
Towards a Framework to Scaffold Problem-solving Skills in Learning
Computer Programming

Gorgoumack Sambe1, Khadim Drame1 and Adrien Basse2
1University Assane SECK, Ziguinchor, Senegal

2University Alioune DIOP, Bambey, Senegal

Keywords: Programming Learning, Problem Solving Skills, Explicit Guidance, Semantic Analysis.

Abstract: Developing problem solving skills through learning programming has become a real challenge. Problem-
solving skills are fundamental to learning computer programming and can be developed during learning.
Teachers focus more on the syntax of the languages than on the development of problem solving skills. We
present a conceptual framework to promote problem-solving skills in learning computer programming. This
framework is based on an IDE which integrates two components. The first one is an explicit guidance to
support the acquisition of skills related to different stages of a problem-solving method. It consists in explicitly
following the steps of the process with activities that develop related skills. The second one is a semantic
feedback system to develop problem-solving skills.

1 INTRODUCTION

Learning computer programming has become a
necessity not only for future computer scientists but
for everyone. Indeed, such learning helps to develop
problem solving skills and system design competence
and thus makes it possible to confront real life
problem (Einhorn, 2012).

However, research shows that at the end of the
introduction to programming, many learners face
difficulties when it comes to problem solving.
Weakness of problem-solving skills and their non-
integration into the learning process is one of the main
factors of drop-out (Luxton-Reilly et al., 2018;
Medeiros et al., 2018).

Developing problem solving skills during the
learning process is a challenge. Teachers tend to focus
on the syntax of the language rather than on problem-
solving skills (de Raadt, 2007; Lister et al., 2004;
McCracken et al., 2001). Yet, Problem-solving skills
are essential in learning computer programming.
Thus, they should be promoted and developed during
the learning process (De Raadt et al., 2009; Muller &
Haberman, 2009; Sprankle & Hubbard, 2008).

In face-to-face teaching of computer
programming, many strategies have been used, which
can have a positive impact on problem solving skills.
One of the strategies consists in explicitly guiding

learners through the steps of the problem-solving
method. The other one provides learners with
feedback on semantics of the code (Muller &
Haberman, 2009; Sprankle & Hubbard, 2008).

In the context of Computer Based Learning
Environment (CBLE), related work addresses a
different issue even though the problem solving
aspect is less taken into account.

Based on this finding and on the strategies used in
face-to-face teaching, we propose a platform to
promote problem-solving skills in programming
learning. This platform is based, on the one hand, on
explicitly guiding learners through the steps of the
problem-solving process; and on the other hand, on
feedback on semantics of the code

Section 2 of the paper provides the background of
our framework: problem-solving skills. In section 3,
we present related work to scaffold problem-solving
skills in a learning environment Section 4 presents the
scaffolding framework. Section 5 concludes the paper
with suggestions for future research.

2 PROBLEM SOLVING IN
LEARNING PROGRAMMING

Problem-solving is defined by (D’Zurilla & Nezu,
1988) as the “conscious effort in controlled

Sambe, G., Drame, K. and Basse, A.
Towards a Framework to Scaffold Problem-solving Skills in Learning Computer Programming.
DOI: 10.5220/0010446503230330
In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021) - Volume 1, pages 323-330
ISBN: 978-989-758-502-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

323

information processing that is aimed at identifying,
discovering, or inventing a solution to a problem”. In
computer programming, problem solving is often
seen as an iterative process made up of steps that are
made up of a set of skills. In (McCracken et al., 2001),
the authors adopt an iterative five-step problem-
solving framework:
1. Problem Comprehension/Abstract the problem

from its description;
2. Generate sub-problems;
3. Transform sub-problems into sub-solutions;
4. Recompose the sub-solutions into a working

program;
5. Evaluate and iterate.

Problem solving skills are essential for learning
programming and lack of problem solving skills has
been identified as the major cause of learners' failure
in introduction to programming (Nelson et al., 2017).
Such skills can be developed during learning. Each of
these steps requires a set of skills and the
development of problem solving skills consists in
developing the skills for each step.

