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Abstract: The mining and metallurgical industry seeks to adapt to Industry 4.0 with the implementation of Artificial
Intelligence in the processes. The purpose of this paper is to develop the first steps of an Artificial Intelligence
in Deep Learning with Edge Computing to recognize the quasi-particles from the Hybrid Pelletized Sinter
(HPS) process and provide its particle size distribution. We trained our model with the aXeleRate tool using
the Keras-Tensorflow framework and the MobileNet architecture and tested it with an embedded system using
the SiPEED MaiX Dock board. Our model obtained 98.60% accuracy in training validation using real and
synthetic images and 100% accuracy in tests with synthetic images and 70% recall. The tests’ results indicate
the feasibility of the proposed system, but with probable overfitting in the training stage.

1 INTRODUCTION

The mining and metallurgical sectors are some of the
most traditional productive areas (Kinnunen and Kak-
sonen, 2019). In the later years, innovation and tech-
nology have developed new production and devel-
opment methods (Robben and Wotruba, 2019; Mar-
donova and Choi, 2018; Sinoviev et al., 2016; Chen
et al., 2016; Shibuta et al., 2018). Thus, innovative
projects are crucial for these processes, as they have
a high economic interest. In the steel industry, one of
the primary process parameters is the granulometric
distribution of materials (Zobnin et al., 2018). This
concept means the size distribution of the present par-
ticles, which allows their employability in the produc-
tive process.

When transiting through the production plant, en-
gineers and operators need to know the granulometric
distribution continually. This information is essential
as a process parameter or for making decisions under
critical conditions. Along the steel industry process,
the materials are transported using conveyor belts in
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many stages. By itself, the process provokes many
variations in the materials’ features due to humidity,
source of the material, among other factors. These
granulometric distribution changes can jeopardize the
process if they are not within the required specifica-
tions (Januzzi, 2008).

Thus, implementing an algorithm in an embed-
ded system that classifies the grains according to their
granulometric distribution provides a path to solve
this problem and improve the production process. For
this matter, we propose using a deep learning algo-
rithm embedded in an optimized computing device to
classify image samples according to their granulomet-
ric distribution. The usage of artificial intelligence on
edge computing devices is still an open problem, and
the usage of specialized Edge AI devices allows the
expansion of deep learning towards the IoT (Internet
of Things) (Deng et al., 2020).

In this first conjecture, the user must photograph
a sample of the material in the conveyor belt. The re-
sult is accessible through display and also through a
wireless network connection. The implementation of
an Edge Computing solution avoids a large data trans-
mission throughput. This trend pushes the computing
and communication resources to the edge, with faster
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services and answers to the final user (Deng et al.,
2020).

The fast response to detected conditions enables a
better process control. For instance, a granulometry
pattern above the expected is an indicator of elevated
moisture, which can cause clogging in the material
transfer chutes between the conveyor belts. This event
can paralyze the whole production process, exposing
the operators to risk conditions and losing productiv-
ity.

In the industry’s routine, this process can take a
significant amount of time and a lack of quality guar-
antee. In many cases, this process takes substantial
time shifts, making it impossible to enable quick re-
sponses due to production variable changes. In the
current applications, the verification of certain ma-
terials’ granulometric distribution happens through a
manual process. Figure 1 displays a real sample of
the material obtained from the productive process.

Figure 1: Real Sample example taken from one of the stages
of the steel industry process.

In this task, one operator sample material from the
productive process and manually analyze it in the lab-
oratory to obtain the granulometric distribution. This
procedure happens several times during the day, and
the obtained information is used as a parameter for
the decision making process.

Thus, the manual analysis motivated the develop-
ment of a Deep-Learning-based appliance to detect
quasi-particles. Quasi-particles are material agglom-
erates formed in the HPS process (Januzzi, 2008). We
also embedded this algorithm on a specialized edge
computing device to detect quasi-particles from the
Hybrid Pelletized Sı́nter (HPS) process from the steel
industry.

This work is relevant because it consists of imple-
menting a deep learning method in an edge device for
application aimed at the industrial environment, in-
cluding practical tests on embedded hardware.

