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In context of the fourth industrial revolution (industry 4.0), the industrial big data is subject to grow rapidly to
respond the agile industrial computing and manufacturing technologies. This data evolution can be captured
using ubiquitous integrated sensors and multiple smart machines. We believe the use of data science method-
ologies, for the selection of models and configuration of hyper-parameters, may help to better control such
data evolution. But, at the same time, the industrial practitioners and researchers often lack machine-learning
expertise to directly retrieve the benefit from valuable manufacturing big data. Such a lack poses the major
obstacle to yield value from even-though familiar data. In this case, a collaboration with data scientists may
become an exigence along with the extensive machine learning knowledge which presumably may result to
pursue further delays and effort. Multiple approaches for automating machine learning (AutoML) have been
proposed for the past recent years in order to alleviate this deficiency. These approaches are expected to per-
form better along with accomplishment of computing resources which are mostly not readily accessible. To
address this research challenge, in this paper, we propose a meta-learning based approach that may serve an
effective decision support system for the AutoML process.

1 INTRODUCTION

Advanced analytics offers new opportunities to im-
prove and innovate manufacturing processes (Wolf
et al., 2019). The recent advances, in terms of storage
capacity, computing power as well as the rapid devel-
opment of advanced analytics solutions, have offered
manufacturing industries the unprecedented possibil-
ities to extract knowledge and business value from
large datasets (Wang et al., 2018). It may provide
means to achieve the highest predictive performances
instead of traditional predictive modeling approaches.
The use of advanced machine learning (ML) methods
can play a significant role in production design, qual-
ity management, scheduling, etc.

The current competitive environment, with im-
proved availability, sustainability, and quality of man-
ufacturing services in smart factories, has already
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triggered the requirement of using Artificial Intelli-
gence (Al) solutions to streamline complex operations
while improving quality and reducing costs (Thoben
et al., 2017; Wuest et al.,, 2016). The manufac-
turing sector can benefit greatly from the use of
advanced analytics since data is abundantly avail-
able (Wolf et al., 2019). Recent manufacturing strate-
gies, such as Industry 4.0 in Germany, Industrial In-
ternet in the United States, and the Made in China
2025 initiative, recognize the crucial importance of
utilizing data in order to enhance manufacturing com-
petitiveness (Thoben et al., 2017; Tao et al., 2018).
However, the manufacturing industry is not exploit-
ing the full potential of data analytics. We observe
the following reasons for such a lack:

» Complexity of unifying the data analytics and mi-
Cro services,

 Lack of reliable data ingestion chains,

e Lack of collaboration tools between business
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managers, data engineers and data-scientists.

The domain experts (business managers and data en-
gineers) are not necessarily competent to perform data
analysis using some data mining techniques. These
users often resort to the default implementations or
commit to collaborations with machine-learning ex-
perts which are mostly complex and time consum-
ing. The process itself, also known as knowledge dis-
covery, consists of several steps such as data prepro-
cessing, features engineering, model selection, hyper-
parameters tuning and finally model validation or in-
terpretation. The algorithm selection phase is among
the most important steps along with the configuration
of its related hyper-parameters, hence, the conduction
of related tasks can make them less feasible for the
non-experts.

The lack of decision support tools is also a ma-
jor barrier that may prevent the manufacturing actors,
as well as researchers, from harnessing the maximum
potential of data analytics. The decision support tools
can help to rendre the most suitable data analytic tech-
nique from a wide range of possible choices and con-
figurations (Zacarias et al., 2018). While, the avail-
able literature has brought forward various techniques
capable of solving the manufacturing complex prob-
lems, whereas, the necessary decision support tools
to implement these techniques on an operative level
are yet not sufficient to equip practitioners, decision-
makers, and researchers for better data-analytics.

The work, in this paper, hence attempts an ap-
proach towards overwhelming this obstacle. The
main objective of the proposed approach remains
however to assist the industrial practitioners and re-
searchers in data-science with the help of a recom-
mendation system. This recommendation encompass
the most convenient machine-learning algorithm and
its related hyper-parameters configuration that shall
ultimately give the best result of the analysis for the
domain-specific problems. In order to achieve that,
we make use of the concept of meta-learning (Brazdil
et al., 2008), which consists of two main phases;
which are learning phase and recommendation phase.
For a given dataset and a predictive metric, we suggest
the ML algorithms and their related hyper-parameters
configuration that once applied yield the best classifi-
cation performance (e.g., predictive accuracy, Recall,
F1 score).

