Integrating Distributed Tracing into the Narayana Transaction Manager

Miloslav Zezulka', Ondiej Chaloupka? and Bruno Rossi' ®?
YMasaryk University, Faculty of Informatics, Brno, Czech Republic
2Red Hat, Brno, Czech Republic

Keywords:

Abstract:

System Transactions, Distributed Transactions, OpenTracing, Distributed Tracing.

ACID transactions have proven to be a very useful mechanism of ensuring reliability of applications. Guar-

anteeing transactional properties effectively and correctly is a challenging task by itself. Furthermore, inves-
tigating transaction issues in a distributed environment is at least equally complex and requires systematic
data collection and analysis. In this paper, we present mechanisms and concepts of distributed tracing with
focus on the OpenTracing API and showcase our integration of tracing capabilities into the Narayana transac-
tion manager. We show that the performance impact of tracing does not drastically decrease user application
performance while providing useful information for the analysis of running transactions.

1 INTRODUCTION

Transaction processing is designed to maintain a sys-
tem’s integrity in a known, consistent state, by en-
suring that interdependent operations on the system
are either all completed or all cancelled (Bernstein,
2009). This simple, yet very powerful concept is
still used in many present-day applications. There-
fore, understanding the details of transaction process-
ing gives us big benefits during troubleshooting in
a great variety of systems, allowing to improve the
overall reliability and resilience (Rossi et al., 2010;
Kanti-Singha Roy and Rossi, 2014).

Research on system transaction processing is still
active even after more than forty years of its intro-
duction to the field of computer science. When trans-
action processing exceeds boundaries of one isolated
system and is performed in an interconnected dis-
tributed environment, the study of such systems be-
comes even more demanding and time-consuming
(Stefanko et al., 2019; Stefanko, 2018).

Collecting information systematically from a dis-
tributed transaction processing system would aid in
reasoning about transaction from a global perspective,
e.g. what paths transaction processing took, which
nodes caused the failure of a transaction or what was
the exact cause of the failure. The Narayana (Little
et al., 2020) transaction manager, written in Java and
used in projects such as the WildFly Java EE applica-

(2 https://orcid.org/0000-0002-8659-1520

Zezulka, M., Chaloupka, O. and Rossi, B.
Integrating Distributed Tracing into the Narayana Transaction Manager.
DOI: 10.5220/0010448200550062

tion server, which lacks exactly such instrumentation.

The main goal of this article is to achieve the in-
tegration of OpenTracing into the Narayana Transac-
tion Manager (TM). Tracing can be fundamental in
distributed patterns such as the Saga Pattern (Stefanko
et al., 2019; Garcia-Molina and Salem, 1987a). There
have been many attempts to collect information about
transactions, some of which date more than fifteen
years (S. Smith, 2005; M. Goulet, 2011). The con-
cept itself is therefore not new and for example,
Narayana itself contains a great number of logging
statements. However, at least to our knowledge, this
paper presents a new way of systematic information
collection from a TM, more specifically ArjunaCore,
the transactional engine of Narayana.

The paper is structured as follows: in Section 2 we
review the background concepts of distributed trans-
actions. In Section 3 we delve into distributed trac-
ing, presenting OpenTracing. In Section 4 we present
the integration of tracing integration into Narayana,
together with performance testing. In Section 5 we
provide the conclusions.

2 DISTRIBUTED
TRANSACTIONS

A transaction represents a single unit of work treated
coherently and reliably independent of other trans-
actions. Transactions usually represent a change in

55

In Proceedings of the 6th International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2021), pages 55-62

ISBN: 978-989-758-505-0

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

a shared resource. To ensure all the desired proper-
ties of transactions, we need a supervisor which will
make sure all transactions are executed accordingly
to the defined set of rules. We call such supervisor
a transaction manager (TM). When a TM determines
that a transaction can complete without any failure we
say that it commits the transaction. This means that
changes to shared resources take permanent effect and
are available to other parties. Otherwise, the TM is re-
quired to perform a rollback of the transaction which
discards any possible changes already made by the
transaction.

