu-
lar TD types to detect components that need to repay
debt. However, an important issue is to provide more
guidance for decisions about whether or not to pay off
particular TD instances at a given point in time (Guo
et al., 2016) (Seaman and Guo, 2011). The cost-
benefit analysis tools provide approximation methods
for helping in the prioritization of resources and ef-
forts concerning refactoring strategies. The tools in
this category represent 12% of the total. For example,
the AnaconDebt tool allows you to assess the prin-

Technical Debt Tools: A Systematic Mapping Study

91



cipal (cost of refactoring) and interest (current and
future extra costs) of the technical debt. Unfortu-
nately, the AnaconDebt is not open source and the
formula used to estimate the principal and interest
are confidential. Another highlight is JCaliper. This
tool applies a local search algorithm to obtain a near-
optimum design for the software. It also proposes
TD repayment actions (a sequence of refactorings) to
reach it. The distance quantifies the difference in the
selected fitness function and reflects the architectural
quality of the examined system. The distance also
translates to a number of refactorings required to con-
vert the actual system to the corresponding optimum
one.

A correlated category is decision-making tools,
4% (2/50) of the tools, that concentrates tools with
a reflection on the value of the TD from a more
business-driven approach taking into account other
aspects besides project-related benefit (Riegel and
Doerr, 2015). In this group, we call attention to the
TD Tracker tool. It presents an approach to create an
integrated catalogue as metadata from different soft-
ware development tasks in order to register technical
debt properties and support managers in the decision
process.

Finally, the project management category aggre-
gates 6% (3/51) of the tools. The tools in this group do
not address any specific TD type, focusing on track-
ing and monitoring technical debt. In this category,
we found tools like Hansoft, Jira and Redmine.

Concerning the target languages of the tools, we
have classified as language-specific the tools that are
specific to one particular language (e.g., C++). A to-
tal of 56% (28/50) of the tools are language-specific,
while the remaining 26% (13/50) of them are not
language-specific, and 18% (9/50) tools do not ad-
dress any specific language. The predominance of
language-specific tools is not a good indicator be-
cause they can not be reused across different tech-
nologies and languages. Therefore, their applicabil-
ity and portability in the future can be limited. How-
ever, language-specific tools have the advantage of
being more tailored to the domain. They have the
potential to address specific characteristics of the lan-
guages that allow better analysis. Our investigation
concluded that Java with 58% (29/50) of them, C#
with 22% (11/50), and C++ with 20% (10/50) are the
most common target languages.

At last, we analyzed whether a solution is an ex-
tension of other existing one or is a novel solution.
84% (42/50) of the tools are new tools and are not
based on other existing ones, while the remaining
16% (8/50) extends a previous solution. In this con-
text, our research found a limited number of tools that

provide extension mechanisms that allow third-party
development. SonarQube and Arcan were the tools
with most extensions available with three and two ex-
tensions, respectively. We considered as extensions
since the simple addition of new features until deriva-
tion for new tools based existing tool.

3.3 RQ3: What Are the TD Tools
Reported in the Literature?

The purpose of this research question is to analyze the
state of the art of TD tools from two different aspects:
(i) the explicit support to the technical debt concept;
and (ii) the research type.

Previous work (Mamun et al., 2019) reported the
lack of specialized tools to deal with the TD concept.
The explicit usage of the TD concept in the tools helps
to identify whether a particular tool aims to address
technical debt management (TDM) issues. This work
considers as a specialized tool those ones that model
or implement explicitly the TD concept/abstraction.
Otherwise, we classify them as a generic tool that is
adapted to deal with TD issues. In our study, we found
that 80% (40/50) of the tools provide explicit support
to the technical debt concept, while only 20% (10/50)
do not explicitly use the TD abstraction in the tool but
are used to address some kind of TD reported in the
respective paper.

To categorize the TD studies, we adapted the re-
search types classification suggested by (Wieringa
et al., 2005): (I) proposing new tools; (II) extending
existing tools; or (III) evaluating existing tools. The
proposition of new tools is present in 57% (27/47) of
the selected papers, indicating that the TD tools are
still in their maturing phase with new ones being pro-
posed over the last years. There is a large number
of researchers proposing their own solutions for ei-
ther recurrent or specific problems. The evaluation of
existing tools is the subject of 25% (12/47) papers,
which represents the second most recurrent research
strategy. This highlights the fact that researchers are
looking for some level of evidence about their pro-
posed tools by investigating and applying them in
practice, and conducting evaluations to validate their
claims. At the other end of the spectrum, the research
about the extension of existing tools is performed in
only 17% (8/47) of papers.