This paper is organized as follows: In Section 2,
we review the literature and some ground concepts
of this topic. Section 3 presents some of state-of-

the-art the related work. In Section 4, we present a
description of the appliance features, including the
Deep Learning algorithm and the specialized hard-
ware. In Section 5, we explain the employed exper-
imental methodology. The results are presented in
Section 6, and we present further discussions in Sec-
tion 7.

2 THEORETICAL REFERENCES

In this section, we present some theoretical references
about the concepts applied to develop the proposed
solution. This proposal’s main element is a Convo-
lutional Neural Network (CNN) applied to an Edge
Computing solution.

Some of the problems faced in this matter are sim-
ilar to others presented in the literature. For instance,
we observed similar features from this work in pre-
cision agriculture appliances (Keresztes et al., 2018;
Saleem et al., 2019), and even in counting people in
agglomeration (Zhang et al., 2020). Among the pre-
sented challenges, we enforce some aspects:

• Occlusion: Often, quasi-particles overlap one an-
other, causing partial occlusion;

• Complex Background: Homogeneity in shape,
texture, or color from the background and the ob-
jects;

• Rotation: Images are ofter rotated in different an-
gles;

• Illumination Changes: Images are exposed to dif-
ferent levels of light throughout the daytime.

2.1 Deep Learning in Dense Scenes

Lecun et al. (LeCun et al., 2015) state that Deep
Learning (DL) is a set of techniques from the Ma-
chine Learning universe, often referred to as Arti-
ficial Intelligence. These algorithms’ formalization
comes from the Artificial Neural Networks (ANN),
containing multiple hidden layers and massive train-
ing datasets. According to Zhang et al. (Zhang et al.,
2020), DL algorithms represent state of the art on Ma-
chine Learning techniques. Nonetheless, the detec-
tion of objects in dense scenes is particularly chal-
lenging.

Zhang et al. (Zhang et al., 2020) separate dense
scenes into two different classes: quantity dense
scenes and internally dense scenes. In the first one,
there is a large number of objects of interest in the
scene. The second one happens when the objects have
dense inner attributes. In both cases, labeling the data
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is a significant challenge, as the classification is af-
fected by noise and resolution on small objects de-
tection. According to these authors, the best DL ar-
chitectures for classification in dense scenes are VG-
GNet, GoogLeNet, ResNet. Also, the best architec-
ture for object detection are DetectNet and YOLO.

Gao et al. (Gao et al., 2020) analyzed 220 re-
lated works to understand the crowd counting pro-
cess systematically. These authors point out that the
main challenge is the detection of small objects in a
scene. This trait happens as in crowd scenes, the in-
dividuals’ heads are often too small. According to the
authors, the most successful techniques for counting
crowds based on detection are SSD, YOLO, and R-
CNNs. Although these architectures had success in
sparse scenes, these networks had unsatisfactory re-
sults given scenes with occlusion, disorder, and dense
background. Furthermore, SSD is not efficient with
small objects on the images, as its intermediate layers
resource mapping may dilute the detected object’s in-
formation. For the R-CNN, Zhou et al. (Zhou et al.,
2019a) proposed an improvement based on PCA Jit-
tering to enhance the detection of small objects on the
Faster R-CNN architecture.

The presented work display some of the chal-
lenges in developing Convolutional Neural Networks
(CNNs) capable of analyzing dense scenes with oc-
cluded objects. This issue is more significant when
the dataset complexity increases. Developers often
follow a synthetic database procedure to solve this
problem, with further validation with actual real data.
The obtained results are usually good, except if there
is a substantial deviation from the synthetic and real
datasets (Zhang et al., 2020).

2.2 Edge AI

Another critical aspect of the solution is the algorithm
persistence in edge computing applications. The evo-
lution of embedded computing technologies raises the
challenge of providing machine learning as services
in edge applications with quality. Thus, the creation
of reduced models and specialized hardware create
the concept of an “Edge AI” (Wang et al., 2019). This
novel perspective targets using machine learning in
edge devices with independence from cloud applica-
tions.