In the 1983 paper Principles of Transaction-
Oriented Database Recovery (Haerder and Reuter,
1983), Andreas Reuter and Theo Hérder coined the
acronym ACID as shorthand for Atomicity, Consis-
tency, Isolation and Durability. It turns out to be
quite difficult to scale traditional, ACID-compliant
database systems. One of the possible ways of build-
ing a more scalable system is horizontal scaling
which consists in distributing shared resources and
their load over multiple nodes. The problem is that
if a transaction accesses data that is split across mul-
tiple physical machines, guaranteeing the traditional
ACID properties becomes increasingly complex; for
example, the atomicity property of the ACID quadru-
ple requires a distributed commit protocol to be run
on top of the whole processing.

2.1 CAP Theorem

CAP theorem, also known as the Brewer’s theorem,
was proposed by Eric Brewer(Brewer, 2000). CAP
is short for Consistency, Availability and Partition-
Tolerance. The main contribution this theorem brings
is that a distributed system data store can’t satisfy
all three properties at once. As a matter of fact,
Seth Gilbert and Nancy Lynch published a proof of
the Brewer’s conjecture(Gilbert and Lynch, 2002) in
2002. Let us briefly introduce each one of the proper-
ties.

Consistency. There must exist a total order on all op-
erations such that each operation behaves as if it were
completed at a single point in time. This is equivalent
to requiring requests of the distributed shared mem-
ory to act as if they were executing on a single node,
responding to operations one at a time.

Availability. For a distributed system to be contin-
uously available, every request received by a non-
failing node in the system must result in a response.
Partition-tolerance. The network will be allowed to
lose arbitrarily many messages sent from one node to
another. When a network is partitioned, all messages
sent from nodes in one component of the partition to

56

CA category
Microsoft SQL Server
MariaDB

MySQL

Consistency Availability
= —
CP category AP category
Apache HBase ~ Partition Tolerance CouchDB
MongoDB Cassandra
Redis Riak

Figure 1: CAP theorem and all the possible compromise
categories together with examples (as of 2015). Based on
(Lourengo et al., 2015).

nodes in another component are lost.

Since its inception, the CAP theorem has proven
to be quite useful in helping distributed system de-
signers to reason through capabilities of a proposed
system. However, CAP has become increasingly mis-
understood and misapplied. In particular, many de-
signers incorrectly concluded that the theorem im-
poses certain restrictions on a distributed database
system regardless of whether the system is operating
normally or in a recovery mode. By strictly adhering
to CAP, we design a system which is robust but might
waste a lot of resources.

2.2 Sagas

In many scenarios, we need to process a series of
transactions (possibly communicating among each
other) which may as a whole last a long time, perhaps
hours or even days. We call such transactions long-
lived transactions (Garcia-Molina and Salem, 1987b;
Stefanko et al., 2019) (LLT). Saga is an LLT trans-
action processing pattern and can be thought of as
a metatransaction arching over multiple subtransac-
tions!.

To make a transaction atomic, a DTP system
would usually lock all objects accessed by the trans-
action until it commits, thus preventing other trans-
actions from accessing these resources and making
them starve as a consequence. Such starvation is even
more perceptible in LLTs. The solution sagas offer

I'This does not imply that the meta-transaction adheres
to all ACID principles, though. In sagas, each transaction
is committed separately, meaning that sagas do not comply
with the isolation property.

is to avoid locks on non-local resources, i.e. sagas
hold only those resources needed by unfinished trans-
actions. As soon as a subtransaction commits, it re-
leases all of its local resources irrespective of whether
other subtransactions have been committed or not.