The results of this research question can help re-
searchers and practitioners (i) to have an overview of
the currently available tools for managing technical
debt, and (ii) to quantify the degree of scientific inter-
est on TD tools.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

92



3.4 RQ4: Which TD Types and
Activities Are Addressed by the
Proposed Tools?

This research question investigates how the 50 TD
tools identified in our systematic mapping study ad-
dress existing kinds of technical debt and technical
debt management (TDM) activities.

3.4.1 RQ 4.1: What Are Kinds of TD That the
Tools Focus On?

This subsection discusses the TD types addressed
by the selected tools. The present work points out
that the main TD types addressed by tools deal with
source code (60% - 30/50), architectural issues (40%
- 20/50) and design issues (28% - 14/50). Previous
studies (Rios et al., 2018) (Li et al., 2015) found simi-
lar results, meaning that researchers on technical debt
tools have maintained their interest in these TD types
over the last years. This trend is in line with the origi-
nal definition of technical debt, which is heavily influ-
enced by concepts coming from source code and re-
lated issues. As mentioned before, most of TD studies
concern code mainly because there are several avail-
able tools providing useful information about code
quality.

In compensation, there are many TD types (build,
defect, requirements, infrastructure) that are ad-
dressed by a reduced number of tools (respectively,
2, 2, 2 and 1). One potential reason is that despite
these TD types impact on the productivity of software
development, they do not have a direct impact on the
software quality as the code related TD types have.
Our mapping study shows that there are gaps for fu-
ture research in tools for supporting these TD types.

Our analysis also shows that some existing tools
(3/50) do not focus on a specific TD type. For ex-
ample, Hansoft1 and Jira2 are tools predominantly
designed for software development project manage-
ment. Hansoft allows recording technical debt in the
form of a list or with a graph which is manually elab-
orated. In turn, JIRA provides support to register the
technical debt items and assign them a priority score.
Thus, these tools are mainly used for the technical
debt management to explore the backlog. In compari-
son, TD-Tracker TD amount estimation besides tech-
nical debt management (Pavlič and Hliš, 2019). The
reduced number of tools that address project manage-
ment activities shows that there are opportunities for
improving the existing ones to provide efficient man-
agement of technical debts.
1https://www.perforce.com/products/hansoft
2https://www.atlassian.com/software/jira

Our investigation shows that most of the tools,
60% (30/50) of them, are tailored to a particular TD
type. On the other hand, 34% (17/50) of the tools
are not dedicated to a particular TD type, such as
SonarQube and Arcan. Finally, 6% (3/50) of the tools
do not address any specific TD type, such as TD-
Tracker. TD-Tracker implements an approach to tabu-
lating and managing TD properties to support project
managers in the decision process. It integrates with
different TD identification tools to import technical
debt already identified. This later kind of tool handles
with TD concept in a generic way. It is worth to high-
light that 16% (8/50) of tools are associated with two
TD types, notably the TD tools related to code, archi-
tecture and design. In this group, we have, for exam-
ple, Structure101 that address code and architectural
TD, and Lattix that handles design and architectural
TD. Finally, we found a huge gap on the TD tools
concerning the support to versioning debt, once this
is the unique one without a dedicated tool to support
it. The versioning debt refers to problems in code ver-
sioning, such as to identify unnecessary code forks or
the need to have multi-version support.

Comparing our results with previous work, we ob-
served an increase of tools that focus on architectural
TD over the last years. Li et al. (Li et al., 2015)
mentioned that only 10% of the tools provide support
to architectural TD against 40% found in our review.
Although a great deal of theoretical work on the ar-
chitectural aspects of TD has recently been produced,
there was still a lack of TD tools to deal with architec-
tural issues. However, this scenario has been chang-
ing in recent years. We can conjecture that this trend
will continue over the next years due to its significant
impact on the quality of software systems. Similarly,
design TD has also received more attention over the
last years. This reflects a better understanding of the
impact of design debt on the quality of software sys-
tems.