Nonetheless, developing machine learning and es-
pecially DL models for edge computing devices is
a challenging task. Deep Neural Networks (DNNs)
usually are computationally intensive models (Li
et al., 2019). On the one hand, DNNs usually require
much computational power. On the other hand, mov-
ing this application to the cloud requires a high data

throughput through a network infrastructure. The in-
creasing number of devices can easily exceed the net-
working capacities (Lin et al., 2019).

Zhou et al. (Zhou et al., 2019b) state that there are
some issues to solve for enabling the Edge AI devel-
opment. Among these challenges, we enforce:

• Programming and Software Platforms;

• Resource-Friendly Edge AI;

• Computational-Aware Techniques;

Another aspect to be considered in the development
of novel edge computing solutions is the hardware
constraints. As stated before, most DL architectures
require a high computational charge. An outcome
for this problem is integrating dedicated hardware
to optimize Edge AI solutions (Mazzia et al., 2020;
Ohbuchi, 2018; Karras et al., 2020).

3 RELATED WORK

Given the importance of the iron ore agglomeration
stage for the later stages of the process, several stud-
ies have been carried out to control and monitor the
variables that interfere in the sintering and pelletizing
processes.

Dias (Dias, 2018) proposed a granulometric con-
trol system for iron ore pellets by controlling the wa-
ter injection in the pellet drum, which, until then, was
done manually by the operators according to the need
of the process. The results showed that water addition
tends to increase the pellets’ granulometry and that
the control tends to homogenize the pellets. However,
for the controlled variable to present stabilization, it
would be necessary to study other parameters, such
as water saturation due to pellet recirculation outside
the required particle size range.

Studies on the influence of raw materials in the
cold agglomeration process of the HPS process were
also studied, as shown in Januzzi (Januzzi, 2008). The
work had the objective to characterize the raw mate-
rials, study the contribution of each of them in the
cold agglomeration process, and adjust the parame-
ters to improve the process’s performance. One of the
measures taken was the changes in the granulomet-
ric distribution curves of serpentinite, limestone, and
manganese ore, which promoted an improvement in
the quasi-particles’ average size. Consequently, this
measure causes “a positive effect on the suction pres-
sure in the sinter allowing the increase of layer height,
gain in productivity and sinter production” (Januzzi,
2008), once again demonstrating the importance of
granulometric distribution in the iron ore agglomera-
tion process.
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For the case where the manual control depended
on the area operators to obtain the adequate granu-
lometry of the raw pellet, Passos et al. (Passos et al.,
2014) developed its work in the implementation of an
advanced control system (SCAP) intending to control
the granulometry of the pellets raw materials acting
on the speed and feeding of the disks. The results
showed the stability of the production process, mainly
in controlling the pellets’ granulometric distribution,
the stability of the dosage of inputs, and the hardening
furnace’s increased permeability.

To characterize ultrafine materials and average
size consumption, Gontijo (Gontijo, 2018) performed
previous image treatment using the Scanning Elec-
tronic Microscope (SEM). The particles in the im-
ages were digitized, scaled using software, classified
by colors in size ranges (intervals), and, after clas-
sification, graphs of granulometric distributions were
generated.

4 EDGE AI HARDWARE
PRESENTATION

In this work, we decided to implement the solution us-
ing the SiPEED MAiX Dock board, displayed in Fig-
ure 2. Some performance numbers of the board are
shown in Table 1. The work of Klippel et al. (Klip-
pel et al., 2020) demonstrates the comparison between
SiPEED MaiX BiT, Raspberry Pi 3, and Jetson Nvidia
Nano cards. The authors implemented the SiPEED
MaiX BiT for the detection of tears in conveyor belts.
The SiPEED MaiX Dock board is similar to the one
used in this work, and we follow the methodology
proposed by Klippel et al.