Among the strategies to develop these skills, there
are the explicit guidance and the feedback on code
semantics (Muller & Haberman, 2009; Oh et al.,
2017). The explicit guidance consists in explicitly
following the steps of the process with activities that
develop the skills related to it. For example, the
activity of reformulation of the problem help to
develop skills related to abstraction and
understanding of the problem. The following table
shows some skills and their associated supported
activities for a course designed to help learners to
develop problem solving skills in a face-to-face
teaching (Belhaoues et al., 2016; Muller &
Haberman, 2009).

Table 1: Some problem solving skills and their associated
activities.

Problem-solving Skill Learning/Instructional
Activity

Problem’s
comprehension

Reformulation of the
problem statement in terms
of initial state, goal,
assumptions and
constraints

Problem's decomposition Identifying, naming and
listing subtasks.

Analogical reasoning

Identifying similarities
between problems.
Distinction between
structural and surface
similarities.
Raising awareness of
common mistakes caused

by referencing to
unsuitable problems.

Generalization and
abstraction

Extracting prototypes of
problems from analogical
problems in different
contexts.

Identifying problem's
prototype Problems' categorization

Problem's structure
identification

Identifying the relation
between subtasks

3 RELATED WORK

In the context of CBLE, most of related work address
issues such as ontologies, assessment and sometimes
problem solving. However, explicit guidance in the
problem solving process and feedback on semantics
of the code are addressed.

The explicit guidance in problem solving
approach consists in explicitly following the steps of
the process with activities that develop related skills.
In (Sambe & Basse, 2020), the author propose a
method that introduces the learner to a three-step
problem-solving process: the first step allows to
identify the input data and their corresponding types;
the second step allows to identify the output data and
their types; in the last step, the learner have to
sequence the previously mixed source code of an
expert solution to the problem. This work is an
extension of the work of (Diatta et al., 2019, 2018)
which propose ontologies, based on algoskills
(Belhaoues et al., 2016). The proposed ontologies
represent algorithmic exercises and their solutions in
pseudo-code. It also allow to automatically generate
instances of a program in one of the proposed
languages from an instance of pseudo code.

About semantic feedback, we can distinguish:
1. Dynamic approaches where programs are

executed and assessed using a battery of unit tests.
Programs are run with standard input to check if
they produce the expected output;

2. Static approaches where programs are not
executed but analysed by looking at the source
code instructions. Among the static approaches,
there are

• Manual code analysis;
• Automatic code analysis.

In dynamic approaches, the EPFL (Ecole
Polytechnique Fédérale de Lausanne) grader is an
automated grader to assess students’ assignments
during the MOOCs course “Introduction to
programming with C++” (Bey et al., 2018).
Submissions of learners are compiled and unit-tested

CSEDU 2021 - 13th International Conference on Computer Supported Education

324

over a set of inputs. Learners receive an automatic
feedback on how their code performed in the tests.

In static approaches with manual code analysis,
Algo+ is an automated assessment tool of programs
using program matching (Bey & Bensebaa, 2011).
Submission of a learner is assessed by comparing it
to a set of predefined solutions already assessed by an
instructor. Predefined solutions are those which are
detected as common and frequent in learners’
submissions. They contain correct programs but also
erroneous ones. Instructors give a feedback to
predefined solutions (correct and erroneous) that are
stored and used as a source of learning and evaluation
for new cases submitted. The feedback given by the
instructor should be general, semantic or not.

In static approaches with automatic analysis of
code, (Broisin & Hérouard, 2019) introduce an
indicator that estimates the value of the edit distance
between two scripts. First, they turn a program into
an abstract syntax tree (AST) and then into a string of
tokens (command, assignation, loop,…). They adapt
the edit distance of levenshtein between two strings
of characters to the strings of tokens. They observe a
correlation between the value of the indicator and the
score assigned by a human tutor: the higher the
human score of a program formulating a solution to a
problem, the smaller the distance between that
program and the solution of the problem.

