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Abstract: This paper addresses a real-life task and personnel scheduling problem arising in a large Italian company that
needs to provide cleaning services inside a hospital. In this case study, the challenge is to determine a schedule
of the employees to clean the whole hospital aiming to minimize the total labor cost, taking into account the
fact that the building is a complex structure with multiple levels and each room has different peculiarity. To
solve the problem, we propose a three-step approach using mathematical models and metaheuristic algorithms.
The solution obtained indicates that the schedule attained by our method is better than the one generated by
the company. In addition, to test and validate our approach more thoroughly, a set of artificial instances have
been created. The results indicate that our method can help organizations to quickly generate and test a large
variety of solutions. Our findings can be of general interest for other personnel scheduling problems involving
distributed services.

1 INTRODUCTION

One of the key operational processes in hospitals is
the organization of the cleaning tasks that need to be
performed by employees regularly, to maintain the
necessary level of cleanliness and sanitary security.
Scheduling cleaning tasks is a complex problem (Bar-
tolini et al., 2017) that belongs to the general field of
personnel scheduling (Van den Bergh et al., 2013);
it is a very crucial activity for hospitals, especially
in this moment, in which we are facing the Covid-
19 pandemic, which calls for an additional level of
sanification. Our interest originates from the activity
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of Coopservice, a large third-party service provider
that is responsible for the cleanliness and sanitary se-
curity of a large number of hospitals in Italy. How-
ever, the problem can be generalized to a large variety
of services that should be carried out in a distributed
manner across large facilities. To provide their ser-
vices, third-party companies must take part in tender
processes for cleaning services. To achieve success,
they have to submit cost-efficient offers. In a hospital,
there are often many costs that cannot be influenced
substantially by the company. This means that per-
sonnel costs and personnel management become the
critical factor. Therefore, an efficient and automated
planning of personnel schedules enables one to create
a competitive advantage in tender processes.

To solve the problem, we need to create clean-
ing schedules for a specific planning period (e.g., a
month), and then allocate the available employees to
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the schedules by minimizing the total labor cost while
satisfying given services requirements. In view of
this, we propose a hybrid three-step approach based
on the combined use of heuristics and mathematical
models.

As inputs, we are given a set of employees, as
well as a set of locations, each with an associated set
of cleaning tasks with some physical characteristics,
such as the level of sanitary risk, location size and
time windows. The first step focuses on a standard
one-week period of work. In this period, we first al-
locate the cleaning tasks to the days so as to balance
the workloads. This is achieved by solving a mixed-
integer linear programming (MILP) model. Secondly,
for each day in the period, we create a set of clean-
ing routes by solving a vehicle scheduling problem
with time windows (VSPTW). The cleaning routes
are sequences of visits to locations within the given
time windows. Due to its NP-Hardness, we solve the
VSPTW by means of an adapted variable neighbor-
hood descent approach, using some well-known lo-
cal search procedures (Bräysy and Gendreau, 2005a;
Bräysy and Gendreau, 2005b). At the third step, we
solve a personnel scheduling problem (PSP). Con-
sidering a larger one-month period and incorporating
further operational constraints to solve the problem,
we develop constructive and local search heuristics
aimed at assigning the cleaning schedules to the em-
ployees and minimizing the total labor cost.

An overview of the three-step approach is pre-
sented in Figure 1.

Optimal allocation of cleaning tasks to days

Step 1

Creation of cleaning routes minimizing travel distance

Step 2

Personnel scheduling minimizing total labor cost

Step 3

Figure 1: Three-step approach.

Our three-step approach was used to solve a real
instance derived from a real-world Italian hospital
operated by Coopservice, and the results obtained
were positively confirmed by the company’s man-
agers. Moreover, to test and validate our approach

a set of artificial instances have been created. For
all instances, we attained full coverage of the clean-
liness requirements of the hospital, thus satisfying the
needed sanitary level.

The main contribution of this paper is to propose a
decomposition method to solve a case-study that can
help companies to quickly generate and test a large
variety of solutions for integrated task and person-
nel scheduling for distributed services, ensuring the
minimization of the costs, in terms of working hours,
for the company. In addition, it could enable com-
panies to reorganize cleaning activities, as entire de-
partments and locations can change their risk level be-
cause of the COVID-19 emergency. Moreover, it can
be used to quickly reorganize the scheduling of em-
ployees in case some workers are subjected to quar-
antine periods due to the infection.

