An Ontology for Service-Oriented Dynamic Software Product Lines

Knowledge Management

Najla Maalaoui' @2, Raoudha Beltaifa!®®, Lamia Labed Jilani!®° and Raul Mazo?®4

Keywords:

Abstract:

1 INTRODUCTION

VRIADI Lab., National School of Computer Sciences, Manouba University, Tunisia
2Lab—STICC, ENSTA Bretagne, Brest, France

Service-Oriented Dynamic Software Product Lines, Knowledge Management, Ontology.

Service oriented dynamic software product line (SO-DSPL) engineering provides a development paradigm for
building configurable service-oriented applications and adapting them at runtime according to their context.
To support context-aware and runtime adaptation of services, SO-DSPLs consider various aspects of knowl-
edge, such as users’ contexts, product lines properties, services description and QoS. In fact, the knowledge
variety produces variability that must be taken into account. Thus, wealth and diversity of this knowledge
require an efficient knowledge management (KM) tool to ensure knowledge-based SO-DSPL engineering.
The main challenge is to overcome the lack of a multi-dimensional and unified conceptualization of knowl-
edge. Practically, most of existing knowledge representations consider particular dimensions that depend on
specific product lines, ignore the semantic between them and do not handle knowledge variability. To tackle
this challenge, we propose in this paper an ontology for SO-DSPL knowledge management that establishes a
common conceptualization about SO-DSPLs dimensions and provides a unified and sharable knowledge base.
This ontology can serve several SO-DSPL activities and KM-related purposes, such as defining a common
vocabulary for knowledge workers with respect to the SO-DSPL domain, structuring SO-DSPL knowledge
repositories, and providing a knowledge base to configure and recommend services to be used for the building
and dynamic adaptation of configurable service-oriented applications. In this paper, we present the ontology
dimensions by means of sub-ontologies in order to promote their reuse.

and customized service-oriented applications (Capilla
et al., 2014). The fusion of these two popular model-
ing paradigms provides a great potential to develop

Service oriented architecture (SOA) provides a
promising mechanism for supporting continuously
changing customers’ needs, context and expectations,
as more sophisticated software systems are connected
to the Internet. With the variability of user needs and
context, developing reusable and dynamically recon-
figurable service-based systems that can combine ser-
vices in various configurations and tailored to meet
different customers’ needs and contexts became a
main challenge. To tackle this challenge, Service
Oriented Dynamic Product Lines (SO-DSPL) Engi-
neering is addressed by combining SOA with Dy-
namic Software Product Lines Engineering (DSPLE)
in order to achieve the development of more flexible

https://orcid.org/0000-0002-3896-920X
https://orcid.org/0000-0003-4096-5010
https://orcid.org/0000-0001-7842-0185
4@ https://orcid.org/0000-0003-0629-1542

o o

o

314

Maalaoui, N., Beltaifa, R., Jilani, L. and Mazo, R.

An Ontology for Service-Oriented Dynamic Software Product Lines Knowledge Management.

DOI: 10.5220/0010457203140322

service-based solutions that can tackle various chal-
lenges in development and infrastructure manage-
ment of service-oriented systems. To deliver on these
promises, SO-DSPLs overcome a number of software
engineering challenges. 1) Ensure runtime variabil-
ity by the activation and deactivation of features. 2)
Adapting system functionalities to a new context. 3)
Considering context-aware and self-adaptation prop-
erties to handle changes in system variants dynam-
ically. The complexity and the importance of the
overcome challenges makes the knowledge to be
considered more diverse, rich and carries semantics
whose exploitation and management can serve dif-
ferent activities of the product line(PL). To tackle
the mentioned challenges, SO-DSPL considers a va-
riety of knowledge including user context and re-
quirements, PL variability, services knowledge and
service-oriented applications adaptation knowledge.

In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 314-322

ISBN: 978-989-758-508-1

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

An Ontology for Service-Oriented Dynamic Software Product Lines Knowledge Management

Therefore, Knowledge Management (KM) emerges
as an important means to manage SO-DSPL knowl-
edge since KM principles can help capturing and
representing SO-DSPL knowledge in a manageable
way. In this context, representing and sharing knowl-
edge by using ontologies have emerged as a promis-
ing means to minimize ambiguity, unify and concep-
tualize knowledge. With the lack of a unified SO-
DSPL knowledge conceptualization, we tackle the
aforementioned challenges by proposing an ontology
for SO-DSPL knowledge management. Our ontology
aims to conceptualize, unify and emphasize the se-
mantics carried by the different SO-DSPL knowledge
in a sharable, exploitable and reusable way. As well,
our proposal focuses on knowledge variability which
must be considered in the context of SO-DSPL frame-
work. In order to promote reusability, our proposed
ontology is structured by sub-ontologies.

