
An Empirical Study on the Impact of Aspect-oriented Model-driven
Code Generation

André Menolli1,2 a, Luan de Souza Melo3 b, Maurı́cio Massaru Arimoto1 c

and Andreia Malucelli3 d

1University of Northen Paraná (UENP), Brazil
2Postgraduate Program in Computer Science, State University of Londrina (UEL), Brazil

3Postgraduate Program in Computer Science, Pontificia Universidade Católica do Paraná (PUCPR) , Brazil

Keywords: Model-driven Development, Aspect-oriented Software Development, Software Quality, Experimentation.

Abstract: Over the years innovative approaches in software development have been proposed. Among the main ap-
proaches, we can highlight aspect-oriented software development. However, applying aspect-oriented soft-
ware development is not simple, but may be facilitated by the model-driven development, mainly because it
is possible to build models to drive consolidated aspect solutions. In this context, we analyzed the impact
of aspect-oriented solutions created from a model-driven approach. To this end, a model-driven approach
to create aspect-oriented code was proposed and an experiment focusing on data persistence was conducted.
From data gathering, we empirically discuss the impact of the generated solutions compared to oriented-object
solutions. Some code metrics were analyzed using quantitative analysis and the results show that the approach
may help to reuse aspect-oriented solutions and improve the code quality and productivity.

1 INTRODUCTION

The aspect-oriented software development (AOSD) is
a software development paradigm designed to reduce
the effort required to maintain software systems by re-
placing cross-cutting code with aspects. Many stud-
ies (Hoffman and Eugster, 2009; Katic et al., 2013;
Kulesza et al., 2006) have been conducted showing
that AOSD may be effective to improve the sepa-
ration of concerns, and, consequently, improve the
reusability and maintainability. However, recently,
the study of (Przybyłek, 2018) indicates that AOSD
decreases the code understandability while improv-
ing changeability. This explains why previous experi-
ments measuring completion time generally showed
the advantage of object-oriented development over
AOSD (Mehmood, 2013).

Considering this, we believe it is possible to use
model-driven development (MDD) to create aspect
code to have less impact on understandability and,
at the same time, have the advantages that the use

a https://orcid.org/0000-0002-4755-8031
b https://orcid.org/0000-0002-3085-3819
c https://orcid.org/0000-0002-3972-0764
d https://orcid.org/0000-0002-0929-1874

of AOSD provides. MDD allows code development
from high-level models and its function is essentially
to transform a software model into executable code
and to vary totally or partially according to needs
(France and Rumpe, 2007).

While MDD allows domain specific abstraction,
AOSD provides greater support for modularization
concerns throughout the software development life-
cycle (Groher and Voelter, 2009; Pinto et al., 2007).

Thereby, we proposed an MDD-based approach to
assist in semi-automatic coding of aspect-oriented ap-
plications, and through a controlled experiment with
20 students, we evaluated our approach and compared
it with OO development. The experiment was car-
ried out in the context of data persistence. This do-
main was chosen because there are many methods
and tools to implement data access in separate ways.
Our approach aims to allow AOSD to be applied al-
most transparently for the end user. We followed the
Goal-Question-Metric (GQM) approach (Basili et al.,
1994) to define a measurement system for our re-
search. Figure 1 presents an overview of the goal,
questions, metrics, as well as their interrelations.

Menolli, A., Melo, L., Arimoto, M. and Malucelli, A.
An Empirical Study on the Impact of Aspect-oriented Model-driven Code Generation.
DOI: 10.5220/0010442802750282
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 275-282
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

275



Figure 1: GQM Measurement plan.

2 RELATED WORKS

The idea of combining model-driven techniques and
aspect-oriented development is not new. Over the
years, approaches have been proposed to solve dif-
ferent problems in the research. For example, a long-
standing initiative in this direction is the paper (Sim-
monds et al., 2005) that presents an Aspect Oriented
Model Driven Framework (AOMDF) that facilitates
separation of pervasive features and supports their
transformation through different levels of abstraction.
Another work (Singh and Sood, 2009) proposes to in-
corporate the merits of AOSD such as modularization,
reuse and complexity in the Model Driven Architec-
ture (MDA) software development strategy.