3.4.2 RQ 4.2: Which TD Management Activities
Do the Tools Focus On?

The results point out TD identification is widely sup-
ported by 80% (40/50) of the tools. TD measurement
also received huge support from the tools with 64%
(32/50) of them addressing this activity. We observe a
strong interest of the existing tools to provide support
to TD identification and measurement activities since
2015. However, comparing the growth rates between
TD identification and TD measurement activities, we
observe a small negative trend on TD identification,
meaning that a growing number of research work are
now focusing on TD measurement.

When we compared our results with the previous

Technical Debt Tools: A Systematic Mapping Study

93



ones found in literature, we recognise a spike in the
communication activity support in the last year. Li et
al. (Li et al., 2015) mentioned that only 28% of the
tools provide support to communication, contrasting
with 63% identified during our systematic mapping.
Tools like AnaConDebt supports the creation of a TD-
enhanced backlog, allowing the tracking of TD items,
and thus facilitating their estimation and communica-
tion among the stakeholders. We can conjecture that
this trend will continue over the next years since com-
munication activities make the technical debts more
visible and understandable to stakeholders allowing
them to be discussed and managed appropriately. In
line with this trend, we also identified an increase on
the support to the TD documentation activity, indi-
cating that researchers are studying and devising new
approaches to address technical debts that are not di-
rectly related to source code. We identified that TD
documentation is supported by 30% (15/50) of tools.
For example, Teamscale applies code quality analyses
to detect missing software documentation.

Regarding the TD prioritization activity, our map-
ping study found 13 tools, i.e. 23% of them, that han-
dle this activity. However, most of these tools only
provide means to assign priority to a given TD, thus
only a few tools implement an approach to assign a
priority to a TD automatically. Currently, there is no
consensus on what are the critical factors and how to
prioritize them. This context is mirrored in the frag-
mented support offered by the tools, leading to a lack
of widely used and validated set of tools specific to
TD prioritization (Lenarduzzi et al., 2019). Besides
that, our work revealed a scarcity of approaches that
account for cost, value, and resources constraint, and
a lack of industry evaluation of this kind of tool. Nev-
ertheless, this context reveals exciting gaps in the lit-
erature. We believe research on TD prioritization is
still evolving and is a promising research direction.

Next, we have the prevention and repayment ac-
tivities, both supported by 12% (6/50) of the tools.
Although there are several strategies proposed to TD
management in the literature, preventing the TD in-
sertion with explicit actions is not yet common prac-
tice (Rios et al., 2018). This can be the reason for
the relatively low number of tools that address this
activity. However, interestingly, we can also observe
that the scientific interest on prevention approaches
has been increasing since 2015. We conjecture that
this trend derives from the awareness of the technical
debt cost and the consensus that TD prevention can
occasionally be cheaper than its repayment. More-
over, prevention may also help other TD manage-
ment activities, as well as help in catching inexperi-
enced developer (Yli-Huumo et al., 2016). For ex-

ample, Themis (Foucault et al., 2018) is a customized
gamification tool that integrates with SonarQube and
version control tools with the aim of identifying and
measuring TD. Themis uses gamified features such
as points, leaderboards, and challenges as a way to
provide suggestions for developers on where to focus
their effort, and visualizations for managers to track
technical debt activities. The monitoring features pro-
vided by Themis become the technical debt more visi-
ble to the developers helping in the prevention of tech-
nical debts.

Regarding the repayment activity, it usually con-
cerns resolving technical debt through techniques
such as reengineering or refactoring. There are many
challenges in applying refactorings to repay technical
debt in large-scale industrial software projects (Surya-
narayana et al., 2015). For example, it is hard to en-
sure that the behavior of the software is unchanged af-
ter the refactorings. It is not surprising that the num-
ber of tools addressing this concern is low. For ex-
ample, JCaliper (Kouros et al., 2019) applies search-
based software engineering techniques as a means of
assessing TD and proposing a set of refactorings to
address it. It performs local search algorithms to ob-
tain a near-optimum solution and to propose TD re-
payment actions, automatically extracting the num-
ber, type and sequence of refactoring activities re-
quired to obtain the design without TD.

Our study also identified that 78% (39/50) of the
tools are dedicated to more than one TD activity. The
tools are usually associated with at least two different
TD activities, like Arcan that deals with identification
and measurement activities, or SATD that provides
support to TD monitoring and identification. On the
other hand, 22% (11/50) of the tools are specialized in
just one TDM activity, like FITTED that only focuses
on measurement.