This platform has an onboard device with artificial
intelligence (AI) hardware acceleration. MAiX is the
module explicitly developed for SiPEED, designed to
perform AI. It offers high performance considering a
small physical and energy area, allowing the implan-
tation of high precision AI and a competitive price.
The main advantages of this device are:

• Complete hardware and software infrastructure to
facilitate the deployment of AI-based solutions;

• Good performance, small size, low energy con-
sumption, and low cost, which allows a broad de-
ployment of high quality AI on board;

• It can be used for an increasing number of indus-
trial use cases, such as predictive maintenance,
anomaly detection, machine vision, robotics, and
voice recognition.
The SiPEED MAiX acts as the master controller,

and the hardware has a KPU K210. MaixPy is a

Figure 2: SiPEED M1 Dock.

Table 1: Embedded platform performance numbers.

Parameter Characteristics
CPU 64-bit RISC-v processor and core
Chipset K210 - RISC - V
Image Recognition qvg at 60fps / vg at 30fps
Clock (GHz) 0.40
AI resources KPU
OS/Language uPython
Dimensions (mm) 60x43x5

framework designed for AIoT programming, prepare
on an AIoT K210 chip, and based on the Micropy-
thon syntax. MicroPython is a lean and efficient
implementation of the Python 3 programming lan-
guage, which includes a small subset of the standard
Python library, and is optimized to run on micro-
controllers and in restricted environments, facilitating
programming on the K210 hardware. MAiX supports
a fixed-point model that a conventional training struc-
ture trains according to specific restriction rules and
has a model compiler to compile models in its model
format. It is compatible with network architectures
Tiny-Yolo and MobileNet-v1.

The Kendryte K210 is a dual-core RISCV64 SoC
with AI capability that has machine vision capabili-
ties and can perform low energy consumption Convo-
lutional Neural Networks (CNNs) calculations, with
features for object detection, image classification, de-
tection and face recognition, obtaining target size and
coordinates in real-time and obtaining the type of tar-
get detected in real-time. Figure 3 displays the K210
block diagram (ken, 2018). The KPU is a general-
purpose neural network processor with internal con-
volution, normalization, activation, and pooling oper-
ations. According to the manufacturer, it also has the
following characteristics:

• Supports the fixed-point model that the conven-
tional training structure trains according to spe-
cific restriction rules;

• There is no direct limit on the number of network
layers, and each layer of the convolutional neural
network parameters can be configured separately,
including the number of input and output chan-
nels, the width of the input and output line, and
the height of the column;

• Support for 1x1 and 3x3 convolution kernels;
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• Support for any form of activation function;

• The maximum size of the supported neural net-
work parameter for real-time work is from 5MiB
to 5.9MiB.

Figure 3: Block diagram of K210.

For training, the aXeleRaTe framework, a Keras-
based framework for AI on the Edge, was used to run
computer vision applications (image classification,
object detection, semantic segmentation) on edge de-
vices with hardware acceleration. AXeleRate simpli-
fies the training and conversion of computer vision
models and is optimized for workflow on the local
machine and Google Colab. Supports conversion of
trained model to: .kmodel (K210) and .tflite formats.

Figure 4 displays the process of using aXeleRate,
with the main steps indicated by the blue circles. In
(1), the dataset is loaded from Google Drive for train-
ing in the Keras-Tensorflow framework. Then (2), the
model is delivered in the .h5 format for classification
and returns to Tensorflow (3) to be converted into the
.tflite format (4). Thus, it is delivered to nncase (5)
to be compiled into the format .kmodel (6), which is
executed by KPU (7).

This work’s main contribution is the implementa-
tion of a deep learning method on an edge device for
application aimed at the industrial environment, in-
cluding practical tests on embedded hardware.

5 EXPERIMENTAL
METHODOLOGY

This section assesses the experimental methodology
used to validate the appliance, given the targeted
hardware. For this matter, we present the employed

Figure 4: Training and compilation with aXeleRate.

dataset, training process, and evaluation metrics. We
test a pilot application classifier’s performance and
validate the model’s transfer into the desired hard-
ware.

