
Comparative Performance Study of Lightweight Hypervisors Used
in Container Environment

Guoqing Li1 a, Keichi Takahashi1 b, Kohei Ichikawa1 c, Hajimu Iida1 d,
Pree Thiengburanathum2 e and Passakorn Phannachitta2 f

1Nara Institute of Science and Technology, Nara, Japan
2Chiang Mai University, Chiang Mai, Thailand

Keywords: Lightweight Hypervisor, Container, Virtualization, Performance Evaluation.

Abstract: Virtual Machines (VMs) are used extensively in cloud computing. The underlying hypervisor allows hardware
resources to be split into multiple virtual units which enhances resource utilization. However, VMs with
traditional architecture introduce heavy overhead and reduce application performance. Containers have been
introduced to overcome this drawback, yet such a solution raises security concerns due to poor isolation.
Lightweight hypervisors have been leveraged to strike a balance between performance and isolation. However,
there has been no comprehensive performance comparison among them. To identify the best fit use case,
we investigate the performance characteristics of Docker container, Kata containers, gVisor, Firecracker and
QEMU/KVM by measuring the performance on disk storage, main memory, CPU, network, system call and
startup time. In addition, we evaluate their performance of running Nginx web server and MySQL database
management system. We use QEMU/KVM as an example of traditional VM, Docker as the standard container
and the rest as the representatives of lightweight hypervisors. We compare and analyze the benchmarking
results, discuss the possible implications, explain the trade-off each organization made and elaborate on the
pros and cons of each architecture.

1 INTRODUCTION

The traditional VM architecture exemplified by
QEMU/KVM offers strong isolation (Matthews et al.,
2007) since a thin layer of hypervisor sits in between
the hardware and guest OS, which is the only way
for the guest VM to communicate with the hard-
ware. However, emulating hardware resources im-
poses heavy performance overhead (McDougall and
Anderson, 2010). In contrast, Docker containers
utilize Linux’s builtin features such as cgroups and
namespaces to manage resources which have signifi-
cantly less overhead (Li et al., 2017). Although con-
tainers excel at performance, their isolation is gener-
ally poor and expose a large attack surface (Combe
et al., 2016) compared to VMs as they share the
same host kernel. In 2017 alone, 454 vulnerabili-
a https://orcid.org/0000-0001-9915-252X
b https://orcid.org/0000-0002-1607-5694
c https://orcid.org/0000-0003-0094-3984
d https://orcid.org/0000-0002-2919-6620
e https://orcid.org/0000-0001-6983-8336
f https://orcid.org/0000-0003-3931-9097

ties were found in the Linux kernel 1, which can be
devastating for containerized environments. Public
cloud service providers who base their services on
containers are highly concerned since they have no
control of the kind applications that are running in
their cloud. Several organizations responded by de-
veloping lightweight hypervisors in order to strike a
balance between traditional VMs and containers. As
the current trend of container technology is rapidly
reshaping the architecture of virtualization platforms,
a comprehensive performance evaluation is important
in considering the trade-offs of different approaches.

This paper takes a detailed look at lightweight hy-
pervisors and compares the performance benchmark-
ing results. We use the host machine as the baseline
and measure different aspects of the computing sys-
tem. The performance measurement is divided into
two parts. Part I - the low level aspect which cov-
ers startup time, memory footprint, system call la-
tency, network throughput, Disk I/O and CPU per-
formance. Part II - the high level aspect which cov-

1https://www.cvedetails.com/product/47/Linux-Linux-
Kernel.html?vendor id=33

Li, G., Takahashi, K., Ichikawa, K., Iida, H., Thiengburanathum, P. and Phannachitta, P.
Comparative Performance Study of Lightweight Hypervisors Used in Container Environment.
DOI: 10.5220/0010440502150223
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 215-223
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

215



ers two real-world applications: Nginx webserver and
MySQL database. Our goal is to understand the over-
head imposed by KVM/QEMU, gVisor, Kata-qemu
and Kata-firecracker. This paper makes the following
three contributions:

• We provide an extensive comparative perfor-
mance analysis of QEMU/KVM VM, Docker
container, gVisor container, Kata-qemu and Kata-
firecracker containers.

• We identify the best fit use case for practitioners
by analyzing the pros and cons of each architec-
ture in detail.

• We elaborate on the limitations of each architec-
ture that affect virtualization performance.