We note that most related work is oriented in a
specific field such as ontologies or automatic program
assessment, while barely integrating problem-
solving. Regarding semantic comparison and
feedback, as Broisin says, “works on this line are still
scarce and very few solutions have been proposed”.

4 PROPOSITION

Our long-term goal is to set up a platform that
supports the learner in the development of problem-
solving skills. The platform will be an integrated
development environment (IDE) much more oriented
towards pedagogy unlike traditional IDE. Our system
seeks to develop problem-solving skills by helping
the learner to follow the steps of the problem-solving
process on the one hand and on the other hand by
providing feedback on the semantics of the code after
the edition of functional code.

In a technical aspect, the platform will be set up in
web access for online exercises allowing us to keep
traces of learners. It will also be available as a
standalone environment for offline exercise. We have
a database of problems proposed by experts in the
field with expert solutions. Problems given include

sequential, conditional and iterative problems for
different levels of difficulty. The expert solution
includes the number of output data and their type, the
number of input data and their type and the functional
code proposed by the expert. For all problems in the
database, our system calculates and stores the
semantic value of the expert solution to the problem.

Figure 1: Process of problem solving on our system.

4.1 Explicit Guidance in Problem
Solving Approach

Our platform does not allow, at the beginning of
training, to directly edit source code, the learner has
to follow a four-step problem-solving process. This is
how, after selecting a problem to solve, the learner
has to follow these different steps before being able
to edit code:

1. Reformulation of the Problem: we remind that
the exercise of reformulating a problem with
feedback is an activity that develops skills related
to understanding the problem;

2. Identification of the Output Data and Their
Type: in this activity, learners have to propose the
number of output data and the type of each output
data;

3. Identification of the Input Data and Their
Type: in this activity , learners have to propose
the number of input data and the type of each input
data;

4. Edition of the Functional Code: Once the first
three steps are validated, learners can edit their
source code. From the expert's solution, our tool
offers the source code for entering inputs and
displaying outputs, the learner will only have to
edit the functional code.

Towards a Framework to Scaffold Problem-solving Skills in Learning Computer Programming

325

The reformulation of the problem, the entry of the
number of input data and the number of output data
by the learner are done using forms with input fields

Let’s consider the problem of exchanging the
value of two integer variables that we call P1. Our
platform asks the learner to reformulate the problem
and then to give the number and type of output
variables and the number and type of input variables.
The learner is expected to reformulate the problem
and to provide two integer input data and two integer
output data. Since our application framework is the
Pascal language, our system generates the code below
and lets the learner edit the functional code.

Program exchange_two_integer;
{input/output data}
var x,y:integer;
{intermediate variables}
t : integer;

begin
{reading of input data}
write('give the value of x : ');
readln(x);
write('give the value of y: ');
readln(y);
{put your functional code here}

{writing of output data}
writeln('x=', x,', y=', y);
readln();

End.

Let’s take another example with the problem of
calculating the sum and the average of three integer
variables that we call P2. The learner is expected to
reformulate the problem and to provide three integer
input data, one integer output data (sum) and one real
output data (mean). The following code is generated
by our system and the learner has to edit the
functional code.

Program mean_three_integer;
{output data}
Var s: integer;m:real;
{input data}

 i1,i2,i3 :integer;
begin

{reading of input data}
write('give the first number : ');
readln(i1);
write('give the second number :');
readln(i2);
write('give the third number : ');
readln(i3);
{put your functional code here}

{writing of output data}
writeln('the sum is : ', s);
writeln('the mean is : ', m);
readln();

End.

4.2 Semantic Comparison of Source
Codes

Regarding the feedback on the semantics of the
functional source code, we propose a system that
makes a semantic comparison of the learner's code
with the expert source code. We introduce here the
semantic comparison system. In our system, we are
interested in input variables with known semantics,
solving the problem by finding the output values with
the correct semantics.