The rest of the paper is organized as follows: Sec-
tion 2 introduces SO-DSPL engineering with a brief
overview. Section 3 presents the construction of the
ontology. Ontology implementation is presented in
section 4. Section 5 reports the evaluation of the pro-
posed ontology. Related works are presented in Sec-
tion 6. Finally, Section 7 concludes the paper and de-
scribes future works.

2 SERVICE-ORIENTED
DYNAMIC SOFTWARE
PRODUCT LINES

Software product line engineering is a software reuse
paradigm that aims to develop a family of products
with reduced time to market and improved quality
(Capilla et al., 2014). Within the SPLE field, dy-
namic software product lines (DSPLs) have emerged
as a promising means to develop reusable and dynam-
ically reconfigurable core assets. Service-oriented dy-
namic software product lines (SO-DSPL) represent a
class of DSPLs that are built on services and service-
oriented architectures (SOAs) (Capilla et al., 2014).
SO-DSPL support user needs and expectations in a
continuously changing environment. SO-DSPL com-
bine services in various configurations and contexts,
simplifying the deployment of product variants that
are mostly based on the same core services but tai-
lored to meet different customers’ needs. Feature
modeling is the main activity to represent and manage
PL requirements as reusable assets by allowing users
to derive customized product configurations. Product
configuration refers to the decision-making process of
selecting an optimal set of features from the PL that

comply with the feature model (FM) constraints. FMs
are hierarchical models that capture the commonal-
ity and variability of a PL by defining its feature,their
dependencies and constraint between them. Figure 1
shows an example of a feature model associated to a
Smart Home PL.

Smartiome
—— - T

security Wuminaton media

= ° -

sensor detection| | monitoring| | atarm | | manual || automatic| | camara || audio || celiphone
- - -

visual | | siren

fire | [food | [co| [ouside | [insige| [sient
-

sms || can| | biinking_lights

Figure 1: Extract of Smart home feature model.

3 OntoSO-DSPL: ONTOLOGY
FOR SO-DSPL

This section presents an ontology for Knowledge
management of SO-DSPL to be used in SO-DSPL
activities and related purposes. Our proposed ontol-
ogy is responsible for structuring, unifying, reason-
ing, disseminating SO-DSPL data and to be used in
SO-DSPL activities such as services recommenda-
tion and selection, dynamic adaptation, runtime vari-
ability management and SO-DSPL context reason-
ing. In addition, our ontology includes swrl rules that
are responsible for inferring new knowledge and pro-
viding new facts through its reasoning capabilities.
The method for constructing our proposed ontology
is adapted from ontology construction methods pro-
posed by (Fernandez-Lépez et al., 1997). The con-
struction process contains five main steps: objective,
knowledge acquisition, conceptualization, implemen-
tation and validation.

3.1 Objective

The main objective of the target ontology is to pro-
vide a knowledge capitalization in SO-DSPL frame-
work. Our proposed ontology aims to describe com-
mon conceptualization of useful knowledge includ-
ing concepts considered in a SO-DSPL framework
and knowledge related to user context and require-
ments, PL, services and dynamic adaption. Thus, we
address to conceptualize a unified model for a SO-
DSPL from different dimensions. Our proposed on-
tology should harmonize the SO-DSPL terminology
and help engineers and researchers to configure prod-
ucts, build and propose approaches that address the
SO-DSPL’s activities. Our proposed ontology is de-

315

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

signed as a core conceptual model to be used for sev-
eral purposes, such as: 1) A reference model for anno-
tating SO-DSPL knowledge in a semantic documen-
tation approach, 2) To support human-learning about
key concepts related to SO-DSPLE, 3) To be used
by SO-DSPL activities and 4) To Reuse and integrate
proposed sub-ontologies independently.

