
Investigating Information about Software Requirements in Projects
That Use Continuous Integration or Not: An Exploratory Study

Rafael Nascimento a, Luana Souza b, Pablo Targino c, Gustavo Sizílio d, Uirá Kulesza e

and Márcia Lucena f
Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal, Brazil

Keywords: Continuous Integration, Github, Project Open Source, Requirements Engineering.

Abstract: Continuous Integration (CI) is a development practice that involves the automation of compilation and testing
procedures, increasing the frequency of code integration and the delivery of new features and providing
improvements in software quality. Open Source Software (OSS) projects are increasingly associated with the
use of CI practices. However, the literature has not yet explored how and if this practice can influence the
presence and the types of artifacts and information related to requirements. Thus, this study aimed to
investigate the presence, types of artifacts, and information related to requirements found in projects on
GitHub, in particular projects that use CI. An exploratory methodology was used to identify and classify the
requirements artifacts where the result shows that projects that adopt the CI have, in general, a more amount
of requirements artifacts, mainly in artifacts of the GitHub platform such as issues, pull requests, and labels.

1 INTRODUCTION

CI is a development practice for automation and
frequent code integration (Hilton et al., 2016), where
compiling and testing procedures are automated,
leading to a more frequent delivery of new features
and products (Shahin et al., 2017). The benefits of CI
in software development are code errors identified
and corrected earlier, thus improving software quality
(Zhao et al., 2017). Over the years, Open Source
Software (OSS) projects have had greater adherence
to this practice (Hilton et al., 2016). But, OSS
developers perform requirements engineering
activities informally (Kuriakose and Parson, 2015),
using artifacts such as issue tracker systems, forums,
and blogs to perform communication about
requirements (Salo, 2015; Xiao et al, 2018).

When it comes to the quality of the final product
with a lower incidence of errors, the impact of CI in
software development has already been investigated
by several authors (Bernardo and Kulesza, 2018;

a https://orcid.org/0000-0001-8620-0983
b https://orcid.org/0000-0002-9594-8616
c https://orcid.org/0000-0002-4646-0526
d https://orcid.org/0000-0003-0349-7588
e https://orcid.org/0000-0002-5467-6458
f https://orcid.org/0000-0002-9394-6641

Hilton et al, 2017; Labuschagne et al, 2017; Zhao et
al, 2017). However, the literature still needs to
investigate whether the use of CI in GitHub projects
contributes to developers storing artifacts and
information related to requirements. Considering that
projects that adopt the CI practice deliver new
features more often (Shahin et al., 2017), it is
expected that GitHub projects will have information
related to requirements and be accessible in the
repositories. Therefore, this work investigates the
presence of information and artifacts related to
software requirements. It is worth mentioning that it
is not this work's goal to analyze the requirements
artifacts' quality, but only to identify them and
understand your relationships with projects.

In this study, a dataset composed of 164 projects
found in (Bernardo and Kulesza, 2017; Nery and
Kulesza, 2018) was used. It was divided into two
groups: 82 projects that use CI and 82 projects that do
not use it (NoCI). The purpose of this selection into
two groups is to check if there are similarities and

Nascimento, R., Souza, L., Targino, P., Sizílio, G., Kulesza, U. and Lucena, M.
Investigating Information about Software Requirements in Projects That Use Continuous Integration or Not: An Exploratory Study.
DOI: 10.5220/0010447903030312
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 303-312
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

303

differences in the quantity and types of requirements
artifacts. In this sense, several indicators for analysis
present in the literature were used, such as issues,
labels, pull requests (PR), and UML artifacts. The
research questions (RQs) addressed were:
 RQ1: What types of artifacts with information

related to requirements prevail in CI and NoCI
projects?

 RQ2: What is the volume of information related
to requirements found in native artifacts in the
Github of CI and NoCI projects?

 RQ3: Is there a difference in the volume of
requirements information for CI and NoCI
projects?

The research is classified as exploratory since it
provides an overview of the subject addressed,
bringing together characteristics and new dimensions
to be explored (Raupp, 2006). Among the results
obtained, it was found that there is a similarity in the
types and a difference in the quantity of requirements
artifacts found in both groups of projects. This work's
main contribution is to attest that, just like it happens
in NoCI projects (but in a smaller quantity), CI
projects present information related to software
requirements in their repositories, in an way informal
language. Such artifacts are mostly directed to final
users in the form of websites and tutorials, while
issues and PRs artifacts used by collaborators to
communicate information related to requirements on
the GitHub platform.

This work is organized as follows: Section 2
presents the research methodology used. In Section 3,
the results obtained by this study are presented and
discussed. Section 4 presents the threats to the study's
validity and the means to mitigate its effects. The
works related to this study are presented in Section 5.
Finally, the final considerations and future works are
shown.