We would still like to achieve atomicity in sagas,
i.e. either all subtransactions are committed and the
whole saga succeeds or at a certain stage, any sub-
transaction can fail and the whole saga needs to be
aborted. Since some of the subtransactions may have
already committed their work, we need a mechanism
to semantically reverse the effect of any committed
transaction. We call such a process compensation.
Sagas use compensating transactions associated with
every sub-transaction. Saga coordination then runs
compensating transactions for all committed transac-
tions in case of abort, thus accomplishing the atomic-
ity property of ACID on the level of a saga.

Sagas utilize an alternative model which favours
CAP availability over ACID isolation. Where ACID
is pessimistic and forces CAP consistency at the end
of every transaction, BASE is optimistic and accepts
that the database consistency will be in a state of flux.
Although this model has its indisputable disadvan-
tages, BASE leads to levels of scalability that can-
not be obtained with ACID. The availability of BASE
is achieved through supporting partial inconsistencies
without total system failure (Pritchett, 2008).

Having two or more participants as part of a
transaction makes the transaction a distributed one.
With resource-local transaction processing, a resource
manager could process transaction updates indepen-
dently of each other (Bernstein, 2009, p. 223). The
global transaction must either commit updates of all
resource managers or none. Such coordination issue
belongs to a much more generic family of problems
called consensus. One of the most known consen-
sus protocols is the two-phase commit (2PC) protocol
(Skeen, 1982).

3 DISTRIBUTED TRACING

So far, we have discussed how transaction state is
transferred among all participants. We now also need
a mechanism which would make it possible to trans-
mit tracing data to various TMs since a Transaction
Manager deals with XA transactions in a way that
each node is managed by a standalone (but at the same
time possibly subordinate in the context of a trans-
action) TM communicating with the rest of the dis-
tributed transaction processing environment.

We would like to have a mechanism supporting in-
formation propagation across multiple nodes. More-

Integrating Distributed Tracing into the Narayana Transaction Manager

over, we want to treat related information from vari-
ous nodes as a whole. This can be extremely useful
particularly for Narayana since we want to see how
a particular execution of the 2PC consensus protocol
behaves globally.

Distributed tracing shows a micro view of a re-
quest execution from the end-to-end perspective. As
a consequence, we can retrospectively understand be-
haviour of each application component. Distributed
tracing records everything related to an action in the
system, i.e. captures detailed information of a request
and all causally related activities (Stark et al., 2019).
A collection of such activities is called a trace. For
the purposes of this paper, one trace will be usually
equivalent to one XA transaction.

X-Trace (Fonseca et al., 2007), one of the first
frameworks which attempted to reconstruct a com-
prehensive view of service behavior, presented three
main principles which were taken into consideration
when designing it. These principles were later used
in many relevant distributed tracing systems such as
Dapper (Sigelman et al., 2010) or Canopy (Kaldor
et al., 2017): 1) The trace request should be sent in-
band, rather than in a separate probe message, ii) the
collected trace data should be sent out-of-band, de-
coupled from the original datapath, iii) the entity that
requests tracing is decoupled from the entity that re-
ceives the trace reports.

Event causality in tracing is based on the Lam-
port’s happens before relation (Lamport, 1978) and in
such a way tracing ”[...] does not rely on clocks but
on the sequence of event execution. Because of the
propagation of metadata among related events, [X-
Trace] captures true causality, rather than incidental
causality due to execution ordering” (Fonseca et al.,
2010). Even though traces contain contextual data,
one caveat with using tracing for troubleshooting is
that it requires a global view yet granular attribution.
For an enough large system, this might present an
information overload since “only a small fraction of
data in each trace may be relevant to each engineer
[...]” but at the same time, “traces [, by design,] con-
tain all of the data necessary for anybody” (Kaldor
et al., 2017).

3.1 OpenTracing API

OpenTracing is a distributed tracing standard. In
short, OpenTracing translates what previous tracing
projects did, especially Google’s Dapper (Sigelman
et al., 2010), into a well-defined APIZ.