The remainder of this paper is organized as fol-
lows. Section 2 gives a formal problem definition.
Section 3 provides a brief literature review. Section
4 describes our three-step approach. Section 5 re-
ports the results of our algorithm and, finally, Section
6 presents the concluding remarks.

2 PROBLEM DEFINITION

In a hospital complex, we have a set of buildings B,
and every building b ∈ B also has an internal floor di-
vision Lb. For each floor l ∈ Lb, there is a set Ub

l of
locations to be cleaned. Each location v ∈ Ub

l on a
floor l of a building b has an associated type (e.g., el-
evator, office, toilet, etc.) and risk level, which can
be classified as low, medium, or high. These two at-
tributes have an impact on both the weekly cleaning
frequency and effort. For example, a toilet has to be
cleaned more often than a simple office.

Let D = {1, . . . ,7} be the set of days. The weekly
frequency fv for cleanness of each location v is pro-
vided by the hospital, in other words, fv gives the
number of days in the week in which v has to be
cleaned. The company generates a set Pv of feasi-
ble patterns, which are the possible combinations for
the weekly assignment at location v. When a pat-
tern p is assigned to the location v, all the clean-
ing tasks of v must be executed in each of the days
in the pattern. For example, assuming that fv =
3, we could have the following pattern set: Pv =
{{1,3,5},{2,4,6},{3,5,7}}. In this case, if the com-
pany selects the first pattern, then the cleaning tasks
at location v are scheduled to be performed on days 1,
3 and 5.

The problem is rather complex; thus, we describe
it by using three steps, which also correspond to the

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

464



main steps of our solution algorithm described later
in Section 4.
Step 1. For each location v, we define a set of clean-
ing tasks Tv; each task k ∈ Tv has a total duration of
qvk minutes. In practice, the duration varies accord-
ing to the type of task, which can be either a complete
cleaning or a fast cleaning, and with the size of the lo-
cation (expressed in m2) and its type. Moreover, each
task k ∈ Tv also has a time window [avk, uvk], which
determines the earliest and latest times to execute task
k. The company wishes to decrease the total amount
of cleaning time during weekends (e.g., on days d =
6 and d = 7) by a factor βd , due to contractual con-
straints with the employees, and also because the ac-
tivities of the physicians are usually reduced.
Step 2. For each building b ∈ B, we are given a graph
Gb = (Nb,Ab), where the set of nodes Nb is com-
posed of its starting and ending node where all per-
sonnel starts and ends the routes, here defined as ρb,
and the corresponding cleaning locations of b. More
precisely, Nb = {ρb}∪{v : v ∈Ub

l , l ∈ Lb}. Each ρb

of a corresponding block b∈ B has an associated time
window [a

ρb ,uρb ], where a
ρb and u

ρb are the earliest
and latest departure and arrival times in the day, re-
spectively. The maximum schedule duration was de-
fined, along with the company, as a target duration τ.

Moreover, we assume that all locations on the
same floor l ∈ Lb are interconnected, meaning that
there is an arc connecting each pair of nodes located at
l. The floors are connected through elevators, which
are also cleaning locations. Thus, we define a subset
N̂b ⊂ Nb composed of all locations that are elevators
in the building b. We can then define the arc set as
Ab = {(i, j) : i, j ∈ Ub

l , i 6= j, l ∈ Lb} ∪ {(i, j) : i, j ∈
N̂b, i 6= j}. Furthermore, each arc (i, j) ∈ Ab has an
associated traveling distance di j and time ti j.
Step 3. Regarding the personnel scheduling, the com-
pany provides a set of heterogeneous employees E.
Each employee e ∈ E has a contract type Ce, de-
termining the maximum number of days he/she can
work in a week (as in our case, where it is set to a
month). There are two types of work patterns: (i)
“5+2”, which means five days of work and two days
of rest; and (ii) “6+1”, which consists of six days of
work and the Sunday of rest. Note that in the first
pattern the days can be arranged in any permutation,
whereas in the second one there is only one possible
option.