The rest of the paper is organized as follows. Sec-
tion 2 describes the motivation and architecture of
each environment. Section 3 describes the evaluation
results of low level and high level aspect across all
environments. Section 4 presents the discussion and
Section 5 reviews related work. Lastly, Section 6 con-
cludes the paper and suggests possible future work.

2 BACKGROUND

2.1 Motivation

Various lightweight hypervisors are gaining traction.
Because the trade-off between isolation and perfor-
mance is almost inescapable, different organizations
choose to optimize their hypervisors according to
their requirements. Taking Firecracker as an example,
its design is tailored to serverless applications (Bal-
dini et al., 2017). It is crucial to understand (1) what
trade-off each organization made and (2) the perfor-
mance characteristics and limitations of each archi-
tecture to make informed decisions. The following
subsection presents the overall architecture of each
hypervisor.

2.2 Architecture of Each Lightweight
Hypervisor

QEMU/KVM (Bellard, 2005; Kivity et al., 2007)
represents the traditional VM architecture. QEMU
is an emulator that is often used in conjunction with
KVM. KVM is a Linux kernel module that acts as a
hypervisor and take the advantage of hardware vir-
tualization support such as Intel VT-x (Neiger et al.,
2006) to improve performance. In our experiments,
we make use of paravirtual drivers (i.e. virtio (Rus-
sell, 2008)) to improve disk I/O and network perfor-
mance.

seccompKVM or ptrace

Container Sentry (user space
kernel)

Sandbox

runsc

Gofer

User
space

Kernel
space

9P

I/O

Host Kernel

Figure 1: Architecture of gVisor.

Docker (Merkel, 2014) utilizes the builtin features
of Linux such as cgroups,namespaces and Overlay
FS2 to isolate the resources between processes. It in-
troduces little overhead since containers run directly
on top of the host kernel.

Google’s gVisor3 is a combined user space ker-
nel and lightweight hypervisor that provides an isola-
tion layer between applications and host kernel. Fig-
ure 1 shows the high-level architecture of gVisor. The
Sentry is a user space kernel that implements Linux
system calls by using a limited set of system calls.
To intercept the system calls from applications, gVi-
sor provides two platforms4: ptrace and KVM. The
ptrace platform uses the ptrace system call to inter-
cept system calls whereas the KVM platform takes
advantage of hardware virtualization support through
KVM. System calls invoked from the Sentry are fur-
ther filtered using seccomp5. File I/O is handled by
a separate process called Gofer, which communicates
with the Sentry through the 9P protocol (Pike et al.,
1995). These layers of isolation imposed by gVisor
enhance security but also increase performance over-
head.

Amazon’s Firecracker (Agache et al., 2020) began
as a fork of Google’s hypervisor crosvm6. Its high
level architecture is similar to QEMU/KVM, but de-
vices that are unnecessary in serverless applications
(such as USB, video and audio devices) are not imple-
mented thereby reducing memory footprint and attack
surface.

Kata containers7 is a common effort by the In-
tel Clear container8 and hyper.sh9 communities. It

2https://www.kernel.org/doc/Documentation/filesystems/
overlayfs.txt

3https://gvisor.dev/
4https://gvisor.dev/docs/architecture guide/platforms/
5https://www.kernel.org/doc/html/v4.16/userspace-api/
seccomp filter.html

6https://chromium.googlesource.com/chromiumos/
platform/crosvm/

7https://katacontainers.io/
8https://software.intel.com/content/dam/develop/
external/us/en/documents/intel-clear-containers-2-using-
clear-containers-with-docker-706454.pdf

9https://github.com/hyperhq

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

216



Kata-qemu or Firecracker

Custom  Kernel

Agent

Container 1

VM 1

Custom  Kernel

Agent

Container 2

VM 2

kata-runtime

Host Kernel KVM

Figure 2: Architecture of Kata Containers.

is a container runtime that builds lightweight VMs
which seamlessly integrate with the container ecosys-
tem. Its default hypervisor is Kata-qemu10, which
is based on QEMU/KVM. However, significant op-
timization has been made. It comes with an highly
optimized guest kernel which reduces boot time and
memory footprint. Figure 2 shows Kata’s high-level
architecture. Each Kata container runs inside a dedi-
cated lightweight VM to enforce strong isolation be-
tween containers. This VM is created and booted ev-
ery time a new container is created. In addition, an
agent runs on top of the guest kernel to orchestrate
the containers. Recent releases of Kata support run-
ning VMs on Firecracker as well.