Our system assigns literal values to program
input variables, and through a process of chaining
instructions and algebra, it determines final semantic
values of the output variables. We remind that in
imperative programming, introductory courses are
concerned with assignment, sequence, condition and
iteration. In this first version, we were interested in
the assignment and the sequence of instructions.

4.2.1 Semantic Value

For each problem P, we define Ip, the set of input data
and Op the set of output data proposed by an expert.
We define concepts below:
● Initial Semantic Value of an Input Data: it is a

literal set for input data by our system in the same
type of the variable. For example, for the first
problem, the three input data are set to their
semantic values which are literals:
SEM(i1)=l1;
SEM(i2)=l2;
SEM(i3)=l3.
For the second problem of exchanging the value
of two integer variables, the semantic value of this
two integer variables are set to SEM(x)=l
SEM (y)=m.

● Semantic Value of a Variable: it is the value of
the variable expressed in functions of the input
 literals, at a step t of execution of the functional
code of the program Pr. For a variable v in a
program Pr, we denoted it SEMPr(v). For example,
for the variable s affected by the assignation
s:=i1+i2 in a program Pr, the semantic value of s
is SEMPr (s)=SEM(i1+i2)=l1+l2

● Semantic Value of a Program: the semantic
value of a program Pr is the semantic value of the
set of the output data of the problem at the end of
the program. For example, for the problem of
calculating sum and average of three integer
variables, the semantic value of a program Pr1
proposed for this problem is the semantic value of
sum and average at the end of the program. For
the problem of exchanging two variables x and y,

CSEDU 2021 - 13th International Conference on Computer Supported Education

326

the semantic value of the program Pr2 is the
semantic value of x and y at the end of the
program.
SEM(Pr1)={SEMPr1(sum),SEMPr1(mean)}
SEM (Pr2)={SEMPr2(x),SEMPr2(y)}

● Semantic Equality/Inequality of Programs:
two programs Prog and Prog’, proposed for a
problem P, are equal when they have the same
semantic value i.e. the same semantic value for the
output data. Therefore, two programs are unequal
when their semantic value are unequal.

4.2.2 Processing of the Semantic Value of a
Variable/Program

We remind that we are concerned here with the
assignment and the sequence of instructions,
especially a sequence of assignment. At the beginning
of a program, all input variables are set with a literal
called semantic value of the input data. The functional
code is a sequence of assignments that runs
sequentially. An assignment is an instruction that sets
a value of the impacted variable by the value of the
expression. An expression is a finite combination of
symbols organized according to rules that depend on
the context. During initiation, symbols can designate
constants, variables, arithmetic, algebraic or logical
operations and groupings to determine the order of
priority of operations (parentheses). Operators are
unary or binary.
Semantic Value of an Expression. The semantic
value of an expression is obtained by replacing each
symbols participating to the expression by its
semantic value.
Proof:
let us call SEM(expr) the semantic value of the
expression expr.
Expressions are composed by symbols which are
constants or variables and operations.
For any input data x which is a variable such that the
semantic value is set to a literal l, the semantic value
of the expression x is SEM(x)=l. (it's not necessary
here to break it down for each simple type introduced
in initiation : integer, real, boolean and char).
For any unary operator unaryop and an input data x
such that the semantic value is set to a literal l, the
semantic value of the expression unaryop x is equal
to unaryop l therefore
SEM(unaryop x) = unaryop SEM(x). For any
binary operator binaryop and input data x and y such
that the semantic value is set respectively to literals l
and m, the semantic value of the expression x
binaryop y is equal to l binaryop m therefore
SEM(x binaryop y)= SEM(x) binaryop SEM(y)

For any constant C, the semantic value of the constant
is SEM(C)=C. In the same way as for an input data,
we demonstrate that
SEM(unaryop C)= unaryop SEM(C) = unaryop C
and that
SEM(C binaryop y)= SEM(C) binaryop SEM(y)
=C binaryop m

Based on the fact that an expression is based on
variables that are already set, we can generalize that
for any expression. The semantic value of the
expression is equal to the expression where all
variables and constants are replaced with their
semantic value.
End of the Proof. From this proposition, we can
obtain the semantic value of a program/variable by
chaining instructions. To do so, we just have to
replace the variables participating in the expressions
by their semantic value.