The company also specifies a maximum amount
of days C

′
that any employee can work consecutively

without a rest day. This value is useful when the ros-
tering period is longer than a week. In addition, each
employee has a maximum amount of working hours
per week, defined by Me. Furthermore, let M

′
be the

maximum working hours in a day, defined by the Ital-
ian law, and WT

′
be the maximum waiting time be-

tween two sequences of cleaning routes. Also, let δ

be the number of days associated with the scheduling
period.

The objective of the firm is to minimize the total
labor cost. Taking the average historic unit cost h (as
provided by the hospital) as a proxy for the unit cost
of all workers, the objective function is:

min Z = h · z (1)
where z is the total working time. Let λe be the

total working time of an employee e ∈ E. Then, mini-
mization of (1) boils down to minimization of (2) be-
low:

min z = ∑
e∈E

λe (2)

The Integrated Task and Personnel Scheduling
Problem (ITPSP) aims at optimize (2) while meeting
the operational constraints defined at steps 1, 2 and 3.

3 LITERATURE REVIEW

The literature on complex OR problems arising in the
fields of logistics and scheduling is vast and it is not
our goal here to provide a comprehensive review. In-
stead, we turn our attention to decomposition-based
methods closely related to our work.

Considering that we face an integrated task and
personnel scheduling problem, we focus our re-
view on approaches that integrate these two aspects.
(Smet et al., 2016) introduced a problem called Task
Scheduling and Personal Rostering Problem (TSRP),
which they solved by means of a very Large Neigh-
borhood Search and a column generation algorithm.
The TSRP considers non-preemptive tasks, fixed
tasks, fixed shifts and qualifications, and aims at min-
imizing the weighted sum of constraint violations. In-
deed, in the TSRP it is often impossible to obey to all
the contractual constraints, as they are often imposed
by authorities with conflicting priorities. The TSRP
differs from the ITPSP that we face for two reasons:
(i) the TSRP has five shifts rather than a task demand
shift (see (Ernst et al., 2004), for the problem termi-
nology); (ii) in the TSRP only one task can be as-
signed to a shift. In (Lapègue et al., 2013), the authors
introduced a very similar problem, the Personnel Task
Scheduling Problem (PTSP), and a variant known as
Shift Minimization Personnel Task Scheduling prob-
lem (SMPTSP) in which the shifts are not fixed and
are deduced from the task assignment. The PTSP
is a problem in which a set of tasks with fixed start
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and ending times have to be allocated to a heteroge-
neous workforce. In (Guyon et al., 2010), the au-
thors proposed a decomposition method to solve an
integration of the employee timetabling and produc-
tion scheduling problems. At the first level, they
solved a traditional timetabling problem. At the sec-
ond level, they aimed at supplying feasible schedules
for a set of uninterruptible tasks. In (Maenhout and
Vanhoucke, 2018), the authors proposed a perturba-
tion meta-heuristic for the integrated personnel shift
and task re-scheduling problem. In that context, some
schedule disruptions can arise as a result of some
operational variability, creating the necessity of re-
scheduling the already planned roster. More recently,
(Kletzander and Musliu, 2020) proposed a framework
to solve a General Employee Scheduling Problem
(GESP), in which a wide range of different constraints
needs to be considered to allow the specification of
different requirements without the need to introduce a
new problem formulation for each variant of the prob-
lem. They used an XML format to specify the formu-
lation in a human and machine readable way. The
GESP deals with the scheduling of shifts as well as
optional tasks and breaks for a set of employees over
a certain period of days. (Elahipanah et al., 2013) in-
troduced the Flexible Activity and Task Assignment
Problem (FATAP), which takes place in a flexible en-
vironment where the detailed activity and task de-
mands are uncertain, allowing the decision maker to
use additional temporary employees, scheduling over-
time for regular employees and moving meals break.
The authors used a two-phase approach, firstly solv-
ing an approximate MILP model and a column gen-
eration heuristic embedded into a rolling horizon pro-
cedure. In (Doi et al., 2018), the authors proposed
a decomposition-based meta-heuristic algorithm for
practical airline crew rostering problems with fair
working time. Another interesting paper is the one by
(Salazar-González, 2014), in which the author devel-
oped an arc-flow variable formulation to solve an inte-
grated fleet-assignment, aircraft-routing, crew-pairing
problem, and a MILP formulation to solve a crew ros-
tering problem of a Spanish air carrier company.