3 EVALUATION

We first evaluate the low level aspects of a comput-
ing system: startup time, memory footprint, system
call latency, network throughput, disk I/O and CPU
throughput. We then benchmark two common ap-
plications: Nginx webserver and MySQL database,
which serve the purpose of confirming the CPU,
Memory and Disk I/O benchmark results. Low level
benchmark metrics serve as the fundamental indica-
tor of performance characteristics for each system and
the high level benchmark metrics are used develop a
better understanding of how different hypervisors per-
form in a more realistic setting.

All tests were executed on a x86-64 machine
with a six-core Intel Core i7-9750H CPU (hyper-
threading enabled), 32GB of DDR4 SDRAM and
1TB of NVMe SSD. Table 1 shows the details of each
execution environment.

10https://github.com/kata-containers/qemu

Table 1: Execution Environment.

Environment Software Versions

host Ubuntu 19.10 (Eoan), Kernel 5.3
qemu kvm QEMU 4.4.0, libvirt 5.4.0, Guest Kernel 5.3
kata qemu Kata 1.11.0-rc0, Guest Kernel 5.4, QEMU 4.1.0
kata fc Kata 1.11.0-rc0, Guest Kernel 5.4, Firecracker v0.21.1
gV kvm gVisor release-20200115.0-94, Guest Kernel 4.4.0
gV ptr gVisor release-20200115.0-94, Guest Kernel 4.4.0
docker Docker 1.0.0-rc10, containerd 1.2.13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e 
[s

]

0

2

4

6

8

gV_kvm
gV_ptr

docker
kata_fc

kata_qemu
qemu_kvm

Figure 3: Startup Time.

3.1 Low Level Aspect

3.1.1 Startup Time

Fast startup time is crucial for container/VM provi-
sioning (Mao and Humphrey, 2012). We used the
time command to measure the time from launch-
ing a container/VM to the stage of the network
stack being successfully initialized. Ubuntu:Eoan
base image and bash program runs inside of the
container. In the case of QEMU/KVM VM, we
placed the systemd-analyze time command in the
startup script to collect the startup time for 100
rounds. Figure 3 shows the elapsed time of 100 com-
plete container creations. Since the startup time for
QEMU/KVM was significantly slower, the inaccura-
cies resulted from from the virtual clock is negligible.

On average, gVisor-kvm and gVisor-ptrace were
0.13 seconds faster than Docker. Kata-firecracker was
0.50 seconds slower than gVisor and Kata-qemu was
only 0.10 seconds slower than Kata-firecracker. Over-
all, the startup time of all containers were significantly
faster than QEMU/KVM. On average, It took 8.76
seconds for QEMU/KVM to finish booting the kernel
and initializing the same user space.

Some important factors that affect start-up time
are the size of the image, configuration files and etc.

Comparative Performance Study of Lightweight Hypervisors Used in Container Environment

217



docker gV_ptr gV_kvm kata_fc kata_qemuqemu_kvm
0

100

200

300

400

M
em

or
y 

Fo
ot

pr
in

t [
M

B]

1.4 10.3 11.3

124.75 137.6

455.75

Figure 4: Average Memory Footprint of 100 containers.

The time it takes to load these images and files from
disk is directly proportional to its size. Docker and
gVisor showed much faster startup time compared to
Kata and QEMU due to the significantly smaller im-
age size.

3.1.2 Memory Footprint

Smaller memory footprint allows the user to cre-
ate higher density of containers. We quantified
the memory footprint of each container running the
Ubuntu:Eoan base image by measuring the size of pri-
vate dirty pages of related processes. We launched
100 containers in total and calculated the average
size of private dirty pages. We chose private page
size because it is the closest approximation of the ac-
tual memory usage for each process as the number
of containers scale to infinity. We allocated 700MB
of memory for each QEMU/KVM VM, which is the
minimal size the guest can boot a full ubuntu im-
age successfully. In case of Kata-qemu and Kata-
Firecracker, we used the default configuration which
allocates 2048MB of memory for each VM.