The rest of the paper is organized as follows: Sec-
tion2 presents a brief review of the related works
in respect of theoretical background about meta-
learning as an AutoML solution. Section 3 provides
an overview of the proposed Meta-Learning based
framework and methodology for supporting the op-
timization decisions of the AutoML process. We
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discuss the results and feasibility of the proposed
methodology in Section 4. We evaluate the proposed
approach with the help of an empirical study in sec-
tion 5. Finally, we conclude the contents of the paper
in Section 6 .

2 RELATED WORKS

A careful literature review reveals that the machine-
learning methods have been proposed as a key tech-
nology for the industrial data analytics. Many re-
searchers have focused on the instantiation of Data
Science methods to retrieve benefits in industry 4.0
automation. However, their main concern has been
regarding the ingestion of new data in data lakes to
establish compliance with the governance rules for
the business managers with or without the assistance
of data engineers. Similarly, the data scientists have
been concerned with the capabilities to collaborate
and deploy, independently, their models in produc-
tion.

Similarly, a lot of work has been done in re-
cent years to add explanations to Artificial Intel-
ligence (AI) systems (Samek and Miiller, 2019; De
et al., 2020; Bohanec et al., 2017), in particular those
based on deep neural networks, which are mostly very
efficient, but also in principle designed and imple-
mented like black boxes. The explanation of reason-
ing has always been felt since the emergence of de-
cision support systems (De et al., 2020; Shin, ) but it
is now more desirable to re-assure legitimate confi-
dence on machine learning applications, particularly
in real-time systems (such as the industry 4.0 applica-
tions). The need for explainability in machine learn-
ing requires the development of interrogeable infor-
mation systems that must allow the transparency of
involved concepts according to the level of abstrac-
tion of the concerned actors. The innovation of Al
has been mostly characterized by the algorithmic ad-
vancements with respect to efficient data analysis.
The aspects of meta-learning (to find out the factors
that play a more critical role to better use limited
data) are usually given less focus while the attention
is given to the more computational performance and
more training data.

We constrain the focus of current work on meta-
learning technique due to available space limitation
for the contents. Meta learning is an aspect of
monitoring the progress of machine learning pro-
cesses. Meta-learning techniques provide the method-
ologies to observe the performance of different ma-
chine learning models according to the target out-
come and its correlation to the meta-data (learning
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experience). This notion is often referred to the un-
derstanding of the reasoning process and involved
parameters while the deduction of target outcome.
But in its very nature meta-learning differs from
meta-reasoning. The fundamental objective of meta-
learning in current machine learning literature is to
enhance the performance of machine learning mod-
els through learning experience. Learning experience
in this regard, concerne the exploitation of the neu-
ral architectures (machine learning pipelines) to elim-
inate the less-worthy intermediate decision points.
The meta-learning in this aspect helps to evaluate
the machine learning model with respect to the ac-
curacy and learning time. It requires transparent
model executions which involve the awareness of
meta-features (algorithm configurations, network ar-
chitecture, pipeline compositions, etc.) used to train
the model.

Meta-learning or learning to learn, is a commonly
used process that supports automation in data min-
ing tools selection and configuration (Brazdil et al.,
2008). It is a method that consist of observing
relationships between dataset characteristics (Meta-
features) and data mining algorithms performances.
Later for a given unseen dataset the system should be
able to select and rank a pool of learning algorithms
that could yield the best predictive performance ac-
cording to the expected performance metric. The
main idea of meta-learning for advanced analytics se-
lection and configuration is based on the simple as-
sumption Algorithms show similar performance for
the same configuration for similar problems. Particu-
larly, meta-learning paradigm is the process of under-
standing and adapting learning itself on a higher level
instead of starting from scratch, we leverage previ-
ously gained insights (Lemke et al., 2015).

A number of studies explore the application of
meta-learning in various levels. These approaches
range from automatic data pre-processing (Nargesian
et al., 2017), automatic features extraction (Bilalli
et al., 2016; Bilalli et al., 2018) to automatic model
selection and hyper-parameters tuning (Laadan et al.,
2019; Dyrmishi et al., 2019).

In(Bilalli et al., 2016), the authors propose a
meta-learning based approach for automated data pre-
processing. The authors used 28 features which are
extracted from the datasets to train a meta-model.
The meta-model is able to predict the impact of a list
of 7 data transformations strategies on the final per-
formance of 5 classification algorithms (Logistic Re-
gression, Naive Bayes, IBk, PART, J48). For each
dataset-algorithm pair, possible transformations are
classified as either good, bad, or neutral by the meta-
model, which corresponds to whether the transforma-

tion increases the prediction accuracy, decreases it or
doesn’t have a significant contribution.