The ITPSP that we face differs from the problems
analyzed in the previous literature because it con-
tains a very general combination of constraints de-
rived from the real-world application at hand. The
tasks have an interval time to be executed, but no fixed
start time. The shifts are not fixed, and the tasks are
non-preemptive. In addition, in the third step, we con-
sider employees with no qualification differences and
use the historic average unit cost as a proxy for the
unit cost of each worker, so that minimization of total
personnel cost is equivalent to minimization of total

working time. Lastly, we need to solve this problem
for a planning horizon of one month using a standard
weekly plan for the tasks to execute.

4 PROPOSED ALGORITHM

Decomposing the problem into multiple steps can be
considered a very useful alternative for huge and com-
plex problems (Vance et al., 1997; Juette and Thone-
mann, 2012; Hoffmann et al., 2017). Therefore, we
propose a three-step approach to solve the TPSP, as
described in the following.

In the first step, we solve a MILP model that seeks
to minimize the maximum number of daily working
hours (see Section 4.1) to determine a weekly pattern
p for each location v. In this phase, one defines all lo-
cations that must be cleaned on each day. For conve-
nience, we denote this problem as location scheduling
(LS).

Next, for each day, we solve the VSPTW using a
local search procedure based on Randomized Variable
Neighborhood Descent (RVND), as described in Sec-
tion 4.2. More precisely, the second step aims at min-
imizing the total travel distance, while respecting the
time windows of each location, generating a cleaning
schedule for all days.

In the last step, we solve a personnel scheduling
problem (PSP), explained in detail in Section 4.3. The
objective is to organize the available personnel to ex-
ecute the cleaning schedule generated in the previ-
ous step, for a given scheduling period (usually one
month), minimizing the total working time of the em-
ployees according to (2) (and, therefore, minimizing
the total cost).

Algorithm 1 provides an overview of the proposed
approach.

Algorithm 1: Iterative three-step algorithm.

1: procedure 3-STEP(U,E,ε,η,φ)
2: s∗←∅ . Final solution
3: H←∅ . Set of weekly patterns
4: while time limit ε not reached do
5: m← buildNewMILPModel(H,U)
6: WeeklyPattern← LS(m);
7: C Schedule← VSPTW(WeeklyPattern,η,φ)
8: P Schedule← PSP(C Schedule,E)
9: if f (P Schedule)≤ f (s∗) then

10: s∗← P Schedule
11: end if
12: H← H ∪WeeklyPattern
13: end while
14: return s∗
15: end procedure
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Our algorithm iteratively executes the three steps
mentioned above until a time limit ε is achieved. At
each iteration, the method builds a new assignment
problem using the information of all previous assign-
ments (line 6). The idea is to generate diversified-
yet-efficient weekly patterns, as described in Section
4.1. The solution found in the first step is then pro-
vided to the second step, where one aims at determin-
ing the cleaning schedule by solving a VSPTW (line
7). The third step is responsible for obtaining a per-
sonnel schedule using the VSPTW solution as in input
(line 8), thus generating a final solution for the TPSP.
In case of improvement, the best TPSP solution found
is updated (lines 9–11). Finally, the set of weekly pat-
terns is updated before the next iteration (line 12).

4.1 First Step: Generating a Weekly
Pattern

In periodic routing problems, choosing a visiting pat-
tern for the customers can be a very useful strategy
(Cordeau et al., 1997). In our case, we are interested
in selecting a weekly pattern from Pv for each loca-
tion v, assigning locations to days. The objective is to
minimize the maximum working time across all days.