As Fig. 4 indicates, Docker has the smallest foot-
print. This is because Docker does not run its
own kernel and requires only one additional process
(container-shim) to launch a container. Note that there
is a daemon shared by all containers (dockerd), which
uses around 40MB of memory. gVisor-ptrace and
gVisor-kvm were comparable to Docker, but still used
7× more memory. Kata-qemu used slightly more
memory than Kata-firecracker, but both consumed
88× more memory than Docker and 10× more than
gVisor. Kata containers run their own guest kernel
and many processes such as virtiofsd, qemu-virtiofs-
system-x86, Kata-proxy and Kata-shim, which lead to
significant larger memory footprint than both Docker
and gVisor. However, none of these containers
were comparable with QEMU/KVM. QEMU/KVM

0

100

200

300

400

500

La
te

nc
y 

[m
s]

0

2000

4000

6000

8000

10000

12000

host
kata_qemu

kata_fc
qemu_kvm

docker
gV_kvm

gV_ptr

Figure 5: System Call Latency.

needed 325× more memory than Docker. Since the
guest kernel used by Kata is highly optimized, it leads
to much smaller memory footprint compared to a
QEMU/KVM VM running a full Ubuntu:Eoan server
distribution.

3.1.3 System Call

System call performance gives insight into the cost
of user-kernel context switching. Figure 5 shows the
total latency of invoking the getpid() system call
for 10,000 times. There was a significant overhead
with gVisor. In particular, gVisor-ptrace showed 36×
larger larger latency than the host. This is a direct
result of intercepting every system call using ptrace
to examine the system call before passing it down
to the host kernel. KVM makes gVisor-kvm faster
than gVisor-ptrace because the use of KVM reduces
the cost of system call interception. Nevertheless,
gVisor-kvm’s system call performance was still ap-
proximately 1.5× slower than the rest. Kata-qemu,
Kata-firecracker and QEMU/KVM were comparable
with the host. However, Docker performed slightly
slower than the host on average. This is potentially
caused by the use of seccomp, a kernel facility that
restricts the system calls that can be invoked by appli-
cations.

3.1.4 Network Throughput

We measured the network throughput from the host
to each virtual environment by using iPerf 3.611. A
TCP stream the from host to each virtual environment
was generated for a total duration of 40 seconds. The
graph in Fig. 6 shows the measured average network
throughput. gVisor scored the worst on both KVM
and Ptrace platforms. This attributes to its user space

11https://github.com/esnet/iperf

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

218



docker kata_qemu kata_fc qemu_kvm gV_ptr gV_kvm
0

10

20

30

40

50

Th
ro

ug
hp

ut
 [G

bp
s]

48.2
45.3

40.7

34.1

14.2

0.64

Figure 6: Network Throughput.

0

50

100

150

200

La
te

nc
y 

[m
s]

16k

0

100

200

300
64k

0

500

1000

1500

La
te

nc
y 

[m
s]

256k

0

1000

2000

3000
1024k

kata_fc
kata_qemu

docker
gV_kvm

gV_ptr
qemu_kvm

Figure 7: Sequential Read Latency.

network stack netstack. Netstack handles all aspects
of network stack in the user space to ensure isola-
tion from the host network, but this design also in-
troduces heavy overhead. It should be noted that re-
cent releases of gVisor allow network pass-through so
that containers can use host network stack directly at
the cost of weaker isolation. gVisor-kvm is still in
its experimental stage and the network performance
was poor and therefore it should be used with caution.
QEMU/KVM shows good network throughput thanks
to the paravirtual virtio driver. Docker scored the best
network throughput indicating that little overhead is
imposed.

3.1.5 Disk I/O

Disk I/O performance is important to applications that
perform frequent file I/O operations. Fio-3.1212 was
used to measure the Disk I/O performance. Each
environment was allocated 2GB of memory and six
virtual CPUs. Docker was configured to use the

12https://github.com/axboe/fio/

0

20

40

60

80

La
te

nc
y 

[m
s]

16k

0

2000

4000

6000

8000

0

50

100

150

200

250

300
64k

0

2500

5000

7500

10000

12500

15000

0

200

400

600

800

1000

La
te

nc
y 

[m
s]

256k

0

5000

10000

15000

20000

0

250

500

750

1000

1250

1500
1M

0

2500

5000

7500

10000

12500

15000

kata_fc
kata_qemu

docker
qemu_kvm

gV_kvm
gV_ptr

Figure 8: Sequential Write Latency.