2 RESEARCH METHODOLOGY

2.1 Projects Investigated

For the CI projects, Bernardo and Kulesza (2017)
took into account the 3,000 most popular GitHub
projects that were written in programming languages
Java, Python, Ruby, PHP, and JavaScript. That have
been filtered to guarantee the quality of the proposed
dataset. The first filter consists of the definition of the
projects that used CI, which was obtained by
separating only the projects that contained a build-in
Travis-CI, to ensure that the projects in this group

have used the CI practice. After, the authors ensured
that the projects had a substantial amount of PRs,
were all active, and did not consist of sample or toy
projects. The collection process resulted in 87
projects; however, a final step was applied by Nery
and Kulesza (2018) where considered only 82
projects in which they found an automated test code.

Concerning NoCI projects, Nery and Kulesza
(2018) used a proposal similar to Bernardo and
Kulesza (2017). The authors also start from the 3,000
most popular projects on GitHub that were written in
programming languages Java, Python, Ruby, PHP,
and JavaScript. However, the authors made sure to
separate projects that never adopted CI in their life
cycle. It is a difficult task to perform with an
automatic analysis since the projects may not present
CI configuration files and still use some internal
server or apply the practice in a way that is not
reflected in the published code. Therefore, to projects
that were not found CI service configuration files, the
authors contacted project contributors via e-mail and
other communication channels to ensure that the
project never adopted CI. In this dataset, the same
filters were used to guarantee the quality, i.e., only
active and relevant projects. In the process, the
authors provided 82 CI projects and 82 NoCI projects.

So, our study addresses these 164 projects,
divided into two groups: 82 projects that use CI
through the Travis CI tool and 82 NoCI projects.

2.2 Data Collection and Analysis
Procedures

In possession of the 164 projects selected, a manual
and an automatic search was carried out looking for
artifacts that could be related to information about
requirements (Salo, 2015; Robles et al, 2017;
Portugal and Prado Leite, 2016; Portugal et al, 2016;
Ho-Quang et al, 2017), such as:
 Native GitHub artifacts (readme files; Wiki

page - used to describe the project's
information; issues - used by users to submit
project tasks; PRs - used to solve issues; and
labels - used to classify issues and PRs);

 Files that are not native to GitHub (UML - use-
case, activities, sequence, states, classes, and
domain diagrams; feature model, goals model,
entity-relationship diagram [ERD], software
requirements specification (SRS), personas,
mind maps, user stories, websites, tutorials, and
functional and/or acceptance test scripts).

The manual search process was used to identify
artifacts that were not native to the GitHub platform

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

304

and the native artifact "labels." After identifying the
labels artifacts related to requirements, they were
used in an automated search to identify issues and
PRs also related to requirements. Both research
modes were carried out with the English language, in
the period of October 2019.
2.2.1 Search in Native Artifacts

In this work, the terms employed in (Glinz, 2011;
IEEE Standards Coordinating Committee, 1990)
were used. The terms "feature(s)," "requirement(s),"
"functionality(ies)," and "functional" were searched
for in readme files, followed by information related to
features, such as a list of features. For the labels
artifacts, were used the same terms plus the standard
GitHub terms: enhancement and improvement. Also,
terms that refer directly/indirectly to non-functional
requirements were also used, based in the literature
(Glinz, 2017; IEEE Standards Coordinating
Committee, 1990): security, performance, UX, and
UI. It is important to note that several different types
of terms can describe non-functional requirements,
and that is why we do not limit the number of types
of terms to be found in the projects, so we can have a
broad view of the types of terms used. Finally, labels
with terms for functional and non-functional
requirements were used to filter and quantify issues
and PRs related to the requirements.

2.2.2 Search in Non-native Artifacts

The same terms used to search for functional and non-
functional requirements' native artifacts were also
used when searching for non-native artifacts, both in
the name of the files and in their content. Regarding
to UML artifacts, entity-relationship diagram, feature
model, goals model, mind maps, user stories and
personas, a search was made for files with “.uml”,
“.xml”, “.xmi”, ".jpg", ".jpeg", ".png", ".bmp", ".gif"
and ".svg" extensions. For SRS files, tutorials and
websites, a search was made for files with ".doc(x)",
".pdf", ".odt", ".ppt(x)" and ".html" extensions; and it
was checked if they had descriptions of features.

In the manual search for functional and non-
functional test artifacts, folders and scripts of codes
named with the terms "functional(ity)" and
"acceptance" were considered, based on the following
research papers (Glinz, 2011; IEEE Standards
Coordinating Committee, 1990). Since test artifacts
can also reveal relevant information related to
requirements, they have been analyzed for this
purpose. The manual search for websites verified
whether the projects had a valid link to their websites.
For the artifacts with readme files, Wiki page,

website, and tutorials, only the most recent versions
were considered. For the SRS, UML, ERD, feature
model, goals model, personas, mind maps, user
stories, issues, labels, and PRs artifacts, several were
counted and analyzed per project. Regarding the
functional and non-functional test artifacts, it was
considered whether the projects have test artifacts or
not to understand if they verify and validate the
requirements.