Let Qpd be equal to 1 if the pattern p contains
day d, 0 otherwise. Since some days may have less
amounts of work (e.g., at the weekends) we denote as
βd as the balance factor for each day d ∈ D. Let θvd
the time to execute all the tasks of location v in the day
d, given by θvd = βd ∑k∈Tv qvk,∀v ∈U,∀d ∈ D. Note
that this value does not inform if the day d is present
in the patterns of v. Let xvp be the binary variable as-
suming value 1 if pattern p is assigned to location v, 0
otherwise. In addition, let variable z1 denote the max-
imum daily working time. The MILP formulation can
be written as follows:

min z1 (3)

∑
p∈Pv

xvp = 1 ∀v ∈U (4)

∑
v∈U

θvdQpdxvp ≤ z1 ∀d ∈ D (5)

xvp ∈ {0,1} ∀v ∈U,∀p ∈ Pv (6)
z1 ≥ 0. (7)

The objective function (3) aims at finding a bal-
anced solution by minimizing the maximum working
time across all days. Constraints (4) impose that ex-
actly one pattern must be selected for each location
v. Constraints (5) compute the maximum daily work-
ing time. Finally, constraints (6) and (7) define the
domain of the variables.

At each iteration τ of Algorithm 1, the MILP
model is modified by inserting a hamming-distance
constraint (8), which is based on the optimal cuts for
two-stage stochastic linear programs with recourse
(Laporte and Louveaux, 1993). We define ξ as a per-
centage of how many variables must change with re-
spect to the previous solutions generated. In order
to obtain different solutions at every execution of the
algorithm, we add the following constraint to model
(3)-(7)

∑
(v,p)∈sτ

(1− xvp)+ ∑
(v,p)/∈sτ

xvp ≥ ξ sτ ∈ T (8)

where sτ denotes the solution obtained at iteration τ

and T denotes the set of solutions generated during
all iterations.

4.2 Second Step: Generating the
Cleaning Schedule

In this step, one has to determine the daily sequence
and start time of the visits to locations that the em-
ployees have to perform, here called cleaning sched-
ule. In our case, this is achieved by solving a VSPTW
for each day, where the customers are the locations
and the depot is the starting and ending point ρb, each
of them with an associated time window (see Section
2).

To solve the VSPTW, we have designed a heuris-
tic procedure whose pseudocode is described in Algo-
rithm 2. Let Nd be the subset of locations that should
be visited on day d, and let N =

⋃
d∈D Nd . In addition,

let T be the set containing the VSPTW solutions ob-
tained on each day. Parameters η and φ are related to
the local procedure, and are described further in this
section. For each day, the algorithm generates an ini-
tial solution using a greedy approach (line 4), which
is possibly improved by a local search procedure (line
5) based on RVND (Subramanian et al., 2010). The
solution found after the local search step is then ap-
pended to T (line 6).

Algorithm 2: VSPTW.

1: procedure VSPTW(N,η,φ)
2: T ←∅
3: for d ∈ D do
4: s← GreedyAlgorithm(Nd)
5: s← RV ND(s,η,φ)
6: T ← T ∪ s
7: end for
8: return T
9: end procedure

The constructive procedure generates an initial so-
lution starting from the lowest to the highest floor,
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with a view of minimizing the displacement of em-
ployees inside the building. At each floor, the task
with minimum latest time window is inserted at the
last position of the sequence. In case of tie, the al-
gorithm selects the task whose location is the near-
est with respect to the last task inserted. If there are
no more tasks on the given floor, then one contin-
ues the insertion from the next floor. When it is no
longer possible to add a task without violating the
constraints, a sequence (or a cleaning route) is created
and the procedure is repeated until no more tasks are
left to be inserted. Note that a daily cleaning sched-
ule is composed of all cleaning routes associated with
that day.

The local search engine consists of an adaptation
of the RVND procedure. Three classical inter-route
neighborhood structures were considered, in particu-
lar, cross-exchange, relocate and swap. Whenever an
improving move is found, an intra-route local search
is applied, also in a RVND-like fashion, using 2-
opt and swap neighborhoods. The first improvement
strategy is adopted, and the algorithm performs the
search in φ percent of neighborhood size. The lo-
cal procedure is iteratively called for up to η times.
Furthermore, since a local search move between two
floors that are considered far enough is not likely
to yield an improving move (e.g., a swap between
tasks of the first and ninth floors), we have defined
a floor vicinity rule, which only allows moves involv-
ing floors l−1, l and l +1.