Recently, in (Laadan et al., 2019), the authors pro-
pose RankML a meta-learning based approach for
ML pipeline performance prediction. The RankML
produces a ranked list of all pipelines based on their
predicted performance for the given dataset, evalua-
tion metric and the set of candidate pipelines. How-
ever, this approach may not be practical in all situ-
ations, since the system asks to provide the list of
pipelines to rank, that a non-ML expert cannot pro-
duce.

Moreover, some studies (Cohen-Shapira et al.,
2019; Feurer et al., 2019) propose the use of meta-
features and learning to improve the AutoML process.
However, these frameworks do not achieve the goal
of identifying the promising analytics tools as well as
configurations as a prompt and powerful support for
the manufacturing application areas in the first place.
Therefore, they are not suitable for decision-making
at the managerial level (Zacarias et al., 2018).

3 FRAMEWORK OF THE
PROTOTYPE OF VALIDATION

The framework in its actual form includes two inde-
pendent main phases; which are the Learning phase
and the Recommendation phase. The high-level ar-
chitectural description of prototype of the proposed
solution is illustrated in Fig. 1. We discuss in detail
the different components of the framework’s life cy-
cle, in the following sub-sections.

3.1 Learning Phase

The learning phase is performed offline and consists
of two main steps. In the first step a meta-dataset
is established. We extracted 42 dataset characteris-
tics (meta-features)—detailed in section 4.3 from each
dataset. Furthermore, on each dataset, we executed 8
classification algorithms (meta-learners), by generat-
ing different predictive performance metrics (predic-
tive accuracy, Recall, precision, F1-score) values. We
primarily evaluate that with a 5-fold stratified cross
validation strategy. For each data mining algorithm,
we obtained a meta-dataset that is fed to the meta-
knowledge base.

Dataset characteristics and performance measures
altogether are referred to as metadata. In the second
step, meta-learning is performed on top of the meta-
knowledge base. As aresult, a predictive meta-model
is generated that can be used to predict a ranked list
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Figure 1: The workflow of the proposed framework.

of a classification algorithms and their related hyper-
parameters configuration on any new dataset.

3.2 Recommendation Phase

In the recommendation phase, when a user wants to
analyze a new dataset, she selects a predictive metric
to be used for the analysis and then the system auto-
matically recommends a machine-learning algorithm
and its related hyper-parameters configuration to be
applied such that the predictive performance is the
first-rate. In order to do that, the system first extracts
the dataset meta-features through the meta-features
executor module. Then, the extracted meta-features
are fed to the meta-model to provide the candidate
pipelines. Finally, the suggestion engine, according
to the meta-knowledge base, rank the pipelines in re-
spect to the provided metric. The recommendation
phase algorithm is listed as follows:

4 IMPLEMENTATION
ARCHITECTURE

In this section, we discuss the implementation of the
proposed approach into a prototype solution. As we
already know, the principal phases of the proposed
frame work are Learning phase and Recommendation
phase; these are implemented independently of each
other. In the following, we give the detailed descrip-
tion for each of these phases.

4.1 Datasets

We collected 200 real-world manufacturing classifi-
cation datasets. These have been collected from the
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Algorithm 1: The recommendation phase algorithm.

Input:

D = The Dataset

M = Predictive metric
Output:

P<P P, P ...
Method :
Begin

,P> // The suggested pipelines

/! characterize the new dataset D

Yp M Metafeatures (D)

// select nearest neighbor from the

// meta—dataset

Neighbors <« min(distance(Yp,Y;)!"

/1 Y; (actually 42) is the vector of the
// m as the size (actually 200)

// of training dataset metafeatures

// characterize the candidate neighbors
FT < Neighbors Metadata

// Suggested pipelines ranking of

// the new dataset D

//based on the provided performance criteria
I' = Suggestion_Engine (P ,P>.,P;,...,P,)

End

popular UCI!, OpenML?, Kaggle? repositories along
with some other real-world scenarios which were
used in the learning phase. These datasets represent a
mix of binary (54%) and multi-class (46%) classifica-
tion tasks.

Although not limited to the problems in machines
level, the data set includes many manufacturing clas-
sification problems, including tasks such as predictive
maintenance, anomaly detection, shop floor applica-
tions, among others.

Thttps://archive.ics.uci.edu
Zhttps://www.openml.org
3https://www.kaggle.com
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4.2 Meta-learners

In the context of this work, we used 8 popular ML al-
gorithms from scikit-learn, a widely used ML library
implemented in Python. Each algorithm and its re-
lated hyper-parameters are described in Table 1.