Figure 4 presents the different level of attention re-
ceived by each TDM activity and TD type. The num-
ber into the bubbles represents the number of tools
associated with both a TD type and a TDM activity.
Among the ten TD types, as mentioned before, the TD
code is the most investigated in the selected papers.
It is also the TD type that is approached for all TD
activities, especially identification and measurement.
Therefore, code is the most valuable source of infor-
mation for technical debt tools. Most of the technical
debt tools exploit static code analysis techniques, so
this finding is in line with the expectations.

The RQ4 results are useful to inform practitioners
what approaches they have addressing specific TDM
activities, and also to help researchers to identify re-
search gaps in approaches for various TDM activities.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

94



Co
de

De
sig
n
Ar
ch
.

Te
st

Do
c.

Re
q.

Bu
ild

De
fec
t
Inf
ra Ve

r.
An
y

Ident.

Meas.

Prior.

Prev.

Monit.

Repay.

Doc.

Com.

24

20

9

3

9

5

11

15

12

8

2

1

1

1

3

6

17

15

4

2

2

2

7

11

5

5

2

1

2

1

5

4

2

2

0

1

1

0

3

2

2

1

0

0

1

0

1

1

2

1

0

0

1

0

2

1

2

1

1

0

1

1

2

2

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

3

1

3

1

2

0

3

2

Figure 4: Relationship between TD types and TDM activi-
ties.

3.5 RQ5: What Kind of Studies Have
Been Conducted to Evaluate TD
Tools?

The motivation behind this research question is an
evaluation of the potential for industrial adoption of
existing TD tools. From a practitioner’s point of view,
it is important to have a reasonable level of confidence
to use a given TD tool in software projects. In this
context, there are different kinds of empirical studies
that could be used to gain evidence about the feasibil-
ity and effectiveness of proposed tools. The applica-
tion of the empirical paradigm to support an evalua-
tion in software engineering is important because they
contribute to a higher level of maturity of the tools and
better acceptance in the software industry.

Wohlin et al. (Wohlin et al., 2012) classify the
studies according to the research method used as fol-
lows: Case study, Survey (questionnaire, observation,
interview), and Experiment. Besides, we have in-
cluded a new category called Not reported; represent-
ing the papers that do not make explicit the research
method of the evaluation.

Our work points out that most of them - 46.81%
(22/47) - applied Case Study as the methodology to
evaluate their research. The second most frequent
study type was Survey, present in 21.28% (10/47) of
the papers. The third most used study, the Experi-
ment methodology was the least used to the evalua-
tion of TD tools, present in only 14.89% (7/47) of the
papers. Finally, 17.02% (8/47) of the studies do not
present any formal or systematic evaluation. The lit-
erature reports that both academia and industry have

significant interest in the TD tools (Li et al., 2015). It
is important to emphasize that our study only assesses
if the mentioned tools have some evaluation evidence
of their usage based on the selected papers of our sys-
tematic review.

We also collected data on the type of re-
search methodology of the studies by discriminat-
ing among qualitative, quantitative, or mixed analy-
sis approaches. The data reports that 17% (8/47) of
studies did not report any analysis approach. The
most frequent type of analysis was qualitative, which
is present in 44% (21/47) of selected papers. 36%
(17/47) of them used a quantitative approach. Fi-
nally, we found that mixed analysis (qualitative/quan-
titative) was used only in 19% (9/47) of the studies.

We also identified that SonarQube (7 papers),
CodeScene (3 papers), TeamScale (3 papers) and
SonarGraph (3 papers) were the most evaluated tools
by the literature.

4 THREATS TO VALIDITY

In this section, the threats to validity of our study are
described:
Construct Validity. The procedure of our map-
ping study followed the guidelines for performing
secondary studies proposed by Kitchenham et al.
(Kitchenham and Charters, 2007). First of all, sys-
tematic mapping studies are known for not guaran-
teeing the inclusion of all the relevant works on the
field. A possible lack of a set of keywords in the
string search defined for the study can exclude some
relevant papers. To deal with this threat, we used a
broader search criterion to include a high number of
related papers. Another problem can be the definition
of what is a technical debt tool. We consider as TD
tools the ones that the authors reported as dealing with
TD concepts in their respective papers.
Internal Validity. In order to reduce this threat, the
stages of selection of the studies and data extraction
were carried out by three PhD students using a proto-
col rigorously defined. The results found by each one
were tabulated and compared so that any kind of bias
could be identified, and when in disagreement, the au-
thors could debate and a consensus was reached.
External Validity. This threat concerns the general-
izability of the obtained results (Wohlin et al., 2012).
The most severe potential external threat to the valid-
ity of our study is our primary studies not being repre-
sentative of state of the art on technical debt tools. To
avoid it, we performed an automatic search in the five
most popular electronic databases. We are reasonably
confident about the construction of the search string