After its acquisition, the data were classified to
enable their interpretation and further analysis. The
following data were classified: the number of
versions and collaborators in each project; the number
of non-native artifacts identified and of your projects;
the number of native artifacts identified and of your
projects. Based on the number of native artifacts,
analyses were performed to understand how many are
relevant to information related to requirements.

3 RESULTS AND DISCUSSIONS

3.1 RQ1: What Types of Artifacts with
Information Related to
Requirements Prevail in CI and
NoCI Projects?

To answer the first research question, we counted
which projects have artifacts describing requirements
considering the different types of existing artifacts
(readme file, UML, Wiki page, websites etc.). Figure
1 presents an overview of the results. Where, we can
see that for the artifacts tutorials, websites, test scripts
and UML, there was a more significant number of CI
projects presenting system requirements compared to
NoCI projects. It is possible to note that the most
common way to present requirements in both projects
that do and do not use CI were tutorials and websites.
The tutorial artifact is the most common form of
requirements documentation, being found in 49 CI’s
and 41 NoCI’s projects. The website artifact, in turn,
was used in 46 CI’s and 39 NoCI’s projects.

In 36 of the 82 NoCI projects analyzed, the
readme artifacts describe the system's requirements,
as opposed to only 21 CI projects. Regarding the Wiki
page artifact, it was found that only 14 NoCI projects
and 8 CI projects. Regarding the UML artifacts, they
were discovered in only four CI projects and were:
class, activity, and sequence diagrams. Concerning
the test script artifacts only 9 NoCI’s and 25 CI
projects. The test artifacts found are scripts to execute
functional, non-functional, and acceptance test
specifications for validation within these projects.

Investigating Information about Software Requirements in Projects That Use Continuous Integration or Not: An Exploratory Study

305

Finally, only one test plan artifact was found in a
NoCI project.

3.1.1 Most Used Artifacts

As shown in Figure 1, the number of projects that
describe requirements through UML artifacts, test
plans, and Wiki pages is minimal compared to the
total number of NoCI and CI projects. Most NoCI and
CI projects use tutorials and websites to describe the
system's functionalities. It may indicate that
developers prefer to conduct the documentation or
requirements information in a way that is more
oriented to the system's end-user and not to the other
stakeholders involved in the development process.

Figure 1: Number of projects by type of artifact.

Regarding the readme files, about half of the NoCI
projects use this artifact to describe requirements.
However, only 21 (25.60% of total) CI projects use it,
which is considered a small number compared to the
total number of CI projects.

In particular, the number of CI projects with test
scripts related to requirements is also small compared
to the total number of CI projects, corresponding to
about 25 (30.49% of total). No test plan artifacts were
found int CI projects, which are generally used to
declare test setup and procedures (containing
information related to requirements). Only one
example was found in a single NoCI project.
3.1.2 Labels Related to Requirements

Another type of artifact within GitHub repositories
that is widely used to describe requirements are the
issues or PRs labels. Figure 2 shows the number of
projects that have labels that are related to functional
and/or non-functional requirements. We found about
100 label names used for requirements, but this chart
only shows the label names found in at least two
projects per group. As can be seen, the most used
label in the projects was "enhancement," which was

used by 47 NoCI projects and 44 CI projects. The
"feature" label was the second most used, found in 18
NoCI projects and 23 CI projects. Then came the
"feature request" label, used by 15 NoCI projects and
22 CI projects. We also found labels related to non-
functional requirements, such as the "performance"
label used in 4 NoCI’s and 25 CI’s projects, and the
"security" label (4 NoCI’s and 16 CI’s projects).

Figure 2: Number of projects by type requirement labels.

In general, only about 16 labels are present in at least
more than one project. The other labels are
conditioned to only one project, whether it is a NoCI
or CI project. It is important to note that the labels
were used to filter issues and PRs that may contain
information related to requirements. The fact that an
issue or pull request uses a label whose name is
related to requirements does not guarantee that it has
information about requirements. In general, it
indicates that the developers' code commits are
associated with an issue or pull request that represents
that specific requirement. Besides, issues and PRs can
be tagged with more than one label, including more
than one label related to requirements.

3.2 RQ2: What Is the Volume of
Information Related to
Requirements Found in Native
Artifacts of Github in CI and NoCI
Projects?

To answer the second research question, we present
data on issues, PRs, and labels for CI and NoCI
projects, comparing which ones are related to
requirements and which are not. Table 3 shows the
statistics for NoCI projects. It can be seen that there
is a significant proportional difference between
issues, PRs, and labels containing explicit
requirements information (letter R highlighted in the
columns) and those that do not, which can be verified
in all three types of data, that is, issues, PRs, and
labels. Also, there are cases of projects without any
type of data related to requirements.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

306

Table 1: Issues, PRs, and labels for CI projects.
 Issues Issues

R
Pull Pull

R
Labels Labels

R
Min 6 0 0 0 6 0
Max 31578 12881 35883 8065 416 100
Avg 4684,86 619,634 4874,122 342,768 50,659 4,061
Median 2750 204 2750 17 30,500 2
Sum 384179 50810 399678 28107 4154 333
Std.
Deviation

5888,749 1617,117 6956,890 1195,132 64,663 11,130

1º Quartile 1369,750 65 1127,750 2,250 16,250 1
2º Quartile 2750 204 2750 17 30,500 2
3º Quartile 5339,250 593,500 4950,500 188,500 55,500 3

Table 2 presents data on issues, PRs, and labels for CI
projects, both from a global perspective and related to
requirements. It can be seen, that, there is a significant
difference between the data, which can be verified in
all three types of data found, that is, issues, PRs, and
labels. Besides, there are examples of projects
without any kind of data related to requirements.