5.1 Dataset

We generated a dataset with 1368 images to create a
pilot appliance, containing 1140 for training and 228
for validation. The dataset has three different classes:
quasi-particle, non-category, and empty. We also
added 343 synthetic images produced on the bench-
scale for the quasi-particle class training, as presented
in Figure 5. These images were generated to avoid
the problems of overlapping and occlusion of the par-
ticles. We also added another 343 images of sam-
ples of quasi-particles carried out in a company in
the mining-metallurgical sector with real data to con-
tribute to the quasi-particle training dataset.

Figure 5: Image of dataset developed on bench-scale.

5.2 Training the Deep Learning Model

We conducted the training of the deep learning model
on the Google Collaboratory platform. This process
was carried out using the aXeleRate1 tool. This appli-
cation is a tool for training classification and detection

1https://github.com/AIWintermuteAI/aXeleRate
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models developed using the Keras/Tensorflow frame-
work.

To perform the desired task, we chose to use the
MobileNet as CNN architecture. We used version
0.75 MobileNet-224 v1, configured as a classifier,
with 224 inputs, two layers fully connected with 100
and 50 neurons, and a dropout of 0.5. The training
session held thirty training seasons, and the learning
rate adopted was 0.001. The initial weights of the
model were loaded, considering the previous training
with the ImageNet dataset. Also, data augmentation
was performed during the training.

5.3 Evaluation Metrics

At first, the classification model’s performance was
calculated using the Confusion Matrix, which shows
the classification frequencies for each class of the
model. From this data, we extract the parameters:
precision, given by (1), recall given by (2) and overall
accuracy F1, given by (3). These parameters define
how well the model worked, how good the model is
for predicting positives, and the balance between the
precision and the recall of the model.

For this matter, we followed the presented defi-
nitions: TP is a true-positive sample, FP is a false-
positive sample, TN is a true-negative sample, and
FN is a false-negative. TP occurs when the main class
prediction is correct, and FP when it is mispredicted.
TN occurs when the alternative class prediction is cor-
rect and FN when it is mispredicted.

precision =
T P

T P+FP
(1)

recall =
T P

T P+FN
(2)

F1 = 2∗ precision * recall
precision + recall

(3)

5.4 Edge AI Construction

We assembled a SiPEED Dock plate for the execution
of the bench-scale model with synthetic images. For
this test, we used two Python scripts used for the tests.
The first to capture photos with 224x224 resolution
and storage on the SD card. The second to test the
model from the storage data set previously stored on
the SD card.

6 RESULTS

We present here the obtained results from the appli-
cation of this procedure. Our preliminary results indi-

cate the system feasibility and show the constraints to
transport the model into the Edge AI device.

6.1 Training Model Performance

The training elapsed time was 54 minutes, reaching
an accuracy of 98.60%. Figure 6 displays the evolu-
tion of the accuracy throughout the training stage. As
displayed in the graph, the model’s training converged
in just ten iterations, indicating that the model had no
great difficulty in differentiating the classes of images
present in the database.

Figure 6: Training graph.

To validate the model, we created a dataset with 228
images. These frames were divided into three classes,
containing 76 images each class: quasi-particle, non-
category, and empty (empty refers to the same tray,
but without the presence of quasi-particles). Table
2 displays the confusion matrix considering quasi-
particles as the main class and Table 3 shows the per-
formance indicators.

Table 2: Confusion matrix of model - Validation set.
Predict

quasi particle non category empty
quasi particle 76 0 0

Real non category 1 74 1
empty 0 0 76

Table 3: Trained Model Performance at Validation set.

Indicator Value
precision 98,60%
recall 100%
F1 99,34%

The model accuracy was 98.70%. The application
displayed problems in classifying some uncategorized
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images with quasi-particle and empty trays. The data
suggest a good recall, which means that the model had
a small error rate in the quasi-particles’ classification
when they were indeed quasi-particles. These results
demonstrate the feasibility of the recognition process
using the proposed dataset. This value enabled a bal-
ance in the F1 score.

6.2 Model Performance at Edge AI

We also tested the performance of the classifier in the
edge computing candidate platform. After training,
we loaded the model into the SiPEED Maix Dock for
testing, as showed in Figure 7. For this matter, we
tested the system using images from the three classes
(quasi-particle, non-category, and empty). Table 4
displays the confusion matrix and Table 5 shows the
performance indicators.