Finally, in order to build the cleaning schedule,
one should define the optimal start times of the vis-
its by minimizing the total duration of each cleaning
route. The timing problem considered here was in-
troduced and solved using the so-called forward slack
time procedure by (Savelsbergh, 1992). Let k∈ σ be a
task, where σ is a cleaning route composed of n tasks.
We are given the following for each task k: (i) qk is
the service time; (ii) STk is the earliest feasible start
time; (iii) WTk is the cumulative idle time; and (iv)
FDk is the partial forward slack time. We begin with
the following values: ST1 = a1, WT1 = 0, and FD1 =
u1−a1. Next, we compute the remaining values:

STk = max(STk−1 +qk−1,ak) k ∈ σ (9)
WTk =WTk−1 +(STk−STk−1−qk−1) k ∈ σ (10)

FDk = min(FDk−1,uk−STk +WTk) k ∈ σ. (11)

Finally, the start time of the cleaning route is given
by st∗σ = a1 +min(FDn,WTn).

(The reader is referred to (Vidal et al., 2012), for
a comprehensive review on timing problems.)

4.3 Third Step: Personnel Scheduling

In the personnel scheduling phase, the objective is to
minimize the total working time (and, therefore, the
total cost) by assigning employees to duties, which is
in turn derived from the cleaning routes generated in
the second step. Algorithm 3 describes the procedure
developed to the referred subproblem.

Algorithm 3: Overall Heuristic.

1: procedure PSP(T ,E)
2: C←CreateDailyDuties(T )

3: E
′ ← AssignEmployeesToDuties(E,C

′
)

4: E∗← LocalSearch(E
′
)

5: return E∗
6: end procedure

Firstly, one determines the duties associated with
a day of work, which is composed of a set of one or
more cleaning routes (line 2). In particular, the al-
gorithm employs the best fit strategy by maximizing
the number of tasks in the duty, always satisfying the
constraints of the problem, and avoiding intersections
between the times specified in the cleaning schedule.
Note that a duty may comprise more than one clean-
ing route, and the process of putting them together can
be seen as a packing problem (Krishnamoorthy et al.,
2012). The total time of a duty is given by the sum
of the execution times of all cleaning routes plus the
possible waiting times between them.

Secondly, the algorithm assigns the employees to
the duties (line 3). More precisely, the available em-
ployees are sorted in non-ascending order according
to the their contractual working time. A first-fit pol-
icy is then applied for each day, assigning employ-
ees to the duties, followed by a local search (line 4).
The procedure first tries to interchange the weekly du-
ties between two different employees (as long as they
have different Me). If this change fails to yield a fea-
sible improvement, the algorithm attempts to perform
another move involving same pair of employees. In
this case, a day is chosen at random, and the respec-
tive duties from that day are interchanged between the
employees. The procedure terminates when no im-
proving move is obtained.

In Figure 2, we present a graphical representation
of the proposed algorithm in order to help the reader
understand the presented methodology.
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Step I: allocation of cleaning tasks to days

Let Nd be the set of locations that should be visited on day d

N1

Set of
locations v 

N2

Set of
locations v 

N7

Set of
locations v ...

N3

Set of
locations v 

Step II: creation of cleaning routes for all days

Let Td be the subset of cleaning routes on day d

T1

Set of
cleaning
routes 

T2

Set of
cleaning
routes 

T7

Set of
cleaning
routes 

...
T3

Set of
cleaning
routes 

N = ∪d∈D Nd
 

Step III: personnel scheduling
Let E be the set of heterogeneous employees

1. Creation of the daily
duties with the routes

2.  Assign employees to
duties

Day 1

...

C1

C2

C3

T1 T2

T3

T4

e1

e2

Let D={1,...,7} be the set of days. For each location v we have a
set of cleaning task Tv and a set Pv of feasible patterns

T = ∪d∈D Td

 

C1 C2

C3

e3 C4

Figure 2: An overview of the proposed algorithm.