Table 2: Issues, PRs, and labels for NoCI projects.

Issues Issues
R

Pull Pull
R

Labels Labels
R

Min 7 0 7 0 0 0
Max 10596 1023 9650 1023 77 12
Avg 961,49 84,329 414,732 24,463 11,610 1,512
Median 326 16,500 121,500 0 7,500 1
Sum 78847 6915 34008 2006 952 124
Std.
Deviation

1924,684 195,396 1143,486 121,639 13,209 1,701

1º Quartile 134 1,250 64,250 0 6 1
2º Quartile 326 16,500 121,500 0 7,500 1
3º Quartile 797 56,750 322,500 1,750 12 2

3.2.1 Requirements Artifacts in NoCI
Projects

In Table 3, it is noted that there are projects that do
not have requirements issues and those that have a
maximum number of 1,023 issues. Note that up to the
third quartile of the NoCI projects, there are about 56
requirements issues. Only 8.77% of issues on the sum
of issues for all projetcs are dedicated to requirements
(Figure 3a and Table 3). This information may
indicate that the flow of communication of
information about requirements between the
collaborators is small or that the system is already at
a maturity level where there are not many changes in
requirements, but only priority in the communication
regarding the system's maintenance.

To PRs related to requirements, the minimum and
the maximum number are the same as the number of
issues related to requirements. Only from the third
quartile do projects with at least 1.75 requirements
PRs arise. Also, the percentage of total PRs is around
0.5% (Figure 3b and Table 3).

There is a proportion of 30% of requirements PRs
for the total number of issues. Which can indicate that

Figure 3: Issues, PRs, and requirements labels in NoCI
projects.

about 70% of the PRs submitted in the projects are
not about requirements and that only about 25% of
the projects have the PRs submitted to solve
requirements issues (Figure 3a and 3b).

Regarding the number of requirements labels
(Figure 3c and Table 3), the number remains the same
for the minimum, while the maximum number of
requirements labels in the projects is 12. However,
half of the projects only use one label, and up to the
third quartile uses only two labels. It allows us to
conclude that most projects do not use a wide variety
of requirements label. This information corresponds
with Figure 2, which illustrates that most NoCI
projects use labels such as "enhancement," "feature,"
and "feature request" and that, in general, they are not
specifying the types of requirements. Besides, only
13.02% of the labels in the projects refer to the
requirements. This statement is made based only on
the name of the labels. However, this method is
described as a threat to validation if the label is
misused or used generically.

3.2.2 Requirements Artifacts in CI Projects

In Table 2, there are projects do not have
requirements issues, while some have a maximum
number of 12,881 requirements issues. Also, the
median number (204) and the third quartile (593.5)
are low compared to the projects' maximum number
of issues. It means that about 25% of the projects have
a significant number of requirements issues. Besides,
only has a percentage of 13.22% of the requirements
issues in CI projects (Figure 4a and Table 2).

Regarding PRs, there are projects do not have
requirements PRs, and the maximum number reaches
8,065. There is a proportional rate of 55.32% of PRs
out of the total number of requirements issues (Figure
4a and 4b). That is, about half of the requirements
issues have PRs submitted. However, despite the
median number being 17 PRs per project, and the
third quartile having about 188,500 PRs. Only about

Investigating Information about Software Requirements in Projects That Use Continuous Integration or Not: An Exploratory Study

307

Figure 4: Issues, PRs, and labels related to requirements in
CI projects.

25% of the projects have a higher concentration of
PRs. In general, only 7.03% of all CI projects' PRs are
related to requirements (Figure 4b and Table 2).

Regarding the labels, the situation is similar in
NoCI projects. There are projects do not have
requirements labels, while there are projects with
around 100 requirements labels. However, up to the
third quartile of the total number of projects, only
three labels are applied to requirements (only 25% of
the projects use more than three labels to classify
requirements) (Figure 5c and Table 2).

In Figure 2, can be seen that there is a variety of
label names used by the projects, with emphasis on
names that relate to non-functional requirements such
as "performance" and "security." Still, compared to
the total of labels for all projects, only 8.01% of the
labels in projects are used to classify requirements.