3.2 Knowledge Acquisition

The ontology that we propose is multi-dimensional.
Its dimensions represent the SO-DSPL areas for
which various ontologies, models and frameworks
was defined in literature. These areas are SO-DSPL,
dynamic adaptation, web service (WS) modeling
and user context modeling. In our work, we ana-
lyzed these works and then we defined a common
knowledge for each area based on advices given in
(Ferndndez-Lopez et al., 1997). In the following, we
present the knowledge acquisition resources. For SO-
DSPL area, knowledge are extracted from (Capilla
et al., 2014) and (Bashari et al., 2017), which provide
a more comprehensive treatment of DSPL models,
properties, challenges and their solution architectures.
In addition, we have exploited ontologies dealing
with semantic DSPL variability modeling (Dehmouch
et al., 2019). As well, we have exploited the work
(Alférez et al., 2014) to extract knowledge accord-
ing to the dynamic adaptation of service composition
using SO-DSPL. Accordingly, dynamic, runtime and
self-adaptation knowledge are acquired from: (An-
dersson et al., 2007) that define MAPE-K loop model,
(Sabatucci et al., 2018) that presents self-adaptive
systems meta-model, (Jaroucheh et al., 2010) that
considers the context in feature selection activity and
(Guinea et al., 2012) that presents a set of dimen-
sions which explain how runtime adaptation could be
realized using DSPLE. To acquire WS knowledge,
we are based on standards and ontologies focusing
on WS description. Thus, we are based on previous
literature surveys (Li et al., 2006) to select relevant
works. For instance, we have analyzed the basic WS
standard developed by IBM and Microsoft, namely
WSDL and its semantic annotated extensions, such as
WSDL-S and SAWSDL (Battle, 2007). In addition,
we have analyzed the semantic markup of WS ap-
proaches that address the service description with the
consideration of semantic. The analyzed proposals
include WSMO, OWL-S, SWSA and SWSL(Battle,
2005). Due to the semantic expressivity richness in
OWL-S and SAWSDL, we have decided to use termi-
nologies, concepts and terms extracted from these two
most used standards to conceptualize our proposed
WS Sub-ontology. As well, we have focused on ac-

316

quiring SLA knowledge that plays an important role
in WS selection activity. Thus, we have considered in
our work knowledge extracted from USDL standard,
WSLA Framework and the PaaS Level SLA Descrip-
tion Language presented in (Hofman et al., 2020). To
acquire context knowledge, we have reused different
context ontologies. We analyzed about ten context
ontologies such as (Fensel et al., 2010; Zhong-Jun
et al., 2016; Aguilar et al., 2018; Brickley and Miller,
2014), based on previous literature surveys. From the
mentioned resources, relevant concepts and relation-
ships were extracted through their systematic and syn-
tactic analysis and terms are unified using “"WordNet”
framework.

3.3 Conceptualization

The conceptual modeling of the proposed sub-
ontologies is presented as an OntoUML meta-model
(Guizzardi, 2005). The meta-model classes corre-
spond to classes of our ontology; the dependencies
between meta-model classes are represented as on-
tology object properties; and the attributes of meta-
model classes are represented as ontology datatype
properties. Since SO-DSPL domain is complex, our
proposed ontology (OntoSO-DSPL) was developed
in a modular way. OntoSO-DSPL has four mod-
ules (sub-ontologies) defined as: User context sub-
ontology, service sub-ontology, DSPL sub-ontology
and adaptation sub-ontology where each of them is
interested in covering a particular dimension.

User Context Sub-ontology Meta-model. This sub-
ontology meta-model (see Figure2) consolidates and
unifies relevant user context knowledge in one hand,
and emphasizes context and requirement variability in
the other hand.

Figure 2: User context sub-Ontology meta-model.

The user context is defined by Preferences pro-
file(PP), Skills profile(SP), Interests profile (IP), User
behavior (UB), User feedback (UF), Personal infor-
mation (PI), User environment (UE) and User context

An Ontology for Service-Oriented Dynamic Software Product Lines Knowledge Management