0

50

100

150

200

250

La
te

nc
y 

[m
s]

16k

0

500

1000

1500

2000

0

100

200

300

400

64k

0

1000

2000

3000

4000

0

200

400

600

800

La
te

nc
y 

[m
s]

256k

0

2000

4000

6000

8000

0

500

1000

1500

2000

2500
1M

0

2000

4000

6000

8000

10000

12000

kata_fc
kata_qemu

docker
qemu_kvm

gV_kvm
gV_ptr

Figure 9: Random Read Latency

device mapper storage driver13 in direct-lvm mode.
QEMU/KVM was configured to use paravirtual vir-
tio drivers. We created a dedicated LVM logical vol-
ume formatted paravirtual ext4 file system to bypass
the host file system. We set the O DIRECT flag to en-
able non-buffered I/O and used a 10GB file (5× of the
allocated memory) to minimize the effect of memory
caching.

Figure 7 demonstrates the sequential read latency
for different block sizes. QEMU/KVM had the worst
mean performance among all block sizes. In contrast,
Kata-firecracker had the best mean performance and
least variance compared to all others. In the case of
16KB block size, Kata-firecracker was 3.8× faster
than QEMU/KVM, 2.8× faster than gVisor-kvm,
2.5× faster than gVisor-ptrace and almost 2× faster
than both Kata-qemu and Docker. There was not
much latency increase when the block size changed to
64KB. However, when we used 256KB block size, the
latency increased sharply. Kata-firecracker was 13×

13https://docs.docker.com/storage/storagedriver/device
-mapper-driver

Comparative Performance Study of Lightweight Hypervisors Used in Container Environment

219



0

20

40

60

80

100

120

La
te

nc
y 

[m
s]

16k

0

10000

20000

30000

40000

0

100

200

300

64k

0

10000

20000

30000

40000

0

200

400

600

800

1000

1200

La
te

nc
y 

[m
s]

256k

0

10000

20000

30000

40000

50000

0

2500

5000

7500

10000

12500

1M

0

10000

20000

30000

40000

50000

60000

kata_fc
kata_qemu

docker
qemu_kvm

gV_kvm
gV_ptr

Figure 10: Random Write Latency.

kata_qemu gV_ptr docker gV_kvm kata_fc qemu_kvm
0

2000

4000

6000

8000

10000

12000

14000

Ro
un

ds

14172
13631 13595 13533

12835 12833

Figure 11: CPU Performance.

faster than QEMU/KVM, 15× faster than gVisor-
kvm, 7× faster than Docker, 6.2× faster than gVisor-
ptrace and 2× faster than Kata-qemu. Similar trend
was observed with 1MB block size.

Both gVisor-kvm and gVisor-ptrace had massive
performance overhead when it came to sequential
write as indicated in Fig. 8. Kata-firecracker became
the dark horse again in all cases, followed by Kata-
qemu, Docker and QEMU/KVM. In the case of 16KB
block size, both gVisor modes started from 103×
slower than QEMU/KVM to 342× slower than Kata-
firecracker. There was a similar trend with 64KB
block size. The gap became half smaller when the
block size is 1MB. QEMU/KVM showed a large vari-
ance at the fourth quartile in both 64KB and 256KB
block. Kata-firecracker had significant variance at the
fourth quartile with 1MB block.

Figure 9 shows the random read latency. It shows
the similar trend to sequential read. However, Kata-
qemu surpassed the performance of Kata-firecracker
when the block size was greater than 64KB. In con-
trast to sequential read, gVisor-ptrace performed bet-

ter than gVisor-kvm, but both still ranked the lowest.
As Fig. 10 indicates, Docker has the best perfor-

mance with 16KB block size in the case of random
write. Kata-firecracker and Kata-qemu outperformed
Docker when the block size is bigger than 16KB.
At the same time, Kata-qemu beats Kata-firecracker
again. When the block size is 256KB and bigger. All
environments except for gVisor showed similar per-
formance results.

Kata container comes with a special device-
mapper storage driver which uses dedicated block de-
vices rather formatted file systems. Instead of using
an overlay file system for the container’s root file sys-
tem, a block device can be used directly and map to
the top read-write layer. This approach allows Kata
container to excel at all aspect of Disk I/O perfor-
mance.

In contrast, gVisor introduces overhead in several
places: communication between components needs to
cross the sandbox boundary and I/O operations must
be routed through the Gofer process to enforce the
gVisor security model. More importantly, the internal
virtual file system implementation in Sentry has seri-
ous performance issues due to the fact that I/O oper-
ations need to perform path walks (every file access,
such as open(path) and stat(path), requires a re-
mote procedure call to the Gofer to access the file).
gVisor engineers have started working on rewriting
the current virtual file system to address this issue by
delegating the path resolution to the file system. This
new virtual file system implementation is being tested
at Google internally at the time of writing.