5 COMPUTATIONAL
EXPERIMENTS

To validate the proposed algorithm, we solved a real-
life instance of the company, and to evaluate the ro-
bustness of the method, we created 20 random in-
stances based on real data. The algorithm was coded
in Python 3.7.3 and executed on an Intel(R) Xeon(R)
CPU E3-1245 v5 3.50GHz with 32GB of memory,
running Linux Ubuntu 18.04 LTS 64-bits.

The CBC (https://github.com/coin-or/Cbc) solver
from COIN-OR was used to solve the MILP model
presented in Section 4.1 (Lougee-Heimer, 2003). A
limit of 10 seconds was imposed for the solver. Re-
garding the overall procedure, a time limit of 1,800
seconds was imposed. To improve performance, we
have parallelized the implementation of Algorithm
2 using 4 cores, benefiting from the fact that the

VSPTW can be addressed independently for each day.

5.1 Parameters

For all experiments, we used the following parameter
values, as defined by the company:

• β: 50%;

• µ: 50 meters per minute;

• τ: 480 minutes;

• WT
′
: 20 minutes;

• C
′
: 6 days;

• δ: 14 days.

Moreover, we adopted ε = 1,800 seconds, and
φ = 10% after conducting preliminary experiments.
In addition, the values of the two remaining param-
eters, η and ξ, were chosen after comparing the re-
sults obtained by different combinations with the one
provided by the company on the real-life instance, as
described in Section 5.3.

5.2 Instances

The real-life instance was created using BIM (Build-
ing Information Modeling), which is a data model
that stores different types of information and con-
sists of parametric objects representing building com-
ponents. Objects may have non-geometric attributes
with functional, semantic or topological information
(Volk et al., 2014). In the hospital associated with
the real-life instance (see Figure 3), there is a build-
ing containing 15 floors with a total of 2,422 loca-
tions, not uniformly distributed, and divided into 47
types. The instance has 227 locations referred to as
elevators. Each location has a coordinate (x,y) in a
normalized Cartesian plane.

In addition, we generated 20 artificial instances by
simply combining the floors of the real-life instance.
More precisely, we randomly chose a subset of floors,
always keeping the original information regarding the
existing locations on the respective floor, and built a
new instance by sorting such selected floors in an ar-
bitrary fashion.

In vehicle routing and scheduling problems, the
distance between two locations is often computed us-
ing the Euclidean distance. In our problem, we have
a three-dimensional building, so we compute the dis-
tance between two locations by considering floors and
elevators as follows. If the two locations i and j are on
the same floor, their distance di j is computed by the
shortest path. Otherwise, we calculate the distance
matching the closest elevators on both floors that min-
imizes the total distance of traveling from i to j. This
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Figure 3: An overview of the hospital.

is done by taking the distance from i to the closest el-
evator plus the distance from that elevator to j. Let L
be the function that returns the location v of the floor
and κ denote an elevator. Function SP in (12) calcu-
lates the shortest path from i to j:

SP(i, j) = min
κ1,κ2∈N̂b

dL(i)
iκ1

+dL( j)
κ2 j . (12)

The cost ci j is therefore given by:

ci j =

{
SP(i, j) if L(i) 6= L( j)
di j otherwise

(13)

Let µ be the standard walking speed which was
empirically observed by the company. The travel time
from i to j is given by ti j = ci j/µ.

5.3 Results for the Real-life Instance

The two parameters in which we experimented with
different values were η and ξ (η indicates the num-
ber of times in which the local procedure is iteratively
called and ξ defines a percentage of how many vari-
ables must change with respect to the previous so-
lutions generated). We conducted tests for all com-
binations of the following values: η ∈ {20,30,40}
and ξ ∈ {1,20%,50%}. The main objective in test-
ing these combinations is to define the standard pa-
rameters for the company to run the algorithm. Ta-
ble 1 shows the results achieved on the real-life in-
stance. For each tested combination of η and ξ, we
report the best solution found z computed as in (2)
and the percentage gain over the solution provided by
the company, whose value is zc = 135780. It can be
observed that the setting η = 40 and ξ = 1 yields the
best improvement of 5.83%. The percentage gain is
computed as 100(zc− z)/zc.