4.3 Meta-features

The used meta-features should well describe the
datasets to create an effective meta-model able to rec-
ommend the most suitable pipeline with a high pre-
cision. The features should be good predictors of
the relative performance of algorithms. Several cate-
gories of meta-features have been developed. These
range from simple features such as the number of
instances in a dataset to more complex ones. Most
meta-features belong to one of the following cate-
gories (Vilalta et al., 2004):

4.3.1 Simple, Statistical and
Information-theoretic

Simple features can be rapidly extracted such as the
number of instances, attributes and classes in the
dataset. To some extent, they are designed to measure
the complexity of the underlying problem. Statistical
and Information-theoretic features are designed to de-
scribe the numerical properties of data distribution in
a dataset sample and informations about the numeric
features such as the class entropy, mean skewness of
attributes.

4.3.2 Landmarking

It characterizes the extent of datasets when basic ma-
chine learning algorithms are performed on them.
Some of the examples include the performance of a
Decision Trees (DT), Gaussian Naive Bayes (GNB) or
Linear Discriminant Analysis landmarker (LDA).

4.4 Meta-model

We used the k-Nearest Neighbor (k-NN) algorithm
to induce meta-model able to predict top performer
pipeline. It is often used in recommendation sys-
tems based on meta-learning (Laadan et al., 2019;
Dyrmishi et al., 2019). After identifying the clos-
est neighbors of the dataset using a distance metric
such as “Euclidean Distance”, a weighted average of
each individual neighbor’s actual ranking is used for
computing the candidate dataset’s predicted ranking
of modeling algorithms based on the relevant metric.
Thus, when the meta-learning system is applied to a
new dataset, the suggestion engine returns a list of

the most suitable pipelines, based on the meta-feature
values extracted from the dataset and the evaluation
metric.

S EVALUATION

We performed an experimental study to evaluate the
performance that can be achieved by using the pro-
posed approach on various manufacturing related
problems. After specifying the experimental environ-
ment, we evaluate the systems ability to predict the
ML algorithms with its hyper-parameters configura-
tion that shall provide the best result of the analysis.

We benchmark on a highly varied selection of 20
more curated datasets to ensure meaningful evalua-
tion. It covers binary and multi-class classification
problems from different industry 4.0 levels. These
data are gathered from state of the art papers deal-
ing with industry 4.0 related problems using machine-
learning solutions as described in the Table 2. It is im-
portant to note that, the selected data sets were never
exploited by any learning method on the offline phase.

The proposed system exploits the meta-model to
predict all the pipelines in the meta-knowledge base
with respect to the analyzed dataset and then returns
its top-ranked pipelines according to the provided per-
formance criteria. These pipelines are then fitted on
the datasets train set and evaluated on the test set us-
ing the 70% / 30% splitting ratio.

The performance of the proposed system is com-
parable to the results of the datasets treated by the
related papers. Lets us explain this with the help of
data in Table 3. The first column of the table cites the
original papers from which we borrow the datasets for
testing and comparison purpose. The second column
gives the recommended ML configurations (ML algo-
rithm and its related hyper-parameters configurations)
results generated by the proposed model on same
datasets. The third column indicates the achieved ac-
curacy of each dataset on the related original paper.
The fourth column shows the evaluation results of ap-
plying the default configuration on the recommended
ML algorithm. Evidently, as shown in Table 3, the ob-
tained results are more accurate than the results from
the related papers. It can be observed that some ma-
chine learning oriented manufacturing works could be
improved simply through the use of a better ML algo-
rithm configuration.

The illustrated results reveal the effectiveness of
the AutoML solution in manufacturing data mining
processes. The suggested model configurations ex-
hibit better performance than the classic supervised
learning techniques with default hyper-parameters
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Table 1: ML algorithms and related hyperparameters tuned in the experiments.

ML algorithm

Hyper-parameters

Support Vector Classifier (SVC)

C: range (1e-10, 500)
gamma: range (0.001, 1.01)
kernel: ['poly’, ’rbf’]
degree: [2, 3]

coef0: range (0., 10.)