Zhttps://opentracing.io/specification/

57

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

OpenTracing is not the only option at hand . First
most distinguishable aspect around OpenTracing is
a public list of OpenTracing-related projects called
OpenTracing Registry (the Registry). The Registry
is a collection of “tracers, instrumentation libraries,
interfaces, and other projects”. Besides this, the Reg-
istry also shows how active OpenTracing is, both in
terms of its use in projects and development of the
API itself. One other positive (not that much distin-
guishable from alternatives as the Registry, though)
aspect of OpenTracing is that it supports the vast ma-
jority of mainstream languages. At the time of writ-
ing this paper, nine programming languages were of-
ficially supported: C#, C++, Go, Java, JavaScript,
Objective-C, PHP, Python and Ruby. The project
“provides a vendor-neutral specification and polyglot
APIs for describing distributed actions. [...] From
an API perspective, there are three key concepts:
Tracer, Span, and SpanContext”.

Trace is a directed graph the vertex set is a set of
reported spans and the edge set is a set of references
among respective spans. The OpenTracing standard
does in no way prescribe any further constraints the
structure of a trace. A trace is not directly represented
in API and is represented as a set of Span instances.

There are two kinds of references: Chil1d0Of and
FollowsFrom, both representing a child-parent rela-
tion. In a ChildOf reference, the parent Span de-
pends on the child Span in some capacity. For ex-
ample, a Span representing the server side of an RPC
may be the ChildOf a Span representing the client
side of that RPC. Some parent Spans do not depend in
any way on the result of their child Spans, e.g. when
we model asynchronous behaviour like emitting and
receiving messages to the message bus. The Open-
Tracing standard describes such causality as a follows
from relation. SpanContext depicts a state of a Span
that needs to be propagated to descendant Spans and
across process boundaries. Having such a representa-
tion in the API is basically what makes the OpenTrac-
ing standard distributed. The idea of distributed con-
text propagation resides in associating certain meta-
data to every request that enters the system, then prop-
agating this metadata across thread, process or ma-
chine boundaries as the request gets fanned out to
other services (Popa and Oprescu, 2019). The Tracer
interface creates Spans and understands how to in-
Jject (serialize) and extract (deserialize) their metadata
across process boundaries. It has the following ca-
pabilities: start a new Span, inject a SpanContext
into and extract a SpanContext from a carrier which
acts as an abstraction over any environment through

3See OpenZipkin - https://zipkin.io, OpenCensus -
https://opencensus.io

58

which data is sent. A trace can be represented and
visualized in multiple ways. In Fig. 2, we can see
two different representations of the same trace. The
first, causal representation, depicts the relationship
among spans. The latter temporal visualisation fo-
cuses more on the time domain at which the trace
spans were recorded, making it more useful when de-
bugging latency-related issues in the application.

Web Framework

lChiIdOf Web Framework + RPC + Ext. Service API
) RPC
5) RPC
1 1
- API AP |

FollowsFrom

Figure 2: Causal and temporal relationships among spans
of a same trace. Adapted from: https://opentracing.io/docs/
best-practices/instrumenting-your-application/.

4 TRACING INTEGRATION IN
NARAYANA

We delve now into the main contribution of the paper,
that is the integration of OpenTracing into Narayana.

4.1 Narayana Transaction Processing

Narayana (https://narayana.io) is a library which pro-
vides an implementation of Java Transaction API
(JTA). In a broader context, though, we can think of
Narayana as a transaction toolkit providing a broad
range of standards-based transaction protocols and
mechanisms, namely JTS, WS-AT, WS-BA, REST-
AT Transactions, STM, XATMI/TX and LRA.

4.1.1 Architecture Overview

The centrepiece and core part of Narayana is called
ArjunaCore. There are three main ArjunaCore com-
ponents. The first part is the TM engine itself and can
be thought of as a state machine. The second part is a
recovery manager running as a separate process. The
last unit is responsible for persisting auxiliary infor-
mation related to transaction processing, also known
in the context of Narayana as the object store (or ob-
ject storage).