Many papers focus on the integration of these
two technologies, proposing high-level solutions us-
ing model-driven engineering (MDE) or MDA. For
example, (Tekinerdogan et al., 2007) considers MDA
and the aspect-oriented approach as complementary
techniques for the separation of concerns and devel-
ops a systematic analysis of cross-cutting concerns in
the MDA context. Another study on the same line of
work (Groher and Voelter, 2009) presents an approach
that facilitates variability implementation, manage-
ment, and tracing by integrating model-driven and
aspect-oriented software development, where features
are separated into models and composed of aspect-
oriented composition techniques at model level.

However, the combination of these technologies
is not limited for the aforementioned areas. Differ-
ent approaches may be proposed for several areas
to address specific problems. For example, (Pérez
et al., 2013) propose a methodology that should al-
low code generation from models that specify func-
tional and non-functional requirements. In addition,
the work of (Mehmood, 2013) presents a system-
atic mapping study of aspect-oriented model-driven
code generation. They conclude that aspect-oriented
model-driven code generation is indicated as a rela-
tively immature area.

The papers presented works focus on generating
the final AO code, and unlike the other presented, this
work focus on generating the final aspect code in a
transparent way for developers, for very specific con-
solidated solutions, such as patterns and to empiri-
cally compare the generated code with the OO code
produced for the same solution.

3 PROPOSAL APPROACH

The proposed approach tries to help developers to
apply the AOSD paradigm, helping them to define
where and how to use the AOSD, using a model-
driven approach. Figure 2 shows how our approach
works. The proposed approach presents two roles: (a)
the Framework Developer - responsible for creating
PIM and Model Transformations (Class and Aspect
Transformations); and (b) the Application Developer
- responsible for creating a PSM based on PIM.

Figure 2: The proposed approach.

The first step (1) is the creation of the PIM. In our ap-
proach, PIM is a metamodel, that is, a generic model
that describes a reusable solution to a problem that
usually occurs within a given context and can be used
in different situations. Thus, the PIM is a generic
model that describes a domain solution to guide the
creation of applications and is created by the Frame-
work Developer.

Therefore, any application developed by the Ap-
plication Developer must be created from a PIM.
Specifying the aspect and where (which classes) it
may act on the PIM is the critical point of the ap-
proach. The Framework Developer is responsible for
defining the aspects that a model should contain, help-
ing to create an organizational standard, since any ap-
plication in a given domain will share the same as-
pects and implementation.

The second step (2) is to create the transforma-
tions, which is also the responsibility of the Frame-
work Developer, and will be used to generate low-
level source code. We have chosen to use Ac-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

276



celeo to define the Model Transformations (Koch,
2007). Acceleo (https://www.eclipse.org/acceleo/) is
an implementation of the Object Management Group
(OMG) Model to Text Language (MTL). This choice
is due to the possibility of automatically transform-
ing platform-independent models (PIMs) to low-level
source code (Mtsweni, 2012).

In the third step (3), the Application Developer
chooses a PIM to start developing an application, and
in the fourth step (4) he/she creates the PSM. In this
step, the Application Developer must create a model
based on the PIM defined by the Framework Devel-
oper. In addition, Application Developer must de-
fine all parameters to configure the classes and as-
pects being generated. PSM, along with the transfor-
mations, comprises the Application Core, from which
the source code may be generated (5).

4 RESEARCH STRUCTURE

To evaluate our approach, we defined the research
structure following the research decision-making
structure presented by (Wohlin and Aurum, 2015),
which shows decision points that are grouped into
three phases: strategic, tactical and operational. Once
the research questions issues had been defined, the de-
cision points were selected.

4.1 Definition of Hypotheses

To guide our experiment, two hypotheses were for-
mally stated:

• Ha µT < µA: where, the approach based on MDD
and AOSD is superior in productivity compared
to an OO implementation produced manually by
programmers.

• Hb µT < µA: where, the approach based on
MDD and AOSD generates a higher code qual-
ity than an OO implementation produced manu-
ally by programmers.

The next step in the planning activity was to de-
termine variables (independent variables (persistence
technology, the approach used) and the dependent
variables (development time and code quality)).