3.1.6 CPU

We used sysbench14 1.0.17 to measure the CPU per-
formance. Figure 11 shows the total number of
rounds finished verifying prime numbers between 2
to 200,000 using a single thread for a duration of 600
seconds (higher is better). The difference between hy-
pervisors is small. This is expected since the hypervi-
sor could utilize the CPU built-in hardware accelera-
tion feature Intel VT-x.

3.2 High Level Aspect

3.2.1 MySQL

Sysbench 1.0.17 and MySQL15 8.0.20 were used to
measure the database performance. We populated
a table with 10 million rows of data and bench-
marked the throughput and latency using a mixture

14https://github.com/akopytov/sysbench
15https://www.mysql.com/

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

220



kata_fc kata_qemu qemu_kvm docker gV_ptr gV_kvm
0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 [r

eq
ue

st
s/

s]

321.2

54.89 53.9 45.72
28.12 18.75

Figure 12: MySQL OLTP Throughput.

kata_fc kata_qemu qemu_kvm docker gV_ptr gV_kvm
0

50

100

150

200

250

300

La
te

nc
y 

[m
s]

18.67

109.29 111.3
131.2

213.36

319.8

Figure 13: MySQL OLTP Latency.

of queries consisting of: Select (70%), Insert (20%),
Update and Delete (10%) queries. Figures 12 and
13 show the throughput and average latency, respec-
tively. gVisor-kvm and gVisor-ptrace had the worst
performance which achieves only 6% and 9% of
what Kata-firecracker achieved, respectively. Docker,
QEMU/KVM and Kata-qemu were comparable, but
still ranged from 5.68 to 6.82× less throughput than
Kata-firecracker. The average latency was negatively
correlated with the throughput. The larger the latency,
the less throughput was achieved. Both throughput
and latency results were consistent with the disk I/O
benchmark.

3.2.2 Nginx with Static Web Page

We used wrk16 4.10 to measure the throughput of Ng-
inx17 serving a 4KB static web page. Each environ-
ment was configured to allow 1 worker process and
maximum of 1024 concurrent connections. We used
wrk to simulate HTTP GET requests for a duration of
10 seconds with 1,000 open connections.
16https://github.com/wg/wrk
17https://nginx.org

kata_qemu docker qemu_kvm kata_fc gV_ptr gV_kvm
0

10000

20000

30000

40000

Th
ro

ug
hp

ut
 [r

eq
ue

st
s/

s]

43668.92

34014.25
31815.98

12573.6

4988.36 4825.96

Figure 14: Nginx Webserver Throughput.

Figure 14 shows the throughput of HTTP GET re-
quest for each environment. Kata-qemu performed
the best which was slightly better than qemu-kvm and
Docker. However, its throughput was 3.47× higher
than Kata-firecracker. Low throughput from Kata-
firecracker might attribute to its limitation of handling
I/O serially (Agache et al., 2020). Both gVisor-kvm
and gVisor-ptrace had almost the same throughput sit-
ting at the bottom of the list.

4 DISCUSSION

As the benchmark results indicate, different system
has different performance characteristics because of
different motivation and purpose.

Google developed gVisor to mitigate the security
risk of untrusted applications running in their pub-
lic cloud. gVisor provides a secure container sand-
box that has been built into Google’s infrastructure to
provide serverless computing services such as Google
App Engine, Cloud Run and Cloud Functions. These
services are used to run cloud native applications,
which are small and loosely coupled. Apart from its
wide deployment on Google’s infrastructure, gVisor
is seamlessly integrated with Docker and follows the
OCI standard18, which allow users to run Docker con-
tainers with better isolation. However, gVisor in both
modes exhibits the worst performance in almost every
aspect. Having a user space kernel adds an extra layer
of isolation, but it also reduces application perfor-
mance. In principle, gVisor-kvm should have perfor-
mance advantage over gVisor-ptrace since KVM uti-
lizes CPU’s hardware virtualization support. gVisor-
kvm is still in its experimental stage, and thus its per-
formance result might change in the future. Databases
or applications that require high performance net-

18https://opencontainers.org/

Comparative Performance Study of Lightweight Hypervisors Used in Container Environment

221



working should avoid using gVisor. In addition, gVi-
sor only covers around 73% of the Linux system
calls19. Therefore, applications that require the unim-
plemented system calls cannot be executed on gVi-
sor. However, gVisor has much smaller memory foot-
print compared to Kata containers and QEMU/KVM
VMs, which gives economic advantage since the user
can launch more instances given the same amount of
available memory.