3.3 RQ3: Is There a Difference in the
Volume of Requirements
Information for CI and NoCI
Projects?

3.3.1 Number of Collaborators and Releases

Table 3 presents information about releases and
contributors to the NoCI and CI projects. The
maximum number of contributors is 327 for NoCI
and 4,520 for CI projects. The minimum number of
contributors is 2 for NoCI projects and 1 for CI
projects. The median number of contributors is 51 for
NoCI projects and 295 for CI projects. As can be seen,
the maximum number of releases is 784 for NoCI
projetcs and 2,284 for CI projects. The median
number of releases ranges between 33.5 for NoCI
projects and 112.5 for CI projects.

As noted in Table 3, the number of collaborators
and releases in CI projects is much higher than in
NoCI projects. Ståhl and Bosch (2014) argue that

Table 3: Project releases and contributors.
 Releases

NoCI
Releases

CI
Contributors

NoCI
Contributors

CI

Min 0 0 2 1
Max 784 2284 327 4520
Avg 91,390 175,439 68,500 460,378
Median 33,500 112,500 51 295
Sum 7494 14386 5617 37751
Std.
Deviation

145,820 273,701 64,315 682,542

1º Quartile 13 55,250 27 138,500
2º Quartile 33,500 112,500 51 295
3º Quartile 85,500 194,250 82,500 502

projects using CI have more frequent release
deliveries due to constant collaboration. It may be an
indication that CI projects have attracted more
attention from the collaborators due to the automated
support for testing and verifying the quality of the
code (Duvall et al, 2007; Valinescu et al, 2015). This
justifies CI projects to have a greater amount of
information about requirements to use in the testing
and verifying procedures.

Table 4 shows the number of issues, labels e PRs
related to requirements for NoCI and CI projects. The
minimum number of labels is zero for NoCI and CI
projects. The maximum number of labels is 12 for
NoCI projects and 100 for CI projects. The minimum
number of issues is zero for NoCI and CI projects.
The medians have a value of 1 for NoCI projects and
2 for CI projects. The maximum number of issues is
1,023 for NoCI and 12,881 for CI projects. The
medians are 16.5 for NoCI projects and 204 for CI
projects. The minimum number of PRs is zero for
NoCI and CI projects. The maximum number of PRs
is 1,023 for NoCI and 8,065 for CI projects. The
medians are zero for NoCI and 17 for CI projects.

Table 4: Comparison between NoCI and CI projects.

 Issues
NoCI

Issues
CI

Pull
NoCI

Pull
CI

Labels
NoCI

Labels
CI

Min 0 0 0 0 0 0
Max 1023 12881 1023 8065 12 100
Avg 84,329 619,634 24,463 342,768 1,512 4,061
Median 16,500 204 0 17 1 2
Sum 6915 50810 2006 28107 124 333
Std.
Deviation

195,396 1617,117 121,639 1195,132 1,701 11,130

1º Quartile 1,250 65 0 2,250 1 1
2º Quartile 16,500 204 0 17 1 2
3º Quartile 56,750 593,500 1,750 188,500 2 3

3.3.2 Relationship between NoCI and CI
Projects

In general, it can be observed that in both groups,
there are projects that do not have issues and/or PRs
related to requirements. However, the maximum
number of issues and PRs in CI projects are more
significant than in NoCI projects - a difference of

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

308

11,858 (92.06%) for issues and 7,042 (87.32%) for
PRs between CI and NoCI projects. The percentage
in relation to the total number of issues and PRs are
also significant - about 43,895 (86.39%) issues and
26,101 (92.86%) for PRs between CI and NoCI
projects (Figures 7a and 7b). This information shows
that the number of issues and PRs with requirements
information in CI projects is much higher than in
NoCI projects.

There are projects in both groups that do not have
requirements labels. There are projects in the NoCI
group with a maximum number of 12 and CI projects
with a maximum of 100 (a difference of 88 labels,
about 80%). In a comparison made with the total
number of labels in all projects, the difference is 209
labels (a percentage of 62.76%). However, the
median of NoCI projects is equal to one label, as
opposed to two labels for CI projects. From up to third
quartile of the projects, NoCI projects use up to two
labels to classify requirements, while CI projects use
up to three labels (Figure 7c).

Tables 2 and 3 present data that indicate the
existence of a difference in the number of issues, PRs,
and labels related to requirements between NoCI and
CI projects. To compare the two samples and better
understand how our metrics are associated with each
of the approaches (i.e., CI and NoCI), our study
applied statistical tests to attest to the difference
between the data presented. First, we calculated the
percentage corresponding to the requirements for
each of the adopted metrics. For example, if a project
has 200 PRs, of which 50 were related to
requirements, this project would have a proportion of
0.25 (or 25%).

Figure 7: Requirements data in NoCI and CI projects.