4.2 Participants

The participants who collaborated in this experi-
ment were undergraduate and graduate students of the
Computer Science course. The participants were spe-
cially selected individuals from the population of in-
terest for the experiment, since the experiment wants

to simulate the behavior of individuals within a soft-
ware development company. We applied a placement
test to select participants who had the same level of
coding skills and knowledge about all the technolo-
gies involved in the experiment (in general partic-
ipants have little knowledge about AOSD), so that
they can perform the proposed functions at a simi-
lar time. Therefore, a non-probabilistic sampling was
used in the selection of participants, considering a
convenience sample, which the closest and most con-
venient people are selected. Furthermore, the exper-
iment was complex, requiring knowledge of design
patterns, and distinct technologies (such as Hibernate,
JDBC and JPA), in addition to AOSD. Thus, the pop-
ulation had been limited by these restrictions.

4.3 Description of the Experiment and
Procedure

In this experiment, the participants were invited to
perform a software implementation in library loan
management software, developed in the Java plat-
form. The proposed implementation was based on
the Data Access Object (DAO) pattern using Generic-
DAO. Each participant implemented the data persis-
tence code for a given functionality (borrow book),
using one of the technologies: JPA, Hibernate or
JDBC.

The experiment was divided into two parts: A –
using the approach and B – not using the approach.
The tasks requested to be implemented in the experi-
ment were: 1A – JPA using the approach; 1B – JPA
not using the approach (OO implementation); 2A –
Hibernate using the approach; 2B – Hibernate not us-
ing the approach (OO implementation); 3A – JDBC
using the approach; 3B – JDBC not using the ap-
proach (OO implementation).

For A implementations, the participants followed
the flow presented in Figure 3, which includes four
steps: (1) Access the documentation and source code
of the lending functionality (domain layer). The par-
ticipants, in this step, had access to the requirement
and project artifacts (Book Borrow Requirements -
Use Case; Class Diagram; Sequence Diagram; Code
of domain layer (.java files) and Script to generate the
database). (2) Create the PSM (based on the PIM)
for the requested technology. (3) Generate the initial
source code, according to the PSM created and (4) Fi-
nalize and test the source code.

On the other hand, for B implementations, partic-
ipants followed two steps: (1) Access the documenta-
tion and source code of the borrow functionality (do-
main layer) and (2) Create OO source code using the
requested technology.

An Empirical Study on the Impact of Aspect-oriented Model-driven Code Generation

277



Figure 3: Flow of experiment to implement solution using
the proposed approach.

In this experiment, a quantitative analysis was used.
The analysis was performed using productivity met-
rics and a set of separation, coupling, cohesion, and
size metrics (Sant’Anna et al., 2003). Moreover, an
expert analysed the solutions created by participants
in order to understand whether the solutions corre-
sponded to what was required, and whether the so-
lutions were acceptable for the proposed problem.

5 THE FRAMEWORK

To implement a framework using the proposed ap-
proach, we chose the data persistence domain for
two main reasons: previous studies, such as (Oliveira
et al., 2008), confirm that the use of AOSP in this type
of problem could be a good strategy and data persis-
tence is common to several types of applications, thus
facilitating data reuse.

The framework was built to help create data per-
sistence applications using DAO and AOSD. More-
over, it supports the following technologies: Java
Database Connectivity (JDBC), Java Persistence API
(JPA) or Hibernate. The following subsections de-
scribe how each step of the proposed approach was
implemented.

5.1 The PIM

In order to support the creation of data persistence
applications using three different technologies, the
Framework Developer defined two PIMs (Hibernate
and JPA use the same PIM). They were created
through the Eclipse Modeling Framework (EMF), and
define the essential elements of the submitted domain.
The EMF is a modeling framework and code genera-
tion facility for the development of applications based
on a structured data model. We used the EMF, since it
has become undoubtedly has become standard in the

MDE community, as well as in the most MDE tools.
As an example of PIM, Figure 4 presents a dia-

gram containing the entities of the Hibernate and JPA
PIM as well as their relationships. The PIM is com-
posed of the following entities:

Init: has the role of starting point when building
the PSM. Therefore, it is possible to create Aspect-
DAO, Control and Persistence entities. Control: as-
sociates the Object to DaoClass. In addition, Con-
trol contains a set of interfaces equivalent to the set
of interfaces brought by DaoClass, which may be
used by Init to trigger the data persistence function-
ality. GenericDAO: A skeleton of DaoClass. Gener-
icDAO is an abstract entity that contains declarations
of the required interfaces of a DaoClass. Further-
more, it contains the functionality that the Aspect-
DAO will use as a pointcut. DaoClass: an exten-
sion of the GenericDao class. As DaoClass is as-
sociated with Object, it may contain specific queries
performed on it. Object: a POJO which determines
an entity of the domain as to its attributes and behav-
iors. In other words, in the data persistence domain,
the Object could also be described as an element of
the model layer. Attribute: responsible for defining
the Object class attributes. Persistence: responsible
for the information needed to connect to the database.
textbfAspectDAO: defines a pointcut and an advice
that is triggered when data persistence functions from
GenericDAO are executed or called.

Figure 4: JPA and Hibernate PIM.

5.2 The Model Transformation

As previously described, the model transformations
performed on our framework run on Acceleo. In Ac-
celeo, the model transformation is designed through
standard templates, which are able to load model data
and manipulate it in order to build the resulting arti-
facts, namely, low-level source code.

The transformations were built upon the entities
present in the PIMs. Therefore, every entity will
present a distinct data treatment and all of them will
be supported in the model transformation process.
The creation of model transformation is responsi-
bility of the Framework Developer (the Framework
Developer has created seven transformation classes

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

278



and one aspect transformation for each technology
JPA, Hibernate and JDBC). These transformations
are templates, which will be used to generate low-
level source code. The approach supports two types
of transformations: class and aspect transformations.
Class transformations contain the Acceleo content to
create the class structure and the main constraints.
Aspect transformations contain the Acceleo content
to define the whole aspect.

5.3 The PSM

Once the PIMs and Transformation are created, the
Framework Developer is able to generate a plugin
containing all metadata of the PIMs, namely, an
Eclipse build that supports the creation of the PSM
based on the entities of a PIM. To create the PSM,
the Application Developer creates a model based on
a PIM, using a tree-view feature to build the hierar-
chy and attribute entities’ values. Then, the Applica-
tion Developer must define the attributes of the enti-
ties. Once the PSM is built, the Application Devel-
oper must run the Acceleo, so the low-level source
code is generated from the PSM and Transformations
(which act on the PSM).

6 DATA ANALYSIS

To evaluate our approach and compare it with the OO
implementation produced manually by the program-
mers, we used the Framework presented. The exper-
iment was conducted as described in Section 4, and
once all participants had executed the requested tasks,
the data were collected and analyzed. To analyze the
code metrics we used 10 software metrics frequently
used in software projects presentd in (Varela et al.,
2017) .

6.1 Productivity

To define whether the productivity to generate code is
higher using our approach than manually by program-
mers, we used two types of statistical analysis. The
first analysis sought to understand: given an imple-
mentation using the approach, what is the probability
that the time to complete this implementation will be
less than an OO implementation produced manually
by programmers?

In our experiment, we believe that the time to de-
velop a solution using the proposed approach is lesser
than to develop manually the solution OO. Thus, from
the hypothesis Ha, we proposed a null Ha0 hypoth-
esis, which states that there is no difference in the

time of development using the approach or not using
it. That is, the null hypothesis can be formulated as:
Ha0: µT = µA; where, there is no productivity dif-
ference in relation to the use of the approach based on
MDD and AOSD with respect to the OO implementa-
tion produced manually by programmers.

In order to reject the null hypothesis, we used a
non-parametric test (binomial test). In the experi-
ment, twelve solutions were produced to compare the
two types of development. In 11 times, the time to de-
velop was shorter using the proposed approach. Only
once was the time the same or shorter not using the
approach. To calculate the binomial test, we defined
that α should be less than 0.05 (the critical area, C
is α ≥ 0.05). To verify the hypothesis we used the
binomial formula:

(1)

In this case, we rejected Ha0 because 0.003 < 0.05.
As a result, the Ha hypothesis is discussed. We al-
ready knew that this is the probability of developing
a solution using the proposed approach in a shorter
time. However, we want to analyze this difference.