ArjunaCore is used as a transaction engine for the
above-mentioned protocols which are system-wise
one layer above ArjunaCore. For the purposes of this
paper, we will focus purely on ArjunaCore.

StateManager provides primitive facilities nec-
essary for managing persistent and recoverable ob-
jects. These facilities include support for the activa-
tion and deactivation of objects, and state-based ob-
ject recovery. LockManager represents the concur-
rency controller of the engine. Lock, a synchroniza-
tion primitive specific to ArjunaCore, is made persis-
tent. Locks are maintained within the memory of the
virtual machine which created them.

As the name suggests, AbstractRecord is an
overarching abstract class which defines an interface
used in ArjunaCore to notify objects that various state
transitions have occurred as an XA transaction exe-
cutes. In other words, any class having a subtype
AbstractRecord acts as an intermediary between a
transaction processing and a related record in the ob-
ject store. ArjunaCore remembers object state: this
serves two purposes. Firstly, the recovery manager
can then use such information for transaction recov-
ery. The second, directly related one, is persistence.
The state represents the final state of an object at ap-
plication termination.

The failure recovery subsystem of Narayana will
ensure that results of a transaction are applied con-
sistently to all resources affected by the transaction,
even if any of the application processes or the ma-
chine hosting them crash or lose network connectiv-
ity. In the case of machine (system) crash or network
failure, the recovery will not take place until the sys-
tem or network are restored, but the original appli-
cation does not need to be restarted — recovery re-
sponsibility is delegated to a recovery manager which
runs as a separate process(Little et al., 2020). The
main responsibility of the recovery manager is to pe-
riodically scan the object store for transactions that
may have failed; failed transactions are indicated by
presence in an object store after a timeout that the
transaction would have normally been expected to fin-
ish. Narayana also utilizes a so-called reaper thread
which separately and periodically monitors all locally
created transactions and forces them to roll back if
their timeouts elapse.

4.2 Integration Design

One of the most crucial stages of any tracing integra-
tion is to properly understand its domain. Without
such preparation, we render tracing useless.

The first important task, therefore, was to design
a generic trace structure reflecting the way Arjuna
processes a GT. In our integration, each GT is repre-
sented by an OpenTracing trace and vice versa. Struc-
ture of such a trace can be seen in Fig. 3. To con-
struct a complete trace, we needed to find appropriate

Integrating Distributed Tracing into the Narayana Transaction Manager

code insertion points inside Narayana which would
correspond to an action done by the TM. Narayana
contains a great deal of logging statements and after
careful inspection of logs, we were able to pinpoint
most of the code locations. In Table 1, we can see fi-
nal choices of instrumentation points in ArjunaCore.

Table 1: Span delimiting events in ArjunaCore.

Span action Instrumentation point

global prepare BasicAction.prepare

branch prepare XAResourceRecord.topLevelPrepare
global commit BasicAction.phase2Commit
branch commit XAResourceRecord.topLevelCommit
global abort BasicAction.phase2Abort

branch abort BasicAction.doAbort

enlistment TransactionImple.enlistResource

4.3 Problems Encountered

During tracing integration itself, we encountered
many blind alleys and needed to rethink some of the
design choices. Let us now talk about the most im-
portant items we needed to deal with.

4.3.1 Cross-thread Manual Context Transfer

During the first draft of the implementation, we used a
VM-global ConcurrentHashMap which we used for
transfer of Spans across multiple threads, where the
map key was a String representation of a GT identi-
fier. This way, every event in Narayana has the abil-
ity to be attached to this span and together, we get
a complete trace irrespective of on which threads the
processing happened.

We can already see that this approach is a bit inef-
fective as every access to this global storage might be
synchronized. In the final integration, this has been
mitigated by associating every root span (as a pri-
vate class attribute) to a BasicAction which is where
transaction processing both starts and ends. This way,
the whole lifecycle of a span can be managed from
one thread. Nevertheless, even if we, for some reason,
needed to transfer spans across thread boundaries, this
would be still best done by SpanContext injection
and extraction among threads. Choosing global col-
lection is bound to be very ineffective and prone to er-
rors related to “memory leaks” (e.g. spans which will
never be deleted from the global collection because
of a transaction processing path which the integration
has not dealt with or even has not expected).