Following this example, we calculated the
proportions for issues, PRs, and labels. The higher the
proportion, the more related to requirements the
variable was. Then, we compared the projects' factors
from the CI sample with those from the NoCI sample
for each of the variables. For this purpose, two

statistical tests were applied: (i) Mann-Whitney-
Wilcoxon tests (MWW or Wilcoxon rank-sum test)
(Wilks, 2011), a non-parametric method used to
compare samples and certify that the values are
statistically different, that is, a p-value < 0.05
indicates that the samples came from different
populations; and (ii) Cliff's delta, a metric computed
to measure the magnitude of such difference between
distributions (Macbeth et al, 2011). To interpret
Cliff's delta, we used the thresholds indicated by
Romano et al. (2006), i.e., delta < 0.147 (negligible),
delta < 0.33 (small), delta < 0.474 (medium), and
delta > = 0.474 (large).

The results of our statistical tests show that the PRs
of the CI sample are statistically more associated with
requirements, with the Wilcoxon p-value = 1.633e-06
and Cliff's delta 0.4297999 (medium). For the issues
factor, the results also show that CI has more issues
related to requirements, with the Wilcoxon p-value =
0.005635 and Cliff's delta of 0.2522383 (small).
Finally, concerning the labels factor, we observe the
opposite. With the Wilcoxon p-value = 0.000342 and
Cliff's delta -0.335443 (medium), we observed that
CI projects are associated with fewer labels related to
requirements.

3.3.3 Discussion of Results

Through the interpretation of the data collected and
analyzed, we can assume that both groups of CI and
NoCI projects use informal artifacts to describe
requirements, which, in general, are tutorials, readme
files, websites, issues, PRs, and labels, as noted in
recent works (Salo, 2015; Portugal and Prado Leite,
2016; Portugal et al, 2016). Mainly, issues and PRs
Where the developers use in their frequent
communication as collaborators in a project.

Regarding the labels, about 55% of the CI and
NoCI projects prefer using labels with generic names
to present requirements information. Besides, about
35% of CI projects use words for non-functional
requirements such as "performance" and "security."

It was also observed and validated through
statistical tests that projects that adopt the practice of
CI tend to have a higher proportion of issues and PRs
related to requirements than projects that do not adopt
the practice of CI.

This may indicate that CI projects tend to have
more information about requirements, due to the need
for better code quality and the need for more frequent
deliveries, requiring more frequent communication.
In addition, these projects tend to attract more
contributors and end up using mainly informal
artifacts to communicate information about

Investigating Information about Software Requirements in Projects That Use Continuous Integration or Not: An Exploratory Study

309

requirements. And where a few types of non-
functional requirements are communicated with
specific and somewhat diverse keywords.

4 THREATS TO VALIDITY

4.1 Construction Validation

The construction validation can be threatened by the
selection mechanisms used in works (Bernardo and
Kulesza, 2017; Nery and Kulesza, 2018) to select the
projects and the types of artifacts used in this study.
However, the authors state that the projects collected
were carefully selected as CI and NoCI projects, and
have been used in previous work experiments.

Regarding the mechanisms for selecting the
artifacts, we can consider threats both the types of
extensions of artifacts and how they were acquired.
The types of extensions used are limited and,
therefore, artifacts extensions of tool like Astah,
ArgoUML, Modelio, among others, were suppressed.
UML artifacts and other types of artifacts with other
types of extensions for documents and/or images may
also have been suppressed. However, native and non-
native types of artifacts used in other research were
considered objects of studies with information related
to requirements (Salo, 2015; Ho-Quang, 2017).

Regarding the search for native artifacts, in the
manual search for readme files, Wiki pages, and
labels artifacts, many may have been discarded for
not meeting the terminology used or the name given
to the artifacts. The manual search may also generate
an incorrect count of labels, which may have caused,
in its turn, an inaccurate count in the number of issues
and PRs for each project. Besides, it is essential to
note that issues and PRs related to other types of
labels whose names do not refer to requirements but
that could contain information about requirements
even though they used other labels (issues and PRs
that were wrongly tagged, for example) were ignored.
On the other hand, among the data obtained on issues
and PRs related to requirements, there may be data
that do not include information on requirements
because they were tagged with the wrong labels.
Unfortunately, this threat cannot be reduced.

Regarding test scripts, it may also have discarded
test scripts that were not organized in folders named
"test(s)" and/or "spec(s)" and/or that used other
keywords for the name of the scripts. To mitigate this
threat, extensions of different tools were included in
the searches carried out, and different synonyms
related to software tests were used.

4.2 External Validation

The threats to external validation are related to the
generalization of the results of the study. Our study
analyzed about 164 popular GitHub projects. They
were collected to represent samples of projects that
use or do not use the CI practice. Despite the extent
and size of the collected dataset, it is not possible to
generalize the results beyond the defined context,
which requires future analyzes and studies for this
purpose. Finally, the types of artifacts used in our
selection may not generally represent all types of
requirements artifacts used by developers in GitHub
projects. This threat has been mitigated through a
detailed manual and automatic analysis of the
artifacts that make up the projects and using results
reported by other studies (Salo, 2014; Salo, 2015) that
investigate requirements in OSS projects.