We compared if there is a statistically significant
difference in the development time between the two
categories (using the approach and developing manu-
ally using OOP). First, we checked whether the sam-
ple is normally distributed using Shapiro–Wilk test,
which presents a null hypothesis that a sample comes
from a normally distributed population if p-value ≥
x (for all tests we considered p-value as 0.05). The
result showed that the sample is normally distributed.
So, as the samples are independent, we use t-test to
compare them. The t-test null hypothesis is that the
two samples are equivalent. The results of these tests
are presented in Table 1. Comparing all solutions
(first line) there is a difference. However, looking for
each solution, there is a difference in time only for
the first solution (JPA implementation). So, we ap-
plied the t-test (greater) to identify if the side A is
greater than B, in cases where there was a difference.
In both cases, the implementation time when the ap-
proach was used was statistically better.

6.2 Code Quality

To evaluate the code quality, we used the metrics sum-
marized in Table 2. First, we used the binomial test to
see if there is a higher probability of having a better-
quality code if the proposed approach is used instead
of implementing it manually using OOP. From the Hb
hypothesis, we proposed a null H0 hypothesis, which
states that there is no difference in the code quality

An Empirical Study on the Impact of Aspect-oriented Model-driven Code Generation

279



Table 1: Statistical difference between development time.

Comparison
(tasks)

t-test
(p-value)

t-test (greater)
(p-value)

A-B (total) 0.0206 0.989
1A-1B 0.0237 0.988
2A-2B 0.1338 –
3A-3B 0.4024 –

A - Task executed using the approach
B - Task executed manually by programmers

using the approach or not using it. That is, the null hy-
pothesis can be formulated as: Hb0 µTl = µA; where,
there is no quality difference in relation to the use of
the approach based on MDD and AOSD with respect
to the OO implementation produced manually by pro-
grammers.

We compared ten metrics, considering the twelve
solutions of two kinds of development. Thus, there
are 120 metrics to compare. At 70 times the metric
was higher using the approach. At 50 times the metric
was the same or higher not using the approach.

We defined that α should be below 0.05 (the criti-
cal area, C is α ≥ 0.05). Hence, to verify the hypoth-
esis, we used the formula (2):

(2)

In this case, we rejected Hb0 because 0.041 < 0.05.
As a result, the Hb hypothesis is discussed. We al-
ready know that there is a higher probability of hav-
ing a better-quality code using the proposed approach
if compared to not using the approach. However, we
want to analyze each metric and apply statistical tech-
niques. Table 2 presents the median and standard de-
viation for each technology used. Moreover, we com-
pare with which metrics there are statistically signifi-
cant differences between the two categories of imple-
mentation.

The results are presented in Table 3 that presents
the general evaluation (comparing all implementa-
tions using the approach with the implementations
that do not use it) and in Table 4 that compares each
task.

The results based on metrics was superior when
using the proposed approach. Other studies have al-
ready shown that aspects support the improvement
of the separation of concern, such as (Garcia et al.,
2005), and (Oliveira et al., 2008), which explores
the separation of concerns specifically for data per-
sistence applications. Therefore, as shown in Table 2,
the Concern Diffusion over Components (CDC) was
improved by 83%. The Concern Diffusion over Op-

Table 2: Metrics and their statics.

Table 3: Statistical difference between Metrics in general.

Table 4: Statistical difference between Metrics in each task.

erations (CDO) was improved by 86%. The last met-
ric, Concern Diffusions over LOC (CDLOC), was im-
proved by 92%. Besides the superior results when the
approach was used, it is important to realize that none
of the metrics presented a difference in the standard
deviation when the approach was used.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

280



Considering coupling metrics,the metric epth In-
heritance Tree (DIT) showed no difference from the
two approaches. However, the results obtained in the
Coupling Efferent (CE) and Coupling Afferent (CA)
metrics show that the implementations using the pro-
posed approach had a reduction in coupling of 9% and
3% respectively. Regarding Lack of Cohesion in Op-
erations (LCOO), it was the only metric that in gen-
eral presented a worse result using the proposed ap-
proach, although the difference was small, only 4%.

In the last metrics, regarding code size, the follow-
ing data are analyzed: Lines of Code (LOC), Num-
ber of Attributes (NOA) and Weighted Operations per
Component (WOC). Regarding LOC metric, the pro-
posed approach was 4% more efficient, while in the
NOA metric it was 2% better. In the last WOC metric
the proposed approach was 3% more efficient. More-
over, observing Table 2, it is possible to see that in
general the size metrics presented a lower standard
deviation when the approach was used.