Technical Debt Tools: A Systematic Mapping Study

95



since the used terms are generic, allowing us to ex-
plore the field in a wide scope. This was reflected on
the significant number of papers gathered during the
process.
Conclusion Validity. Bias on the data extraction pro-
cess may result in the inaccuracy of the extracted data
items, which may affect the analysis and classifica-
tion of the results of the selected studies. It was nec-
essary to guarantee that the data extraction process
was aligned with our research questions. We also
mitigated potential threats related to conclusion valid-
ity by applying the following actions. First, the data
items extracted in this mapping study were discussed
among the researchers and agreement on the meaning
of each data item was achieved. Second, a trial data
extraction was performed among researchers, and dis-
agreements on the results of the trial data extrac-
tion were discussed with two additional researchers
to achieve a consensus. Finally, the data extraction
results were checked by two researchers, and again
disagreements were discussed and resolved with two
additional researchers. All these actions improved the
accuracy of the extracted data items.

5 RELATED WORK

Verdecchia et al. (Verdecchia et al., 2018) conduct a
secondary study that focuses on the analysis of the lit-
erature related to architectural technical debt (ATD).
The authors selected and inspected 47 primary stud-
ies to provide a characterization for ATD identifica-
tion techniques in terms of publication trends, their
characteristics, and their potential for industrial adop-
tion. Our study differs from theirs by zooming out the
analysis of TDM tools, not being restricted to only
ATD related tools. Their work unveils some promis-
ing areas for future research on ATD, such as (i) the
exploitation of the temporal dimension when identify-
ing ATD; and (ii) the related resolution of ATD. The
authors highlight that further industrial involvement
when formulating, designing, and evaluating the ATD
identification techniques is needed.

Lenarduzzi et al. (Lenarduzzi et al., 2019) con-
ducted a systematic literature review about techni-
cal debt prioritization. Their work considered pa-
pers published before December 2018. The study was
based on 37 selected studies, which represent the state
of the art concerning approaches, factors, measures
and tools used in practice or research to prioritize
technical debt. They identified 7 tools that address
the technical debt prioritization. The main outcome
of their study is that there is no consensus on what are
the important factors to prioritize TD and how to mea-

sure them. Their results report that code and archi-
tectural debt are by far the most investigated kind of
debt when considering the prioritization. This trend
was confirmed by our study, indicating that existing
TD tools focus more on code and architectural issues.
Another finding confirmed by their and our study is
the lack of a solid, validated and widely used set of
tools specific to TD prioritization.

Behutiye et al. (Behutiye et al., 2017) report the
results of a systematic literature review that addressed
the concept of technical debt in the agile software de-
velopment context. The authors analyzed 38 papers
out of 346 studies to pinpoint research areas of inter-
est, TD cause and effect classifications, management
strategies and tools. They mentioned the DebtFlag
and NDepend as effective tools that can be used in
agile development to detect TD in source code. Their
findings indicate the need for more tools, models, and
guidelines that support the TD management in agile
development.

Ampatzoglou et al. (Ampatzoglou et al., 2015)
conducted a systematic literature review to under-
stand which are the most common financial terms
used in the context of TD management. The col-
lected data produced a glossary and a classification
schema of financial approaches used in TD manage-
ment. They identify seven tools that use this kind of
strategy to support TD management. We examined
five of them in our study. The search protocol applied
in this study did not capture only two tools: AIP and
Microsoft Mapper Tree. We excluded these tools be-
cause their papers focused on static code analysis, but
do not make explicit mention to any technical debt
concept.