variable (UCv). “PP” represents soft requirements
provided by users that reflect a favored wish from the
final derived application. “SP”represents competen-
cies and abilities denoted by the user. “IP”denotes
the subjects that a user wants. “UB” represents the
behavior of the user during the use of an applica-
tion. It can be represented by the number of its use.
“UF”’represents user’s reactions and opinions about
an application or a service. “UE” presents informa-
tion about the surrounding environment such as user
location or weather. Variability modeling of the user
context is considered in our ontology. For example,
preferences can be expressed by a natural language
or by rating SO-DSPL options. As well, the speci-
fied preferences can be mandatory or optional. Thus,
we assign to user preferences an “Importance degree”,
which can be “low”, “high” or “medium”. As well, to
give more semantic to the representation of user pref-
erences, we offer the possibility of specifying depen-
dencies between preferences by defining the seman-
tic relations “and” and “or” between them. In addi-
tion, we address interests and skills variability by as-
signing to interests an “Importance degree” (“low”,
“high” or “medium”) and to skills a “Competency
level” (beginner and expert). In addition, “UF” can
be positive or negative, and it concerns a SO-DSPL
asset (feature, service or goal). Since contextual in-
formation is difficult to count because each domain
has its own context properties, we assign to the user
context variables that represent contextual informa-
tion related to the domain of the used PL. For exam-
ple, these variables can represent biometric and bi-
ological data, which is needed for medical context-
aware applications. The success of the product deriva-
tion activity in the PL is based on the satisfaction of
user requirements, which carries a semantics allow-
ing the infer of new knowledge that promote their sat-
isfaction. For this purpose, we have integrated the
user requirements knowledge to the user’s context.
Since users express their needs by various require-
ments with different importance degrees, our ontol-
ogy represents their variability. In fact, a user require-
ment(UR) may be a “Functional requirement” (FR),
a “Non-functional requirement” (NFR) or a “Techni-
cal requirement”. A “Functional requirement” speci-
fies the operations and activities that the derived ap-
plication must be able to perform. Based on our
running example, a "FR” FR1 can be specified by a
user as follows:‘ the sensor fire shall trigger the alarm
when a fire is detected’. A “Non-functional require-
ment” describes the application‘s operation capabil-
ities, properties and constraints required by the end-
user. Based on our running example, an example of a
“NFR” requirement is: the sensor fire has a response

time that does not exceeds 0.02 milliseconds’. In turn,
the “UR” may contain conditions that describe con-
straints or properties. For example, in the "FR” “FR1”
presented above, the condition is “when a fire is de-
tected”. As well, “UR” have ’Goals” that must be
achieved by the derived application. As an example,
the accorded goal to the “FR” “FR1” is underlined. A
user may express his requirement’s importance by us-
ing an obligation degree and by assigning a priority to
it. The priority indicates that the "UR” is “Essential”,
“Recommended” or “Desirable”. “Essential” UR in-
dicates that the requirement must be achieved , while
a “Recommended” one is advisable to be achieved.
However, Desirable "UR” is not necessarily achiev-
able. An obligation degree represents a term used to
add a precision to the “UR”. The term can be “’shall”,
”should”, ”could”, "must” or "may”.

DSPL Sub-ontology Meta-model. This section
presents the DSPL sub-ontology meta-model (see
Figure3), which is interested in conceptualizing
DSPLs variability expressed through FMs in one hand
and in modeling the possible interactions between
the DSPL knowledge, contextual data and its derived
configurations in the other hand. As well, it focuses
on reducing the lack of expressiveness of FMs in
DSPL framework.

Figure 3: DSPL sub-ontology meta-model.

As an ontological representation, the ‘Feature
model” is composed of “Features” that can be
“Mandatory” or “Optional”. Its dependency with its
parent can be “Alternative” or “ORgroup”. A fea-
ture model has a root feature. Besides, each two fea-
tures can be related with a “Relation”. Two types
of relations are identified: “feature_constraint” and
“behavioral_relation”. A “feature constraint” can
be “require” or “exclude” constraint. The “behav-
ioral_relation” can be divided into “use” and “influ-
ence” relations. A “use” relation denotes that a fea-
ture uses another one to accomplish its job and the
“influence” relation indicates that the behavior of a
feature has an impact on the behavior of the related
feature. A “Feature” can be divided into “Functional
feature” (e.g.: illumination) and “Non-functional fea-
ture” (e.g.: response time). Besides, a DSPL promote

317

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

variability management according to the actual con-
text, thus, a “Feature” can have a variability type that
can be “Static” or “Dynamic”. Static variability is
managed during product derivation process while a
dynamic variability is managed at runtime based on
the current context. In this sense, the property “se-
lection state” of the feature indicates whether the fea-
ture belongs or not to a particular product. This prop-
erty presents the following range of values: “elim-
inated”,“selected”. Thus, a set of selected features
represents a configuration that turn in its actual con-
text (eg. “Runny weather” context in the case of
Smart home configuration). The dynamic reconfig-
uration/adaptation of a configuration, is managed by
the property “activation state” of its features. This
property can be represented by the values: active and
inactive. The selection/activation of features is man-
aged by the feature context that denote the condition
that must be true to take decision. A “Feature” re-
alizes one or more Goals and a “Goal”, which can
be Hard or Soft. Based on our running example, a
hard goal can be “detect fire in the smart home” and
a soft goal can be “fire detection very fast”. In the
DSPL framework, a “Goal” is characterized by its
”Duration” and “Evolution” properties. These two
properties indicate respectively whether the goal can
change within the lifetime of the system and its valid-
ity through the system lifetime. In order to promote
the automatic derivation of the configuration, a base
composition model which is composed of activities is
assigned to the DSPL to describes its business pro-
cesses (Alférez et al., 2014).