7 DISCUSSIONS

To answer the question a “Is it possible to pro-
ductively generate semi-automatically quality AOSD
code based on MDD?”, we analyzed the experiment
and its results. Based on the experiment, we conclude
that our approach generates semi-automatic quality
AOSD productivity. In the experiment, all partici-
pants were able to develop three different persistence
AOSD codes. Thus, based on experiment, the ap-
proach helps to create different solutions for a generic
domain semi-automatically. Yet considering the ex-
periments, analyzing the development time, and the
code quality metrics that are considered to generate
quality code productivity. Thus, we consider that the
first main question is true, and that it is possible an ap-
proach, based on MDD, productively generates semi-
automatically quality AOSD code.

However, to analyze productivity and quality
compared to a OO code developed manually, it is
necessary to analyze question b: “Can the quality
of the code and productivity be as good, or better
than the OO code produced manually by the program-
mers?”. Based on the results of the experiment, we
may state that, using the proposed approach, there is
a greater probability of having a shorter development
time compared to OO manual development. Further-
more, the development time was statistically signifi-
cantly shorter compared to manual OO development.

Regarding code quality, using the proposed ap-
proach there is a greater probability of having higher
quality code compared to the manual OO develop-

ment. Statistically, we may state that development
using the approach helps to improve the Separation of
Concerns and Coupling. Therefore, we consider that
the second question is also true, since the productiv-
ity and code quality produced using the approach was
superior to the OO code produced manually.

Based on the experiments, there are other aspects
that may be discussed, considering the expert’s per-
ception. In the approach, the use of aspects should be
as transparent as possible, i.e., the developer only cre-
ates an aspect in the model, and sets some parameters
for it works properly. Therefore, the developers do
not need to understand this concept, and one advan-
tage is that all implementations are equals, helping the
maintenance and reuse.

7.1 Threats to Validity

The main threats to the validity of this study were
identified as its limitations are discussed below. Con-
struct validity. Participants in the experiments were
only students. Data were collected from a single data
source. We tried to mitigate this threat by applying a
placement test to ensure all students have had similar
knowledge levels and all were able to perform the re-
quested tasks. Design Threats. The use of poorly
designed experimental artifacts may be a threat. To
mitigate this issue, we designed our experiment to
work as software maintenance. Inappropriate se-
lection of subjects. The scope of domain (database)
is a threat since for other domains could present dif-
ferent results. However, we believe the application
of the approach to other domains has a great chance
of success, since the domain enables aspect solutions,
and a well-defined PIM is created. Conclusion va-
lidity. The use of inappropriate measure occurring
the wrong understanding of the results. We defined
clear hypotheses and chose the appropriate statistical
tests for each hypothesis. Furthermore, we tested all
data, verifying the data characteristics to use the cor-
rect statistical test and we applied the power test.

8 CONCLUSIONS

We have carried out an experiment to report an em-
pirical evaluation of our approach and to compare the
AO code generated by using the approach with the
OO code generated. The final code produced by the
framework based on the proposed approach, consid-
ering all the data obtained in the analysis, was con-
sidered of better quality than that OO code produced
manually by programmers. This corroborates with
other studies that have already presented comparisons

An Empirical Study on the Impact of Aspect-oriented Model-driven Code Generation

281



between AO and OO code, as instance (Hoffman and
Eugster, 2009);(Katic et al., 2013);(Kulesza et al.,
2006). However, although AOSD is effective in im-
proving the separation of concerns, (Przybyłek, 2018)
pointed out that AOSD decreases understandability,
and this explains why object-oriented development is
advantageous over AOSD at completion time. How-
ever, using our approach, the completion time to pro-
duce AO code was shorter than the time to produce
the OO code manually.

As main advantage, we can highlight that our ap-
proach brought the benefits already discussed in the
literature by the use of ASOD, and on the other hand
avoid the problems pointed out by (Przybyłek, 2018),
since the approach may help to improve the software
development (both quality and productivity).

Finally, the AOSD appeared more than two
decades, and so far its use remains a challenge in
the industry. Therefore, a fundamental novelty of our
research is that the application of AOSD should be
rethought, given the difficulty of its use in practice;
however this study shows that there are alternatives,
such as the use of higher-level solutions.