Li et al. (Li et al., 2015) conducted a systematic
mapping study to provide an overview of the cur-
rent state of research on technical debt management
(TDM), including related activities, approaches, and
tools. They pointed out a list of 10 TD types, 8 TD
management activities, and 29 tools for TD manage-
ment extracted from 94 primary studies. Regarding
technical debt tools, they report their functionality,
vendor, TD types and artifacts covered. The research
indicates that there is a demand for more dedicated
TD management tools. They identified that only 4
tools out of 29 tools are dedicated to TD management.
The other 25 tools are adapted for TD identification
from other software development areas such as static
analysis tools or code smell detection tools. One simi-
larity between their study and ours is the considerable
number of analyzed TD tools in both studies. All the
29 tools identified in their study was selected in our
systematic mapping study.

Avgeriou et al. (Avgeriou et al., 2020) present an

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

96



overview of the current landscape of TD tools, focus-
ing on those offering support for measuring technical
debt. The scope of their research limits to examine
code, design and architectural TD, comparing them
based on the features offered, popularity, empirical
validation, and current shortcomings. Our study dif-
fers from the Avgeriou et al.’s study because we focus
on different kinds of TD tools, not only the ones that
provide the TD measurement. Therefore, our study
has a broader scope and provides a mappping of state
of the art of existing TD tools. Their study focused
on a set of 9 tools: CAST, Sonargraph, NDepend,
SonarQube, DV8, Squore, CodeMRI, Code Inspector,
and SymfonyInsight. The search protocol performed
in our study caught the first 6 tools. The last three
tools are less popular and have few research work dis-
cussing them (Avgeriou et al., 2020).

None of the mentioned studies aims: (i) to char-
acterize the existing TD tools; (ii) to cover the differ-
ent contexts and activities of software development
in which they are applied; and (iii) to investigate the
different TD types supported by them. The goal of
our work, therefore, differs from the other existing
secondary studies in terms of the broad scope of TD
tools.

6 CONCLUSIONS

In this paper, we performed a systematic mapping
study of 47 primary studies and produced an overview
of the state of the art of TD tools. The presented re-
sults indicate an increasing interest from the commu-
nity about technical debt and how to manage it prop-
erly in a automated way. All the additional details
about our study can be found in (td-tools study, 2020).

We identified a total of 50 tools that supports dif-
ferent TD types and activities. Comparing with pre-
vious studies, it represents a huge increasing on the
number of TD tools that have been proposed over the
last years. 80% (40/50) of these tools provide explicit
support to the technical debt concept. Most of tools
offer support to managing TD related to the system
code, design and/or architecture. This confirms the
leading role that code is playing in the field. On the
other hand, there is a growing number of TD tools
that deals with artifacts other than source code, such
as models and requirements. We believe it is fruit-
ful to design and develop tools dealing with artifacts
other than source code to manage TD.

A total of 56% (28/50) of the tools are language
specific, while the remaining 44% (22/50) of them
do not focus in a specific language. Java is the most
common target language with 58%. We also found

that 84% (42/50) of the tools are original solutions
and only 16% represent extensions of existing tools.
SonarQube is the current tool with the highest number
of extensions.

The different TD management activities received
different levels of attention by the tools: (i) most of
tools have focused on the identification and measure-
ment activities; (ii) on the other hand, the TD preven-
tion and replacement activities are still not supported
by many existing tools. However, we observed that
the scientific interest in prevention approaches is in-
creasing. We can conjecture that this trend derives
from the awareness of the technical debt cost and that
prevention can occasionally be cheaper than its repay-
ment. Similarly, we can notice increasing of the sup-
port to the prioritization activity. We believe that the
popularization of the TD concept in software devel-
opment might give rise to new trends for the TDM
activities addressed by the tools.

As future work, we plan to conduct a study with
practitioners and researchers to compare the tools
based on concrete TD management activities and
tasks. This would complement the current study with
information on the usability and usefulness of the
tools.

ACKNOLEDGEMENTS

This work is partially supported by INES
(www.ines.org.br), CNPq grant 465614/2014-0,
CAPES grant 88887.136410/2017-00, and FACEPE
grants APQ-0399-1.03/17 and PRONEX APQ/0388-
1.03/14.

REFERENCES

Allman, E. (2012). Managing technical debt. Commun.
ACM, 55(5):50–55.

Alves, N. S. et al. (2016). Identification and management
of technical debt: A systematic mapping study. Infor-
mation and Software Technology, 70:100 – 121.

Ampatzoglou, A. et al. (2015). The financial aspect of man-
aging technical debt: A systematic literature review.
Information and Software Technology, 64:52–73.

Apa, C. et al. (2020). The perception and management
of technical debt in software startups. In Fundamen-
tals of Software Startups: Essential Engineering and
Business Aspects, pages 61–78. Springer International
Publishing, Cham.