Figure 7: SiPEED MaiX Dock - Test Demonstration.

Table 4: Confusion matrix of model - Test set.
Predict

quasi particle non category empty
quasi particle 7 2 1

Real non category 0 9 1
empty 0 0 10

Table 5: Trained Model Performance at Test set.

Indicator Value
precision 100,00%
recall 70,00%
F1 82,35%

In contrast to the value achieved in the validation set,
the recall in the test set dropped to 70%, assessed from
the SiPEED embedded system. This result indicates
that the model had difficulties in testing positive for
simulations of images similar to images in the indus-
trial environment, as displayed in Figures 9 and 8, al-
though for synthetic images with spaced particles was

no difficulty, as shown in Figure 10.
The work of Klippel et al. (Klippel et al., 2020)

implemented the SiPEED MaiX BiT to detect fail-
ures in conveyor belts. Our results for training perfor-
mance are similar to the results obtained by Klippel
et al. In the test performance, we obtained a lower
recall, as shown.

The recall value in the tests does not match the
results obtained in the tests carried out by Klippel et
al.(Klippel et al., 2020) To justify the value of 70 %,
we understand that the data set can be improved to
only real images in future analyses. Also, there is
a possibility of overfitting during training. In order
to verify this hypothesis, we intend to increase the
database in future works.

These data demonstrate the difficulty of reconcil-
ing results obtained on a bench scale with results close
to real environments.

Figure 8: Example of recognition of quasi-particles simu-
lating sampling in an industrial environment during the test
using SiPEED.

Figure 9: Example of error in recognizing quasi-particles
simulating sampling in an industrial environment during the
test using SiPEED.
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Figure 10: Example of recognition of quasi-particles with
sample developed on a bench scale during the test using
SiPEED.

7 CONCLUSION

In this work, we proposed an Edge AI appliance to
classify images from the Hybrid Pellet Sinter (HPS)
process from the steel industry. For this matter, we
produced an application that aimed to detect trays
containing quasi-particles, allowing them to differen-
tiate from other objects and even empty trays. The
results indicate the system feasibility and the possi-
bility of loading the produced model into an Edge AI
specialized hardware, although it needs improvement.
The importance of obtaining the intervals of the par-
ticle size distribution of quasi-particles in the HPS
process, its use of edge is shown as an advance, as
currently, this process is carried out manually and in
prolonged time intervals in the plants.

We proposed the appliance of a Convolutional
Neural Network (CNN) embedded into an Edge Com-
puting appliance. For this matter, the algorithm must
analyze a dense scene, with problems like occlusion
and complex background changes. Although there are
broad applications of deep learning in dense scenes,
there are still open issues to solve in the research
process. The usage of specialized edge computing
hardware enhances the performance of the solution on
edge.

For testing this application, we used the SiPEED
MaiX Dock board. This board has hardware and
software infrastructure to enhance the development
of Edge AI applications. The solution is cost- and
resource-restrictive, given its specialized hardware to
create edge deep learning applications. It also inte-
grates with models created using the main DL frame-
works.

Tests using SiPEED allow the detection of quasi-
particles in synthetic images without difficulties, even

with particles and their spaced distribution. However,
tests with real images obtained some flaws, evidence
by the drop in recall to 70%. There may have been
overfitting during or training or, during the tests, had
influences associated mainly with the brightness of
the day, the occlusion between particles, color homo-
geneity, and overlap between objects. These problems
have been reported in other works with previous ad-
vanced problems.

From the results obtained in this step, it was possi-
ble to raise new hypotheses for approaches to improve
the deep learning algorithm to provide a granulomet-
ric range of the quasi-particles present in a sample.
Thus, it is intended to evaluate other models for future
work, such as supplying instances, making it possible
to extract the histogram of the particle size distribu-
tion from the images containing quasi-particles. The
development of an edge device with deep learning can
bring significant benefits, both from process improve-
ment and the insertion of steel processes in Industry
4.0.
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