4.3.2 Fluid OpenTracing API

OpenTracing API for Java is three years old but
even during the work on the integration, substantial

59

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

Transaction <UID

Pre-2PC

Enlist participant P1
«+——Business method 1—» €—.—> <€—Business method N-»

2PC

€« FrlistpaicipantPN—]
<«—Business method 1—» 4—. % <€—Business method N—»

«——Prepars Pi——»

“—Prepare Pk——»

Global prep Global co
«——CommitPi—»

“—Commit PK—*

Prepare PN Commit PN

Figure 3: Causal and temporal relationships among spans of a same trace. Adapted from: https://opentracing.io/docs/

best-practices/instrumenting- your-application/.

changes were still being made, e.g. how a tracer
is registered or whether spans were subject to au-
tomatic resource management, in Java realized as a
try-with-resources statement.

Frequent changes in the API were also reflected in
obsolete tutorials at the OpenTracing project website,
as of the beginning of 2020, making it more difficult
for a new user to use properly. We created a special-
ized narayanatracing module in Narayana which
tries to avoid such complications. This means that all
the necessary changes forced by the change of the API
will be only propagated at only one place. The other
motivation behind introducing the module is to ease
the use of tracing as much as possible. We know in
advance what the structure of a transaction span will
be and we can use this to our advantage when using
tracing inside Narayana.

4.4 Performance Testing

In a time-critical component which transaction man-
ager certainly is, we need to measure the overhead
caused by introducing the tracing code. If the over-
head is too large, there is no practical use to such in-
strumentation and it might be useful to resort to al-
ready existing practices instead.

When measuring tracing overheads, engineers
from Google in their Dapper paper argued that "the
cost of a tracing system is felt as performance degra-
dation in the system being monitored due to both
trace generation and collection overheads, and as the
amount of resources needed to store and analyze trace
data” (Sigelman et al., 2010). Tracing was from the
very beginning designed in a way that ”... propagat-
ing metadata on its own is unlikely to become a bot-
tleneck. Generating reports, however, could become

60

a significant source of load” (Sigelman et al., 2010).

At first sight, it might seem that the only overhead
caused by the tracing is the time it takes to handle all
the OpenTracing API calls and optionally, how long
does it take to propagate a span across the network.

In general, this seems to be the case but we also
need to take into consideration a situation in which
the tracing is present in the codebase but the trac-
ing itself has not been activated. What Jaeger does
by default is to register a no operation tracer (no-op
tracer) which serves as a dummy implementation of
the tracer which, as the name suggests, does not per-
form any real action and immediately returns from
any of its API calls.

Even though the analogy of tracing with log-
ging fails on many levels, it is still useful to com-
pare the differences of overhead between those two
approaches. Narayana contains a great deal of log
statements for debugging and development purposes.
Therefore, we use a special logger, the only one
turned on during performance testing, which bypasses
the standard Narayana logging; this way, we have di-
rect control over what is logged. All the logging state-
ments are written to a single log file persisted to a lo-
cal file system. We tested five types of Narayana:

e T1. file-logged: Narayana with logging state-
ments transformed from the tracing instrumenta-
tion as described above),

e T2. jaeger: with tracing code and an activated
Jaeger tracer,

* T3. noop: with tracing code inside but with only
a default no operation tracer registered,

* T4, tracing-off: tracing code is present but
its execution is completely circumvented using if
statements,

* T5. vanilla: cloned from the official repository
with no changes in the code.