For example, for a program with three integer
input variables i1, i2 and i3 and the sequence of
instructions
s:=i1+i2;
s:=s*i3;
Input data are initialized with their initial semantic
value:
SEM(i1)=l1
SEM(i2=l2
SEM(i3)=l3
After the first instruction s:=i1+i2, the semantic value
of s is :
SEM(s)=SEM(i1)+SEM(i2)=l1+l2
After the second instruction s:=s*i3, the semantic
value of s is
SEM(s)=SEM(s)*SEM(i3)=(l1+l2)*l3
We can see that this sequence of instructions and the
instruction s:=i3*i2+i3*i1 have the same semantics
but with a different writing.
To get around this difficulty, we just have to show
that the operators for the four types (integer, real,
char, boolean) introduced in initiation keep their
properties in the semantic value of the expression.
Property of Operators. Operators keep their
mathematical properties in the semantic value of an
expression
Proof:
Let us consider the operator of arithmetic addition.
For two symbols (real or integer) x and y with the
semantic value l and m,
SEM(x+y)= SEM(x)+SEM(y)=l+m and SEM(y+x)=
m+l
l+m = m+l therefore
SEM(x)+SEM(y)=SEM(y)+SEM(x)
So, we have to prove the set of properties for all
operators that exist in the language. However, we will

Towards a Framework to Scaffold Problem-solving Skills in Learning Computer Programming

327

limit ourselves, in this document, to proving it for this
single operator and will generalize it for other
priorities and operators.
End of the Proof. Based on that, it's obvious that the
semantic value of a variable affected by an
assignation is the semantic value of the expression of
the assignation. We can determine the semantic value
of all variables and semantics of a program by the
process of replacing each parameter of an expression
by its semantic value in a sequence.
In technical aspects, we have implemented our
system in python and we use multiple technologies:
• ANTLR (www.antlr.org): a powerful parser

generator that we use to generate an Abstract
Syntax Tree of the program.

• Sympy (www.sympy.org): a python library for
symbolic mathematics that we use as a computer
algebra system.

Figure 2: Evaluation process of learner’s code.

When learners submit their functional codes, the
evaluation system follows these steps (Figure 2:
Evaluation process of learner’s code):
1. First, we compile a functional code of the learner,

a classical compilation, lexical and syntax
verification. For this, we use the AST generated
by ANTLR.

2. Then, we go through the AST to construct
semantic values of variables by chaining. At this
stage process, we use sympy to turn expressions
into an identical form based on the properties and
order of priority of the operators. This facilitates
the semantic comparison of expressions and
therefore variables;

3. Last, we compare the semantic value of the
proposition of the learner with the semantic value
of the expert solution and then give a semantic
feedback to a learner.

4.3 Example of Application

4.3.1 Problems and Functional Code of the
Expert

Let's take an example with two problems:
1. The problem of calculation of the sum and the

arithmetic mean of three integer variables
requested from the user;

2. The problem of exchanging two integer variables
x and y.
The learner will first be asked by our system to

reformulate the problem and then to give the number
of input and output data of each of these problems and
their data type:
4. For the calculation of the sum and the average, we

will have two output variables: sum being integer
and average being real. The three integer entries
will be denoted i1, i2 and i3;

5. For the exchange of variables, we have two
integer inputs x and y and two outputs which are
the inputs x and y.
The source code generated by our system is given

beforehand and the functional code is expected from
the learner. We give here the functional code of the
expert and the semantic value of the variables after
each instruction.

Table 2: Functional code of the human expert.