Service Sub-ontology Meta-model. Our proposed
service sub-ontology (see Figure 4) aims to unify WS
description in a SO-DSPL framework in one hand,
and to focus on WS variability introduced by the SO-
DSPL engineering.

1

I
Figure 4: Service sub-ontology meta-model.

A service is identified by its general description.

318

In addition, it is categorized by its domain of interest
(“Category”), i.e. security, finance, etc. A service is
deployed in a “Region”, which is defined as a cluster
of data centers. Each region has one or more availabil-
ity zone, and local zone. An Availability Zone con-
sists of one or more data centers inside a region while
a “Local Zone” is not inside a “Region” boundary
and places closer to our end-users. A service can be
atomic or composite. A service interface encapsulates
operations provided by the service. It is characterized
by input, output, precondition and post condition that
can be described by SWRL rules. Each operation is
semantically described through its purposes that de-
scribe its business functionalities. As well, a service
“requires” one or more other services interfaces to ac-
complish its tasks. A service is executed in its own
context. This latter is divided into ” Platform context”
that denote the hardware and the software which the
service is executed on, and “Infrastructure context”
which denotes its infrastructure characteristics. The
service sub-ontology takes intention of SLA which
play an important role in service related activities.
The SLA binds between two parties presented by ser-
vice provider and service customer. Each SLA con-
tains the concept “Agreement Term” which is com-
posed of “Service Property Term” and “Guarentees
Terms” which composed of “SLO”. The “SLA pa-
rameter” represents the QoS to calculate that are de-
fined by “CalculateFunction” in order to measure the
SLA parameters values (e.g. Response Time). The
SLA parameter is defined by metrics, “CalculateMet-
ric”’. The “SLO” represents the service level objec-
tives that must be respected by the provider. It has
a “Predicate” that Specifies what is promised by the
service provider to its consumer. In addition, for each
SLA violation, a policies are used to calculate the re-
quired penalty value. For example, if the response
time value of the WS exceeds the threshold defined
in the SLO, a penalty is charged to the provider. Ac-
cording to the SO-DSPL framework, a service can be
activated for a feature and deactivated for another, as
well, it can be mandatory for a feature and optional
for another. This variety introduces service variabil-
ity. Thus, we specify service variability by assigning
“Activation State”’and “Obligation degree” to the ser-
vice “according_to” the feature. “Activation State” in-
dicates that the service will be used or not to satisfy
feature goals, it only receive the values: “Active” or
‘inactive’. A service "Obligation degree” receives the
values “Mandatory” or “Optional”.

Adaptation Sub-ontology Meta-model. SO-DSPLs
provides a mechanism to automatically adapt prod-
ucts at runtime due to changes of the system, its re-
quirements, or the environment in which they are de-

An Ontology for Service-Oriented Dynamic Software Product Lines Knowledge Management

ployed. In this section, adaptation sub-ontology meta-
model (see Figure5) conceptualizes various knowl-
edge to characterize the adaptation of PL products.

Figure 5: Adaptation sub-ontology meta-model.

An adaptation is caused by a change that can
be produced by different sources such as: (i) user
context, (ii) feature context and (iii) service con-
text. An adaptation change can be functional (e.g.,
user requirement change), non-functional (e.g., QOS
change) or technological (e.g., service execution en-
vironment). Besides, an adaptation change is charac-
terized by a frequency of its occurrence that presents
the following range of values: “frequent”,“rare”. Fre-
quent indicates that adaptation change is frequently
occurred in the current application and ‘rare’ denotes
the opposite case. In the context of SO-DSPL, two
types of adaptation mechanism can be performed: Ar-
chitectural adaptation or service adaptation. The ar-
chitectural adaptation refers to the structure or the
architecture changes to modify the collaboration be-
tween services or the incorporation of new ones. The
service adaptation refers to substitution of a service
with another one. To indicate how long the adaptation
lasts, a duration property characterizes it. An adapta-
tion is performed by adaptation rules. The adapta-
tion rule is composed of a condition that triggers the
adaptation, an action that presents the following range
of values: “active”, “inactive” and “‘substitute” and a
DSPL asset in which the action is performed. As an
example of an adaptation rule :‘if the availability of
the service S1 is less than 0,3, substitute S1 with S2.
“if the availability of the service S1 is less than 0,3”
is the condition, “substitute” is the action and “S1” in
the service. In order to present composite adaptation
rules, semantic relation “and”, “or” and “xor” are de-
fined to relate them. The adaptation is characterized
by its autonomy that can be Manual or Automatic. An
adaptation is triggered for different goals such as Self-
configuring, Self-optimizing and Self-healing goals.