4.3 Internal Validation

Threats to the construction validity may have had
consequences for the data's internal validation since
relevant NoCI and/or CI projects may have been
discarded. This threat may not have been avoided
since the projects used to come from other researches
and the application of selection mechanisms. Also,
the keywords used in selecting types of artifacts may
have caused the suppression of other kinds of artifacts
that could lead to a different path in the answers to the
research questions. However, this threat has been
minimized by use of keywords consolidated in the
literature. Both the language used in the search and
all selected projects are in the English language.

5 RELATED WORKS

Robles et al. (2017) investigated whether UML
artifacts are used in GitHub projects. They analyzed
about 12 million projects and found 93,000 UML
artifacts in about 24,000 projects. Our work focused
on the search for different types of requirements
artifacts, not just UML artifacts. Also, our study
focused on the context of comparing CI and NoCI
GitHub projects. Thus, the similarity between the
works is only their purpose of finding UML artifacts
in GitHub projects, with our study focusing on
requirements artifacts.

Ho-Quang et al. (2017) investigate the practices
and perceptions of using UML in OSS projects to
understand its motivations and benefits. A survey was
carried out with 485 respondents, only for projects
that use UML. As a result, it was noted that

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

310

collaboration is the most important factor since it
benefits new project collaborators to understand the
requirements, design, and implementation of the
system. Using UML to improve communication and
planning effort in implementation. In our case,
developers of CI and NoCI OSS projects use native
artifacts GibHub to communicate requirements.

Salo et al. (2014, 2015) investigate guidelines for
managing agile requirements on GitHub projects.
They propose good practices for using the GitHub
platform functionalities to contain information
related to requirements such as issues, PRs, labels,
and milestones. They conclude that with little effort,
integrating the proposed guidelines with GitHub is
feasible for managing requirements in agile
environments. The study conducted and presented in
this article found several pieces of evidence of the use
of the guidelines presented by Salo et al. (2014, 2015)
on GitHub projects, such as creating, updating, and
maintaining issues to represent different types of
requirements combined with Wiki documentation.

6 CONCLUSIONS

This work presented an exploratory study on how
information related to requirements is being stored in
OSS GitHub projects. It also explored the similarities
and differences between CI and NoCI projects in their
development, using previous research datasets.
Mechanisms for selecting and searching for artifacts
related to requirements have been developed based on
other research in the literature. Manual and automated
searches were performed to retrieve, analyze, and
interpret this data.

In general, the study concluded that GitHub
projects that have a more number of collaborators will
consequently have a greater amount of information
related to requirements, mainly in informal artifacts
such as issues and PRs. It happens because with more
collaborators and releases, consequently, they will
have a greater flow of information, a behaviour that
can be observed in CI projects.

The study noted that GitHub projects, regardless
of the group, use informal artifacts such as tutorials,
websites, readme files, and, mainly, issues and pull
request artifacts that serve as communication and
collaboration mechanisms between developers on the
platform to describe information related to
requirements. However, the results indicate that CI
projects have more information related to
requirements, mainly stored in issues and PRs, than
projects that do not use CI.

Regarding the classification of information related
to requirements, in both groups, the use of labels with
keywords such as "enhancement," "feature," and/or
"feature request" is predominant. However, only 25%
of CI projects use a large number of labels to classify
information about the requirements.

The following future works of this research are
being planned: (1) conducting new analyzes that
allows evaluating a greater proportion of information
related to requirements according to the
characteristics of the projects, such as languages used,
types of software, age of the projects, most
recognized projects; (2) conducting qualitative
analyzes with participants of the investigated projects
through surveys, seeking to confirm and expand the
results related to requirements specification in OSS
projects.

ACKNOWLEDGEMENTS

This study was financed in part by Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior ―
Brasil (CAPES) ― Finance Code 001.

REFERENCES

Bernardo, J. H., da Costa, D. A., & Kulesza, U. (2018,
May). Studying the impact of adopting continuous
integration on the delivery time of PRs. In 2018
IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR) (pp. 131-141). IEEE.

Nery, G. S., da Costa, D. A., & Kulesza, U. (2019). An
Empirical Study of the Relationship between
Continuous Integration and Test Code Evolution.
In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME) (pp. 426-436).
IEEE.

Salo, R. (2014). A guideline for requirements management
in GitHub with lean approach (Master's thesis).

Salo, R., Poranen, T., & Zhang, Z. (2015, October).
Requirements management in GitHub with a lean
approach. In SPLST (pp. 164-178).

Robles, G., Ho-Quang, T., Hebig, R., Chaudron, M. R., &
Fernandez, M. A. (2017, May). An extensive dataset of
UML models in GitHub. In 2017 IEEE/ACM 14th
International Conference on Mining Software
Repositories (MSR) (pp. 519-522). IEEE.

Kuriakose, J., & Parsons, J. (2015, August). How do open
source software (OSS) developers practice and perceive
requirements engineering? An empirical study. In 2015
IEEE Fifth International Workshop on Empirical
Requirements Engineering (EmpiRE) (pp. 49-56).
IEEE.