Pr Functional code Processing of
semantic values

E1
s:=e1+e2+e3;
m:= s/3;

SEM(s)=l1+l2+l3
SEM(m)=s/3=
(l1+l2+l3)/3

E2
t:=x;
x:=y;
y:=t;

SEM(t)=l
SEM(x)=m
SEM(y)=l

The semantic of the functional code of the expert

E1 for the problem P1 is
SEM(E1) ={s=l1+l2+l3, m=(l1+l2+l3)/3}
and the semantic of the program E2 is
SEM(E2)={x=m, y=l}.

CSEDU 2021 - 13th International Conference on Computer Supported Education

328

4.3.2 Proposition of Learners and Semantic
Value

For the first problem we have in the table some
propositions of learners and the process of calculation
of semantic value of the program.

Table 3: Propositions of learner for P1.

Pr Functional code of
the learner

Processing of the
semantic

1
s:=i1+i2;
s:=s+i3;
m:=s/3

SEM(s)= l1+l2
SEM(s)=s+i3=(l1+
l2)+l3 =l1+l2+l3
SEM(m)=s/3=(l1+l
2+l3)/3

2
i1:=i1+i2;
s:=i1+i3;
m:=s/3;

SEM(i1)=l1+l2
SEM(s)=i1+i3=l1+
l2+l3
SEM(m)=SEM(s)/3=
(l1+l2+l3)/3

3
s:=i2+i3+i1;
m:=s/3;

SEM(s)=l2+l3+l1

SEM(m)=s/3=(l2+l
3+l1)/3

4
s:=i1+i2+i3;
m:=i1+i2+i3/3

SEM(s)=l1+l2+l3
SEM(m)=l1+l2+l3/
3

SEM(Pr1) ={s=l1+l2+l3, m=(l1+l2+l3)/3} and
SEM(Pr4)= {s=l1+l2+l3, m=l1+l2+l3/3}
Pr2 and Pr3 have the same semantic value as Pr1
The first three programs have the same semantic
value as the expert program and the last one has a
different semantic value.

Table 4: Proposition of learners for P2.

Pr Functional code of
the learner

Processing of semantic
values

1
t:=x;
x:=y;
y:=x

SEM(t)=l
SEM(x)=m
SEM(y)=l

2
x:=y;
y:=x;

SEM(x)=m
SEM(y)=m

3
x:=x+y;
y:=x-y;
x:=x-y;;

SEM(x)=l+m
SEM(y)=l+m-m=l
SEM(x)=l+m-l=m

SEM(Pr1) ={x=m,y=l}
SEM(Pr2) ={x=m,y=m}
SEM(Pr3) ={x=m,y=l}

The program 1 and 3 have the same semantic
value as an expert solution and program 2 which have
a different semantic value is false.

Our system in this first version is limited to the
evaluation of equivalence and semantic difference,
we are currently working to set up the feedback base
which will be based on an automation process based
on an analysis of the types of semantic errors.

5 CONCLUSION

In this article, we introduce a framework for
promoting problem solving skills in learning
programming. This framework underpins an IDE for
developing these skills by leading learners to follow
a four-step problem-solving process and by giving
him feedback on semantics of the code. In this first
version we are interested in developing problem
solving skills through learning of assignment and
sequence.

This work is a first step for the implementation of
an IDE, based on literature in problem solving skills
in learning programming and on scaffolding of
problem solving on CBLE. Our aim in the future is to
implement and evaluate the impact of the IDE on
problem solving skills, learning process and
persistence on learning programming.

We plan an extension of this framework taking
account of control and iteration. Then we will make
an experiment in a real context with learners. Finally,
we plan to collect data and traces and use them to
validate our strategy through an analysis based on
educational data mining methods.

REFERENCES

Belhaoues, T., Bensebaa, T., Abdessemed, M., & Bey, A.
(2016). AlgoSkills : An ontology of Algorithmic Skills
for exercises description and organization. Journal of e-
Learning and Knowledge Society, 12(1).