3.3.1 OntoSO-DSPL Rules

Based on the semantic and the relationship expressed
by SO-DSPL sub-ontologies, new knowledge can be

automatically inferred by the SWRL rules. In table 1,
we present some examples of the defined rules.

4 ONTOLOGY
IMPLEMENTATION

Among the different editors of ontologies, Protege
(version 5.2.0) (Horridge et al., 2004) was chosen
since it is an extensible environment for creating,
checking constraints, and extracting ontologies and
knowledge bases. OWL 1.0 (Web Ontology Lan-
guage) was used for the development of OntoSO-
DSPL as recommended by the World Wide Web Con-
sortium (W3C). For the creation of inference rules,
SWRL (Semantic Web Rule Language) was used. In
the following section, in order to check the ability
of OntoSO-DSPL to represent concrete SO-DSPL of
the real world, we instantiated its concepts and re-
lations to represent “smart home SO-DSPL” knowl-
edge. Figure 6 represents an extract of the DSPL sub-
ontology instantiation for Smart home SO-DSPL. As
it can be seen in the figure 6, a “smartHome” DSPL,
its according feature model and features with differ-
ent kinds are instantiated. Indeed, instances of fea-
ture context (Sunny,Rainy) are accorded to the fea-
tures "Open, Close” and some goals are assigned to
the instantiated features. Based on the instantiated
features, a configuration (Conf1) is derived and its ac-
tual context ”WeatherContext” is assigned.

S ONTOLOGY EVALUATION

Several ontology evaluation approaches have been
proposed. Studying the most common evaluation
approaches has conducted us to choose the criteria-
based evaluation approach (Jonathan et al., 2005).
This approach consists on using a set of criteria to
verify the ontology. We selected a list of criteria
among those which are outlined in the work of Yu et
al.(Jonathan et al., 2005). These criteria are: consis-
tency, correctness and usability.

Evaluating Correctness and Consistency: To carry
out this validation we rely on the advices given in
(Stuckenschmidt et al., 2009) that specifies that “a ba-
sic requirement for a modular ontology to be correct
is that each module is correct”. This is the first per-
spective that we have adopted to conduct the correct-
ness validation of the proposed ontology. Second, we
have conducted a syntactic correctness, consistency,
and consistency between instances. For this purpose,
we have used 1) the Pellet reasoning engine (Hor-

319

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 1: SO-DSPL SWRL rules.

ID | SO-DSPL SWRL rules

R1

Requirement(?r) A swrlb:contains (?r, “ Should ”’)-> has_priority(?r,Recommended): If the
requirement contains the term ‘Should’ then its priority is ‘Recommended’

Goal (?g) A characterized_by(?g, Temporary_duration) A Feature(?f) A assigned_to(?f,?g)->
R2 | has_variability_type(?f, Dynamic): If the goal is assigned to a feature and characterized by a
temporary duration then the feature has a dynamic variability.

has a selected” state

Requirement(?r) A Goal(?g) A Feature(?f) A satisfy(?g,r) A assigned_to(?f,?g) -> selection_state
R3 | (71, selected ”):If a goal satisfy a user requirement then the feature assigned to the requirement

Figure 6: Extract of smart home DSPL sub-ontology.

ridge et al., 2004) 2) RaDON (Ji et al., 2009) plugging
to verify inconsistencies and incoherencies in ontolo-
gies. In this validation process, the obtained results
showed that none inconsistency were found in any of
the modules of the proposed ontology.

Usage: In this section, we validate the usage of the
proposed ontology in SO-DSPL activities as we have
mentioned in section 3 by triggering reasoning over
the ontology. Specifically, to validate OntoSO-DSPL
usage, we illustrate its exploitation in the dynamic
adaptation activity in a smart home DSPL.
OntoSO-DSPL Dynamic Adaptation: The reason-
ing capabilities of our proposed OntoSO-DSPL in the
case of dynamic adaptation are defined as the ability
of deducing new knowledge and triggering a dynamic
adaptation of the smart home configuration according
to its actual context.