ACKNOWLEDGEMENTS

This study was financed in part by the Fundação
Araucária and Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico (CNPq), protocol n.
9908272120340724

REFERENCES

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994).
Goal Question Metric Approach”. In: Encyclopedia
of Software Engineering. Wiley.

France, R. and Rumpe, B. (2007). Model-driven Devel-
opment of Complex Software: A Research Roadmap.
In FOSE ’07: 2007 Future of Software Engineering,
pages 37–54, Washington, DC, United States. IEEE
Computer Society.

Garcia, A., Sant’anna, C., Figueiredo, E., and Kulesza, U.
(2005). Modularizing design patterns with aspects:
A quantitative study. In International Conference on
Aspect-Oriented Software Development.

Groher, I. and Voelter, M. (2009). Aspect-oriented model-
driven software product line engineerings. Trans. Asp.
Softw. Dev, 5560:111–152.

Hoffman, K. and Eugster, P. (2009). Cooperative
aspect-oriented programming. Sci Comput Program,
74(5–6):333–354.

Katic, M., Boticki, I., and Fertalj, K. (2013). Impact
of aspect-oriented programming on the quality of

novices’ programs: A comparative study. Journal of
Information and Organizational Sciences, 37(1).

Koch, N. (2007). Classification of model transformation
techniques used in uml-based web engineering. Soft-
ware, IET, 1:98 – 111.

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., von
Staa, A., and Lucena, C. (2006). Quantifying the ef-
fects of aspect oriented programming: A maintenance
study. In 22nd IEEE Intl. Conf. on Software Mainte-
nance.

Mehmood, A. (2013). Aspect-oriented model-driven code
generation: A systematic mapping study. Information
and Software Technology, 55(2):395 – 411.

Mtsweni, J. (2012). Exploiting uml and acceleo for de-
veloping semantic web service. In The 7th Inter-
national Conference for Internet Technology and Se-
cured Transactions (ICITST-2012).

Oliveira, A. L., Menolli, A., and Coelho, R. (2008). Sepa-
rating data access crosscuting concerns using aspectj,
a quantitative assessment. In International Confer-
ence on Software Engineering.

Pérez, J., Ramos, I., Carsı́, J. A., and Costa-Soria, C. (2013).
Model-driven development of aspect-oriented soft-
ware architectures. J. Univers. Comput. Sci., 19:1433–
1473.

Pinto, M., Fuentes, L., Fernández, L., and Valenzuela, J.
(2007). Using aosd and mdd to enhance the archi-
tectural design phase. Springer-Verlag, 5872:360 –
369. Second International Workshop on Aspect-Based
and Model-Based Separation of Concerns in Software
Systems.

Przybyłek, A. (2018). An empirical study on the impact
of aspectj on software evolvability. Empir. Software
Eng., 23:2018–2050.

Sant’Anna, C., Garcia, A., Chavez, C., Chavez, G., Lucena,
C., and von Staa, A. (2003). On the reuse and main-
tenance of aspect-oriented software: An assessment
framework. Brazilian S. on Software Engineering.

Simmonds, D. M., Reddy, Y., France, R., Ghosh, S., and
Solberg, A. (2005). An aspect oriented model driven
framework. Ninth IEEE International EDOC Enter-
prise Computing Conference (EDOC’05), pages 119–
130.

Singh, Y. and Sood, M. (2009). Models and transformations
in mda. In 2009 First International Conference on
Computational Intelligence, Communication Systems
and Networks, pages 253–258.

Tekinerdogan, B., Aksit, M., and Henninger, F. (2007). Im-
pact of evolution of concerns in the model-driven ar-
chitecture design approach. Electronic Notes in The-
oretical Computer Science, 163(2):45 – 64. Second
International Workshop on Aspect-Based and Model-
Based Separation of Concerns in Software Systems.

Varela, A., Pérez-González, H., Martı́nez-Pérez, F. E., and
Soubervielle-Montalvo, C. (2017). Source code met-
rics: A systematic mapping study. J. Syst. Softw.,
128:164–197.

Wohlin, C. and Aurum, A. (2015). Towards a decision-
making structure for selecting a research design in em-
pirical software engineering. Empirical Software En-
gineering, 20:1427–1455.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

282