There are four main use cases tested in benchmarks:
commit 2 XA resources, commit an XA resource,
user-initiated rollback and a scenario in which an XA
resource fails to prepare. It is difficult to reproduce a
production environment with multi-threading concur-
rent access and all the impact it can have on perfor-
mance. In order to address these issues, the OpenJDK
project has developed a tool dedicated to benchmarks
for languages running on the JVM called Java Mi-
crobenchmark Harness (JMH). This framework aims
at executing automatically repeated executions of any
chosen code and collecting statistics about code per-
formance. The most basic usage of JMH is to write a
class or classes containing a series of methods anno-
tated with the @Benchmark annotation and JMH takes
care of the rest of the setup. The resulting artifact is a
standalone JAR file which is, very simply put, a JHM
wrapper around the attached benchmark tests.

Number of Threads = 1
138 ==
137.5 ==

137=—
136.5=—
136 =
135.5=—

Number of Threads = 2
258 ==

256 =
254 =
252 = .
250 =

Number of Threads = 4

Operations Per Second

450 =
445 —
440 =
435=— -
T1 T2 T3 T4 T5

Narayana Type

Figure 4: Performance test results (note different scales for
better visual inspection).

4.4.1 Performance Troubleshooting

Once we conducted the first benchmark’s runs we en-
countered an inexplicable and drastic decrease in per-
formance; benchmark running Narayana patched with
tracing performed roughly five to six times slower
than upstream version of Narayana with no changes.
We investigated this issue by running a profiler and
examining whether there were any bottlenecks out-
side of the instrumentation itself. Indeed, the bottle-

Integrating Distributed Tracing into the Narayana Transaction Manager

neck was not caused by tracing but by using costly
toString method on XAResourceRecord instances
which were used quite often as a value for XID span
attributes. Apart from this, we have also seen big
overhead used by a backing collection inside Jaeger
which held unreported spans; in the latest perfor-
mance test, this overhead was reduced.

After running tests multiple times with the same
stabilized configuration, we observed that perfor-
mance remained practically invariant to the type of
test we were running; the only factor which changed
in respect to operations ArjunaCore was execut-
ing were absolute values, not ratios among various
Narayana types. To illustrate our results, we’ve cho-
sen a scenario in which two dummy XA resources
are enlisted into the transaction and the transaction
commits successfully. As we can see from Fig. 4,
the overhead caused in T2 is in terms of tenths to
units of percents4. However, we saw an increasing
overhead as the number of threads went up. This
was most probably be caused by necessary synchro-
nization needed for accessing the backing collection,
common to all threads, to which spans are stored un-
til finished and reported. Therefore, most of the over-
head is not caused by execution of tracing code itself.

S CONCLUSION

The main goal of this article was to show the integra-
tion of distributed transaction tracing into a transac-
tion manager (the Narayana platform). We measured
the impact of tracing in terms of several alternative
implementations. Moreover, we provided a proof of
concept which enables us to connect information of
transaction processing spanning over multiple nodes,
thus showing the full potential of distributed tracing
in terms of OpenTracing.

We integrated the OpenTracing API into the
Narayana transaction manager in a way that it pro-
vides enough information to discover and monitor
transaction problems. Overall, the results show that
the integration does not hinder performance in any
noticeable way. During the journey to the state-of-
the-art integration, we were able to investigate main
concepts behind OpenTracing and use such knowl-
edge for its integration into the Narayana transaction
manager. We also listed various obstacles which can
stand in a way of any software developer attempting
to integrate tracing into other projects.

4The exact overheads ratios are (starting from one thread
counting upwards) are 0.6%, 1.2% and 2.2% using the for-

mula 100 x (1 — %)

61

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

ACKNOWLEDGMENT

The research was supported from ERDF/ESF ~Cy-
berSecurity, CyberCrime and Critical Informa-
tion Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16_.019/0000822).

REFERENCES

Bernstein, P. (2009). Principles of transaction processing.
Morgan Kaufmann Publishers, Burlington, Mass.
Brewer, E. A. (2000). Towards robust distributed systems
(abstract). In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Comput-
ing, PODC °00, page 7, New York, NY, USA. Associ-

ation for Computing Machinery.