Triggering Dynamic Adaptation Rule:

DSPL(SmartHome)"Configuration(?cf)"hasConf
f.?ac)* ContextCondition(?cCon)” swrlb:equals
composed_of{?ar,?cCon)"Feature(?f) “adapt(?ar,”
Selection_State(?f,"Selected”)

(SmartHome, ?cf)" ActualContext(?ac)"has_context(?c
on) AdaptationRule(?ar)" composed ate)
Activation_State(?f,”Activated”)"compos :

Using the rule ”Triggering Dynamic Adaptation”, the
dynamic adaptation of a configuration can be trig-
gered based on the actual context that must be equal
to the context condition of the adaptation rule in order
to activate, deactivate, select or deselect a feature.

320

6 RELATED WORKS

In this section, we present the state of the art related
to the modeling of SO-DSPL, DSPL, context, self-
adaptation and services. Knowledge management
for SO-DSPL are not yet devoted. However, differ-
ent works are interested in the considered SO-DSPL
dimensions areas. Regarding SO-DSPL knowledge
description, reference framework and standards are
addressed to this purpose. Capilla et al. (Capilla
et al., 2014) present an overview of DSPL architec-
tures, properties, challenges and its application do-
mains such as SO-DSPL. As well, different works
are focusing on self-adaptive systems modeling. In
(Sabatucci et al., 2018), a unified metamodel of four
types of adaptation is proposed to smart systems.
Concerning WS description, many standards and ap-
proaches have been proposed. IBM and Microsoft
have developed a standard based on XML format to
describe WS, namely WSDL (Battle, 2007), which
is the most used WS description language until to-
day. With the lacks semantic expressivity in WSDL,
WSDL-S and SAWSDL(Battle, 2007) are proposed to
extend WSDL with semantic annotations. In addition,
semantic markup of WS has been proposed to address
the service description such as OWL-S (Matrtin,). Fo-
cusing on context modeling, there are several works
that have developed the modeling of context through
ontologies. In (Brickley and Miller, 2014), FOAF on-
tology is presented for describing people and the re-
lationships between them. In (Fensel et al., 2010), an
ontological modeling of the user profile is proposed.

An Ontology for Service-Oriented Dynamic Software Product Lines Knowledge Management

In (Zhong-Jun et al., 2016),the authors present a Meta
Context Ontology Model(MCOnt), where the context
is divided in three categories: the internal context,
the external context and the boundary context. In
(Aguilar et al., 2018), the authors present a context
awareness meta ontology modeling called “CAMe-
Onto”, which groups six contextual classes (user, ser-
vice, location, activity, time and device). Based on
the studied works, we conclude that SO-DSPL man-
agement and conceptualization knowledge are not yet
adressed. As well, considered dimensions are mod-
eled undependably which make the relationship be-
tween them absolutely absent. Thus, we propose an
ontology for SO-DSPL framework in order to con-
ceptualize and unify the considered knowledge.

7 CONCLUSION

In this paper, we have proposed a SO-DSPL knowl-
edge management ontology, called OntoSO-DSPL.
This latter highlights relationships between different
dimensions in a SO-DSPL framework as knowledge
related to user context and requirements, PL, services
and dynamic adaption. The main objective of the
target ontology is to provide a knowledge capitaliza-
tion. Compared to existing ontologies for DSPL, our
proposed one contains all the knowledge necessary
in several activities related to SO-DSPL framework,
such as contextual services recommendation and dy-
namic adaptation of recommended service-oriented
applications. As perspectives for the near future work,
we are going to add semantics to all the meta-models
(like OCL). Also, we will use the conceptualized
knowledge to evaluate the performance of OntoSO-
DSPL in different domains related to real cases.

REFERENCES

Aguilar, J., Jerez, M., and Rodriguez, T. (2018). Cameonto:
Context awareness meta ontology modeling. Applied
Computing and Informatics, 14(2):202 — 213.

Alférez, G., Pelechano, V., Mazo, R., Salinesi, C., and Diaz,
D. (2014). Dynamic adaptation of service composi-
tions with variability models. Journal of Systems and
Software, 91:24 — 47.

Andersson, J., de Lemos, R., Malek, S., and Weyns, D.
(2007). Modeling Dimensions of Self-Adaptive Soft-
ware Systems, volume 5525. Springer International
Publishing, Berlin, Heidelberg.