Investigating Information about Software Requirements in Projects That Use Continuous Integration or Not: An Exploratory Study

311

Vlas, R., Robinson, W., & Vlas, C. (2017). Evolutionary
software requirements factors and their effect on open
source project attractiveness.

Portugal, R. L. Q., & do Prado Leite, J. C. S. (2016,
September). Extracting requirements patterns from
software repositories. In 2016 IEEE 24th International
Requirements Engineering Conference Workshops
(REW) (pp. 304-307). IEEE.

Portugal, R. L. Q., Roque, H., and do Prado Leite, J. C. S.,
2016. A Corpus Builder: Retrieving Raw Data from
GitHub for Knowledge Reuse In Requirements
Elicitation. In 3rd. Annual International Symposium on
Information Management and Big Data, 48.

Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M. R., and
Fernandez, M. A., 2017. Practices and perceptions of
UML use in open source projects. In 2017 IEEE/ACM
39th International Conference on Software
Engineering: Software Engineering in Practice Track
(ICSE-SEIP), 203-212. IEEE.

Ferrari, A., Spagnolo, G. O., and Gnesi, S., 2017. PURE: A
dataset of public requirements documents. In 2017
IEEE 25th International Requirements Engineering
Conference (RE), 502-505, IEEE.

Kuriakose, J., 2017. Understanding and improving
requirements discovery in open source software
development: an initial exploration. Doctoral
dissertation, Memorial University of New Foundland.

Saeed, S., Fatima, U., and Iqbal, F., 2018. A review of
Requirement Elicitation techniques in OSSD.
International Journal of Computer Science and
Network Security, 86-92.

Iyer, D. G., 2018. Propagation of requirements engineering
knowledge in open source development: causes and
effects–A social network perspective, Doctoral
dissertation, Case Western Reserve University.

Glinz, M., 2011. A glossary of requirements engineering
terminology. Standard Glossary of the Certified
Professional for Requirements Engineering (CPRE)
Studies and Exam, Version, 1.

IEEE Standards Coordinating Committee, 1990. IEEE
Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990). Los Alamitos.
CA: IEEE Computer Society, 169.

Ståhl, D., and Bosch, J., 2014. Modeling continuous
integration practice differences in industry software
development. In Journal of Systems and Software, 87,
48-59.

Duvall, P. M., Matyas, S., and Glover, A., 2007.
Continuous integration: improving software quality
and reducing risk. Pearson Education.

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., and Filkov,
V., 2015. Quality and productivity outcomes relating to
continuous integration in GitHub. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, 805-816. ACM.

Stolberg, S. (2009, August). Enabling agile testing through
continuous integration. In 2009 agile conference (pp.
369-374). IEEE.

Hilton, M., Nelson, N., Tunnell, T., Marinov, D., & Dig, D.
(2017, August). Trade-offs in continuous integration:

assurance, security, and flexibility. In Proceedings of
the 2017 11th Joint Meeting on Foundations of
Software Engineering (pp. 197-207).

Labuschagne, A., Inozemtseva, L., & Holmes, R. (2017,
August). Measuring the cost of regression testing in
practice: a study of Java projects using continuous
integration. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (pp.
821-830).

Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., & Vasilescu,
B. (2017, October). The impact of continuous
integration on other software development practices: a
large-scale empirical study. In 2017 32nd IEEE/ACM
International Conference on Automated Software
Engineering (ASE) (pp. 60-71). IEEE.

Raupp, F. M., & Beuren, I. M. (2006). Metodologia da
Pesquisa Aplicável às Ciências. Como elaborar
trabalhos monográficos em contabilidade: teoria e
prática. São Paulo: Atlas, 76-97.

Hilton, M., Tunnell, T., Huang, K., Marinov, D., & Dig, D.
(2016, September). Usage, costs, and benefits of
continuous integration in open-source projects. In 2016
31st IEEE/ACM International Conference on
Automated Software Engineering (ASE) (pp. 426-437).
IEEE.

Shahin, M., Babar, M. A., and Zhu, L., 2017. Continuous
integration, delivery and deployment: a systematic
review on approaches, tools, challenges and practices.
IEEE Access, 5, 3909-3943.

Wilks, D. S. (2011). Statistical methods in the atmospheric
sciences (Vol. 100). Academic press.

Macbeth, G., Razumiejczyk, E., & Ledesma, R. D. (2011).
Cliff's Delta Calculator: A non-parametric effect size
program for two groups of observations. Universitas
Psychologica, 10(2), 545-555.

Romano, J., Kromrey, J. D., Coraggio, J., & Skowronek, J.
(2006, February). Appropriate statistics for ordinal
level data: Should we really be using t-test and
Cohen’sd for evaluating group differences on the NSSE
and other surveys. In annual meeting of the Florida
Association of Institutional Research (pp. 1-33).

Xiao, X., Lindberg, A., Hansen, S., and Lyytinen, K.
(2018). “Computing” Requirements for Open Source
Software: A Distributed Cognitive Approach. Journal
of the Association for Information Systems, 19(12), 2.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

312