Fonseca, R., Freedman, M. J., and Porter, G. (2010). Ex-
periences with tracing causality in networked services.
INM/WREN, 10(10).

Fonseca, R., Porter, G., Katz, R. H., Shenker, S., and Sto-
ica, I. (2007). X-trace: A pervasive network tracing
framework. In 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI 07), Univ. of
California, Berkeley.

Garcia-Molina, H. and Salem, K. (1987a). Sagas. ACM
SIGMOD Record, 16(3):249-259.

Garcia-Molina, H. and Salem, K. (1987b). Sagas. In
Proceedings of the 1987 ACM SIGMOD International
Conference on Management of Data, SIGMOD 87,
page 249-259, New York, NY, USA. Association for
Computing Machinery.

Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture
and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News, page 51-59.

Haerder, T. and Reuter, A. (1983). Principles of transaction-
oriented database recovery. ACM Comput. Surv., page
287-317.

Kaldor, J., Mace, J., Bejda, M., Gao, E., Kuropatwa, W.,
O’Neill, J., Ong, K. W., Schaller, B., Shan, P., and
Viscomi, B. (2017). Canopy: An end-to-end perfor-
mance tracing and analysis system. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 34-50, New York, NY, USA. Associ-
ation for Computing Machinery.

Kanti-Singha Roy, N. and Rossi, B. (2014). Towards an
improvement of bug severity classification. In 2074
40th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, pages 269-276.

Lamport, L. (1978). Time, clocks, and the ordering
of events in a distributed system. Commun. ACM,
21(7):558-565.

Little, M., Halliday, J., Dinn, A., Connor, K., Musgrove,
M., Robinson, P., Trikleris, G., and Feng, A. (2020).
Narayana project documentation.

Lourenco, J., Cabral, B., Carreiro, P., Vieira, M., and
Bernardino, J. (2015). Choosing the right nosql
database for the job: a quality attribute evaluation.
Journal of Big Data, 2:18.

62

M. Goulet, S. T. Rader, A. S. (2011). Selective reporting of
upstream transaction trace data. US Patent 8,392,556.

Popa, N. M. and Oprescu, A. (2019). A data-centric ap-
proach to distributed tracing. In 2019 IEEE Inter-
national Conference on Cloud Computing Technology
and Science (CloudCom), pages 209-216.

Pritchett, D. (2008). Base: An acid alternative. Queue,
6(3):48-55.

Rossi, B., Russo, B., and Succi, G. (2010). Modelling fail-
ures occurrences of open source software with reliabil-
ity growth. In Agerfalk, P., Boldyreff, C., Gonzélez-
Barahona, J. M., Madey, G. R., and Noll, J., editors,
Open Source Software: New Horizons, pages 268-280,
Berlin, Heidelberg. Springer Berlin Heidelberg.

S. Smith, D. Schank, M. T. (2005). System and methods for
cross-tier transaction tracing. US Patent 7,886,281.

Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson,
P., Plakal, M., Beaver, D., Jaspan, S., and Shanbhag,
C. (2010). Dapper, a large-scale distributed systems
tracing infrastructure. Google Technical Report.

Skeen, D. (1982). A quorum-based commit protocol. Tech-
nical report, Cornell University, USA.

Stark, S., Sabot-Durand, A., Loffay, P., Mesnil, J., Rupp,
H. W., and Saavedra, C. (2019). Hands-On Enterprise
Java Microservices with Eclipse MicroProfile. Packt
Publishing Ltd., S.I.

gtefanko, M. (2018). Use of transaction within a reactive
microservices environment. Master’s thesis, Masaryk
University, Brno.

§tefanko, M., Chaloupka, O., and Rossi, B. (2019). The
saga pattern in a reactive microservices environment.
In Proceedings of the 14th International Conference
on Software Technologies - Volume 1: ICSOFT,, pages
483-490. INSTICC, SciTePress.