Bashari, M., Bagheri, E., and W.Du (2017). Dynamic soft-
ware product line engineering: A reference frame-
work. International Journal of Software Engineering
and Knowledge Engineering, pages 191-234.

Battle, S. (2005). SWSF. https://www.w3.org/Submission/
SWSE-SWSL/. [Online; accessed 19-mars-2020].

Battle, S. (2007). SAWDSL. https://www.w3.org/TR/
sawsdl/. [Online; accessed 19-mars-2020].

Brickley, D. and Miller, L. (2014). FOAF ontology. http:
//Ixmlns.com/foaf/spec/. [Online; accessed 19-mars-
2020].

Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortes, A., and
Hinchey, M. (2014). Overview of dynamic software
product line architectures and techniques:observations
from research and industry. The Journal of Systems
and Software, pages 3-23.

Dehmouch, 1., Asri, B., Rhanoui, M., and Elmaallam, M.
(2019). Feature models preconfiguration based on
user profiling. Comput. Inf, 12:59-71.

Fensel, D., Lausen, H., Polleres, A., Bruijn, J. D., Stollberg,
M., Roman, D., and Domingue, J. (2010). Enabling
Semantic Web Services. Springer, first ed. edition.

Fernandez-Lépez, M., Gémez-Pérez, A., and Juristo, N. M.
(1997). From ontological art towards ontological en-
gineering. In: Proceedings of the Ontological Engi-
neering AAAI-, 97:33-40.

Guinea, S., Baresi, L., and Pasquale, L. (2012). Service-
oriented dynamic software product lines. Computer,
45(10):42-48.

Guizzardi, G. (2005). OntoUML. https://ontouml.org/.
[Online; accessed 19-January-2020].

Hofman, C., , and Roubtsova, E. (2020). A reference model
for a service level agreement. In Business Modeling
and Software Design, pages 55-68, Cham. Springer
International Publishing.

Horridge, M., Knublauch, H., Rector, A., Stevens, R., and
Wroe, C. (2004). A Practical Guide To Building OWL
Ontologies Using The Protégé-OWL Plugin and CO-
ODE Tools Edition 1.0. University of Manchester.

Jaroucheh, Z., Liu, X., and Smith, S. (2010). Candel: Prod-
uct line based dynamic context management for per-
vasive applications. In 2010 International Conference
on Complex, Intelligent and Software Intensive Sys-
tems, pages 209-216.

Ji, Q., Haase, P, Qi, G., Hitzler, P.,, and Stadtmiiller, S.
(2009). Radon — repair and diagnosis in ontology
networks. In Aroyo, L., Traverso, P., Ciravegna, F,,
Cimiano, P., Heath, T., Hyvonen, E., Mizoguchi, R.,
Oren, E., Sabou, M., , and Simperl, E., editors, The Se-
mantic Web: Research and Applications, pages 863—
867, Berlin, Heidelberg. Springer Berlin Heidelberg.

Jonathan, Y., James, T., and Audrey, T. (2005). Evaluat-
ing ontology criteria for requirements in a geographic
travel domain. In Meersman, Robert, Tari, and Za-
hir, editors, On the Move to Meaningful Internet Sys-
tems 2005: CooplS, DOA, and ODBASE, pages 1517—
1534, Berlin, Heidelberg. Springer Berlin Heidelberg.

Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J., and
Sheth, A. (2006). Designing Semantic Web Processes:
The Wsdl-S Approach, pages 161-193. Springer US,
Boston, MA.

Martin, D. OWL-S. https://www.w3.org/Submission/
OWL-S/. [Online; accessed 19-mars-2020].

321

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

Sabatucci, L., Seidita, V., , and Cossentino, M. (2018). The
four types of self-adaptive systems: A metamodel. In
Pietro, G. D., Gallo, L., Howlett, R., and Jain, L., ed-
itors, Intelligent Interactive Multimedia Systems and
Services 2017, pages 440—450, Cham. Springer Inter-
national Publishing.

Stuckenschmidt, H., Parent, C., and Spaccapietra, S.
(2009). concepts, theories and techniques for knowl-
edge modularization. Springer.

Zhong-Jun, L., Guan-Yu, L., and Ying, P. (2016). A method
of meta-context ontology modeling and uncertainty
reasoning in swot. In International Conference on
Cyber-Enabled Distributed Computing and Knowl-
edge Discovery, pages 128—- 135, china. IEEE.

322