Bey, A., & Bensebaa, T. (2011). ALGO+, an assessment
tool for algorithmic competencies. 2011 IEEE Global
Engineering Education Conference (EDUCON),
941‑946. https://doi.org/10.1109/EDUCON.2011.
5773260

Bey, A., Jermann, P., & Dillenbourg, P. (2018). A
Comparison between two automatic assessment
approaches for programming : An empirical study on
MOOCs. Journal of Educational Technology &
Society, 21(2), 259–272.

Broisin, J., & Hérouard, C. (2019). Design and evaluation
of a semantic indicator for automatically supporting
programming learning. Proceedings of The 12th
International Conference on Educational Data Mining
(EDM 2019), 270–275.

Towards a Framework to Scaffold Problem-solving Skills in Learning Computer Programming

329

de Raadt, M. (2007). A review of Australasian
investigations into problem solving and the novice
programmer. Computer Science Education, 17(3), 201–
213.

De Raadt, M., Watson, R., & Toleman, M. (2009).
Teaching and assessing programming strategies
explicitly. Proceedings of the Eleventh Australasian
Conference on Computing Education-Volume 95, 45–
54.

Diatta, B., Basse, A., & Ndiaye, N. M. (2018). Framework
and Ontology for Modeling and Querying Algorithms.
International Conference on Interactive Collaborative
Learning, 536–544.

Diatta, B., Basse, A., & Ouya, S. (2019). PasOnto :
Ontology for Learning Pascal Programming Language.
2019 IEEE Global Engineering Education Conference
(EDUCON), 749–754.

D’Zurilla, T. J., & Nezu, A. M. (1988). On Problems,
Problem Solving, Blue Devils, and Snow : A Reply to
Krauskopf and Heppner (1988). The Counseling
Psychologist, 16(4), 671‑675.
https://doi.org/10.1177/0011000088164009

Einhorn, S. (2012). Microworlds, computational thinking,
and 21st century learning. LCSI White Paper.

Lister, R., Fone, W., McCartney, R., Seppälä, O., Adams,
E. S., Hamer, J., Moström, J. E., Simon, B., Fitzgerald,
S., Lindholm, M., Sanders, K., & Thomas, L. (2004). A
Multi-National Study of Reading and Tracing Skills in
Novice Programmers. 32.

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A.,
Giannakos, M., Kumar, A. N., Ott, L., Paterson, J.,
Scott, M. J., Sheard, J., & Szabo, C. (2018).
Introductory Programming : A Systematic Literature
Review. Proceedings Companion of the 23rd Annual
ACM Conference on Innovation and Technology in
Computer Science Education, 55–106.
https://doi.org/10.1145/3293881.3295779

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L.,
Utting, I., & Wilusz, T. (2001). A Multi-national,
Multi-institutional Study of Assessment of
Programming Skills of First-year CS Students. Working
Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education, 125–180.
https://doi.org/10.1145/572133.572137

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A
systematic literature review on teaching and learning
introductory programming in higher education. IEEE
Transactions on Education, 99, 1–14.

Muller, O., & Haberman, B. (2009). A Course Dedicated to
Developing Algorithmic Problem-Solving Skills–
Design and Experiment.

Nelson, N., Sarma, A., & van der Hoek, A. (2017). Towards
an IDE to Support Programming as Problem-Solving.
Psychology of Programming Interest Group, 15.

Oh, S.-H., Kim, E.-J., & Kim, S.-S. (2017). Development
and Application of Educational Contents for Entry
Programming to Improve Metacognition. The Journal
of Korean Association of Computer Education, 20(5),
61–68.

Sambe, G., & Basse, A. (2020). Ontology Based
Framework For Learning Algorithm. International
Journal of Scientific and Technology Research, 9(01),
5.

Sprankle, M., & Hubbard, J. (2008). Problem Solving and
Programming Concepts (8e éd.). Prentice Hall Press.

CSEDU 2021 - 13th International Conference on Computer Supported Education

330