5.4 Results for the Artificial Instances

We also carried out a similar experiment for the ar-
tificial instances. For each instance, we considered

Table 1: Results obtained for the real-life instance.

η ξ z %gain
20 1 128,323 5.81
20 20 128,330 5.81
20 50 128,324 5.81
30 1 128,309 5.82
30 20 128,328 5.81
30 50 128,327 5.81
40 1 128,302 5.83
40 20 128,320 5.81
40 50 128,335 5.80

the same values of η and ξ specified in the previous
section. Table 2 reports the information of each in-
stances, namely, the number of floors and locations,
together with the combination of η and ξ that yielded
the best result. In the last two columns, we provide
the value of the objective function and the CPU time
required to find the best solution. The results show
that, on average, 1186 seconds are necessary for the
method to obtain the best solution. By observing
the results obtained, and computing the frequency of
the parameter setting for which the best solution was
found, we found that the best configuration of η and
ξ are 20 and 50, respectively.

Table 2: Best results found on the artificial instances.

Instance Floor Locations ηbest ξbest z t∗

1 4 534 30 50 46,336 568.73
2 11 1,678 30 20 126,520 634.37
3 6 857 30 50 66,136 1,646.40
4 3 483 40 50 38,936 1,355.59
5 14 2,020 20 20 164,512 1,705.86
6 5 743 40 1 51,098 209.24
7 10 1,451 20 50 106,348 844.65
8 3 494 30 20 40,442 1,671.83
9 3 439 20 1 31,626 997.60

10 11 1,613 20 50 132,850 1,487.25
11 11 1,643 30 1 128,154 662.20
12 3 399 30 1 43,918 1,577.16
13 9 1,226 40 20 106,160 176.98
14 5 777 20 20 81,944 1,716.20
15 15 2,191 20 20 180,794 969.58
16 2 223 40 50 23,728 1,483.14
17 11 1,645 30 20 126,366 1,594.48
18 6 897 20 50 70,277 1,298.90
19 13 1,915 40 1 165,114 1,457.60
20 13 1,875 20 50 150,448 1,662.42

Figure 4 depicts an example of the behavior of the
proposed algorithm on instance 18, when consider-
ing the best configuration of parameters found, i.e.,
ηbest = 20 and ξbest = 50. The plot shows the impor-
tance and effectiveness of using an iterative approach,
as illustrated by the results obtained in the last step of
each iteration. In this case, it can be observed that the
best result is achieved at iteration 21.
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Figure 4: Variation of z for each iteration τ in the instance
number 18.

6 CONCLUSIONS

In this paper, we proposed an iterative three-step pro-
cedure to solve a real-life problem of integrated task
and personnel scheduling aiming to minimize the to-
tal labor cost. By implementing this approach, the
solution obtained by our formulation was capable of
improving the schedule adopted by the company in an
acceptable CPU time for this very complex problem.
Tests were also performed on larger and randomly
generated instances to measure the scalability of the
proposed method and to find a combination of η and
ξ that can produce the best results based on the dimen-
sion of the building. The results are preliminary and
yet they are very positive from the company perspec-
tive, which is now able to generate and simulate many
different scenarios. Because Coopservice spends a
large part of its revenues on human resources (more
than 20,000 employees), it is crucial to have a strategy
to properly manage the personnel, especially during
emergency situations such as epidemic crises (Zucchi
et al., 2020). Future research might include: (i) the
insertion of more complex cost functions in (1) that
could take account of different employees’ levels; (ii)
a sensitivity analysis for the many parameters used in
models and algorithms; (iii) a deeper evaluation of the
importance of each key parameter making use of the
Finite Change Sensitivity Index (FCSI) (Borgonovo,
2010a; Borgonovo, 2010b); (iv) a more profound eco-
nomic cost analysis related to the labor cost assum-
ing it differs across workers and changes over time,
meaning that one should take into account a possi-
ble evolution of h, and consider the total profit (or the
total value) as the objective function for a given (suf-

ficiently large) span of time. Moreover, to improve
performance in terms of solution quality, one could
incorporate metaheuristic strategies, such as pertur-
bation schemes in Algorithms 2 and 3, with a view of
obtaining better local optimal solutions.
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