Avgeriou, P. et al. (2016). Managing technical debt in soft-
ware engineering (dagstuhl seminar 16162). Dagstuhl
Reports, 6(4):110–138.

Technical Debt Tools: A Systematic Mapping Study

97



Avgeriou, P. et al. (2020). An overview and comparison of
technical debt measurement tools. IEEE Software.

Behutiye, W. N. et al. (2017). Analyzing the concept of
technical debt in the context of agile software devel-
opment: A systematic literature review. Information
and Software Technology, 82:139–158.

Foucault, M. et al. (2018). Gamification: a game changer
for managing technical debt? A design study. CoRR,
abs/1802.02693.

Giraldo, F. D. and Osorio, F. (2017). Evaluating quality is-
sues in BPMN models by extending a technical debt
software platform. In International Conference on
Conceptual Modeling, pages 205–215.

Guo, Y. et al. (2016). Exploring the costs of technical debt
management — a case study. Empirical Softw. Engg.,
21(1):159–182.

Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software en-
gineering. Technical report, Technical report, Ver. 2.3
EBSE Technical Report. EBSE.

Kouros, P. et al. (2019). JCaliper: search-based techni-
cal debt management. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
SAC ’19, pages 1721–1730. Association for Comput-
ing Machinery.

Lenarduzzi, V. et al. (2019). Technical debt prioritization:
State of the art. A systematic literature review. CoRR,
abs/1904.12538.

Li, Z. et al. (2015). A systematic mapping study on techni-
cal debt and its management. Journal of Systems and
Software, 101:193 – 220.

Mamun, M. et al. (2019). Evolution of technical debt: An
exploratory study. In International Workshop on Soft-
ware Measurement and International Conference on
Software Process and Product Measurement (IWSM
Mensura), volume 2476, pages 87–102.

Martini, A., Bosch, J., and Chaudron, M. (2015). Inves-
tigating architectural technical debt accumulation and
refactoring over time: A multiple-case study. Infor-
mation and Software Technology, 67:237 – 253.

Pavlič, L. and Hliš, T. (2019). The technical debt manage-
ment tools comparison. In Eighth Workshop on Soft-
ware Quality Analysis, Monitoring, Improvement, and
Applications, pages 10:1—-10:9.

Petersen, K. et al. (2015). Guidelines for conducting sys-
tematic mapping studies in software engineering: An
update. Information and Software Technology, 64:1 –
18.

Riegel, N. and Doerr, J. (2015). A systematic literature re-
view of requirements prioritization criteria. In Fricker,
S. A. and Schneider, K., editors, Requirements Engi-
neering: Foundation for Software Quality, pages 300–
317, Cham. Springer International Publishing.

Rios, N. et al. (2018). A study of factors that lead
development teams to incur technical debt in soft-
ware projects. In 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications
(SEAA), pages 429–436.

Rios, N. et al. (2018). A tertiary study on technical debt:
Types, management strategies, research trends, and

base information for practitioners. Information and
Software Technology, 102:117–145.

Seaman, C. and Guo, Y. (2011). Measuring and monitoring
technical debt. In Zelkowitz, M. V., editor, Advances
in Computers, volume 82 of Advances in Computers,
pages 25 – 46. Elsevier.

Suryanarayana, G. et al. (2015). Chapter 8 - repaying
technical debt in practice. In Suryanarayana, G.,
Samarthyam, G., and Sharma, T., editors, Refactoring
for Software Design Smells, pages 203 – 212. Morgan
Kaufmann, Boston.

td-tools study (2020). Project title. https://github.com/
td-tools-study/td-tools-study.

Verdecchia, R. et al. (2018). Architectural technical debt
identification: The research landscape. In Proceed-
ings of the 2018 International Conference on Techni-
cal Debt, TechDebt ’18, page 11–20, New York, NY,
USA. Association for Computing Machinery.

Wieringa, R. et al. (2005). Requirements engineering paper
classification and evaluation criteria: A proposal and
a discussion. Requir. Eng., 11(1):102–107.

Wohlin, C. et al. (2012). Experimentation in software engi-
neering. Springer Science & Business Media.

Yli-Huumo, J. et al. (2016). How do software development
teams manage technical debt? – an empirical study.
Journal of Systems and Software, 120:195–218.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

98