AdaBoost (AB) max_depth: range(l1, 11)
algorithm: ['SAMME’, ’'SAMME.R’]
n_estimators: range(50, 501)
learning_rate: [0.01, 2]
Gradient Boosting (GB) learning_rate: [0.01, 1]

criterion’: ['friedman_mse’, *'mse’]
n_estimators: range (50, 501)
max_depth: range (1, 11)
min_samples_split: range (2, 21)
min_samples_leaf: range (1, 21)
max_features: [0.1, 0.9]

Extra Trees (ET) & Random Forest (RF)

n_estimators:[100]

bootstrap: [True, False]
max_features: range (0.1, 0.9)
min_samples_leaf: range (1, 21)
min_samples_split: range (2, 21)
criterion: [’entropy’, *gini’]

Decision Tree (DT)

max_features: range (0.1, 0.9)
min_samples_leaf: range (1, 21)
min_samples_split: range (2, 21)
criterion: [’entropy’, *gini’]

Logistic Regression (LR)

C: range (le-10, 10.)
penalty: [’12°, ’11°]
fit_intercept: [True, False]

Stochastic Gradient Descent (SGD)

loss: [hinge’, ’log’, *'modified_huber’,
’squared_hinge’, ’perceptron’]
penalty:[’12’, ’11°, ’elasticnet’]

learning_rate:[’constant’, *optimal’, *invscaling’]

fit_intercept: [True, False]
11 ratio: range (0., 1.)

eta0: range (0., 5.)
power_t: range (0., 5.)

settings and the configurations by non-ML experts, as
shown in Figure 2.

6 CONCLUSIONS

In this paper, we studied the effectiveness of auto-
mated machine-learning techniques for the selection
and parametrization of ML for the problems more of-
ten related to manufacturing industry. The main ob-
jective of the current work has been focused towards
the design of a decision support system in order to en-
able the non-expert practitioners and data engineers,
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prospectively in the domain of industry 4.0 to take
maximum benefit of ML models. The proposed ap-
proach validates the automated selection of ML mod-
els and suggest the optimized hyper-parameters for
their configurations. The contents of the paper briefly
describe the potential use of automatic machine learn-
ing methods in the 4th industrial revolution field. The
proposed approach eventually aims to improve the
confidence level of industrial practitioners to specify
the appropriate configuration in the ML tools as well
as to improve the reliability generalizing the high-risk
and dynamic manufacturing environment.

In the current work, we mainly focus on the clas-
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Table 2: The sample list of datasets used in the evaluation.

Dataset Number Number Task
of Classes | of Instances
(Mazumder et al., ) 4 959 Failure risk analysis of pipeline
networks
(Benkedjouh et al., 2015) 2 61000 RUL prediction
(Saravanamurugan et al., 2017) 3 2000 Chatter prediction
(Costa and Nascimento, 2016) 2 60000 APS system failure prediction
(Baldi et al., 2014) 2 98050 high-energy physics data analyses
(Tian et al., 2015) 7 1941 Faults detection

Table 3: The comparative performance analysis of the proposed framework.

Dataset Recommended Original paper ML pipeline with
configuration result result default configuration

(Mazumder et al., ) 93.74 85 80.24
(Benkedjouh et al., 2015) 99.41 98.95 93.88
(Saravanamurugan et al., 2017) 97.06 95 86.12
(Costa and Nascimento, 2016) 99.10 92.56 92.34
(Baldi et al., 2014) 85.59 88 69.45

(Tian et al., 2015) 99.54 80.74 76.23

Accuracy
=N W s U G W W
o 0o o o 0o 0o 8 o o o

D o D ) N o
A 3 S5 > N &
G N N A N .
@év} & ¥ &0 ) & o : &°
o & 3 & © &
K & ey o & &
AN & b\_\\o S
& & &2
o &
& & &

Datasets

m Recommended configuration W Paper result Default configuration

Figure 2: Comparative results of the effectiveness of AutoML over default classic ML configurations and domain ex-
pert (industrial researchers) configurations.

sification problems for the sake of clarity of the ex-
perimental evaluation. The results obtained from
the proposed framework evidently exhibits improved
performance of the automated selection of ML al-
gorithms and optimization of hyper-parameters in-
stead of the default values in manufacturing applica-
tions. The comparative analysis reveals in the ma-
jority of the cases that the recommended configura-
tions yield better performances to enhance the utility
of ML methods for the domain experts, notably the
non-ML experts. It, thence, can be observed that Au-
toML paradigms and tools may help manufacturing
practitioners—both neophyte and experts in the field

of data analysis.

Moreover, we believe that such tools should not
lack transparency while using the AI models; the per-
formance of which, most of the times comes from
the black box algorithms. It is essential to incorpo-
rate features that enable the interpretability and ex-
plainability of the produced results to a certain extent.
We, hence, endeavor in the future works, the better
understanding of the recommended configuration to
gain more confidence on the rational of the obtained
results. It shall assure the adoption of the proposed
solution for the real-time systems even in critical sit-
uations.
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