Docker is not necessarily a good option for
database applications due to the fact that its image is
build up from a series of layers. Storage drivers such
as device-mapper might perform poorly. However,
Docker and gVisor containers showed much faster
startup time and smaller memory footprint compared
to Kata containers. Despite these performance ad-
vantages, Docker containers share the same kernel
of the host. This might not be as secure as gVisor
since gVisor provides a dedicated user-space kernel
for each container. Docker still has very competi-
tive advantages not only to mention its low memory
footprint and fast startup time, but more importantly
its ecosystem and methodologies (e.g. Docker Hub)
which make deploying, testing and shipping applica-
tions much quicker.

QEMU/KVM clearly shows its heavyweight na-
ture. Even with the performance boosts powered by
paravirtual drivers, it is still not comparable with other
systems, especially in terms of memory footprint and
startup time. However, QEMU/KVM and traditional
VMs are by far one of the most mature and best sup-
ported solutions. They are well tested and have been
in the market for decades, and the strong isolation
provided by traditional VMs is credible.

Kata-firecracker can be the best option for
database applications. This is indicated by both disk
I/O and MySQL benchmark results. Firecracker is
the backbone of AWS Lambda20 and Fargate21 that
power Amazon’s serverless computing. It is com-
monly seen as an alternative lightweight hypervisor
for Kata-qemu. Amazon implemented its own con-
tainer runtime interfaces which does not comply with
OCI standard. The good news is that Kata containers
offers multi-hypervisor support which allow users to
run Kata containers in firecracker based VMs.

Kata containers strikes a good balance between
isolation and performance. Both Kata-qemu and
Kata-firecracker have much less memory footprint
comparing to a traditional QEMU/KVM VM and
offers competitive performance advantage. Kata-

19https://gvisor.dev/docs/user guide/compatibility/linux/
amd64/

20https://aws.amazon.com/lambda/
21https://aws.amazon.com/fargate/

containers can start many times faster than traditional
QEMU/KVM VMs, which is mainly because the im-
age we used to boot QEMU/KVM is bulky. If mem-
ory footprint is not a concern, Kata containers can
easily beat all other options. Currently, Baidu Cloud
AI has adopted Kata containers22. However, Kata
container also has several limitations. At the time of
writing, SELinux is not supported by Kata’s guest ker-
nel and joining an existing VM networks is not possi-
ble due to its architectural limitation23.

5 RELATED WORK

IBM (Felter et al., 2015) studied the CPU, memory,
storage and network performance of Docker contain-
ers and VMs, and elaborated on the limitations that
impact virtualization performance and concluded that
containers result in equal or better performance than
VMs in all aspects. However, (Li et al., 2017) dis-
agreed with IBM’s conclusion and they investigated
the performance variability and found out that con-
tainer’s performance variability overhead could reach
as high as 500%. (Kozhirbayev and Sinnott, 2017)
adopted a similar methodology as IBM; however, they
targeted Docker and its rival Flockport (LXC). Their
results were similar to IBM’s, but they pointed out
that Docker allows only one application per container,
which reduces utilization, whereas Flockport does not
impose such restriction.

On top of all, none of these previous works studied
the memory footprint and boot time, which are criti-
cal to the cloud. More importantly, container tech-
nologies have been marching forward over the years,
and a hybrid approach—running containers inside of
lightweight VMs is becoming a promising alterna-
tive. Yet there has been no existing research provid-
ing detailed analysis. Our research focuses on those
emerging technologies backed up by Google, Ama-
zon, Baidu and Intel, and gives the community a bet-
ter picture of the current technological trend.

6 CONCLUSION AND FUTURE
WORK

We have conducted a comprehensive performance
analysis of various popular lightweight hypervisors

22https://katacontainers.io/collateral/ApplicationOfKata
ContainersInBaiduAICloud.pdf

23https://github.com/kata-containers/documentation/blob/
master/Limitations.md

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

222



that are backed by Docker, Amazon, Google and In-
tel. The benchmark results showed that various trade-
offs are made by each organization and a number of
bottlenecks that affect virtualization performance are
identified. The pros and cons of each system are dis-
cussed in detail and some limitations that could be
potentially addressed in the future are also pointed
out. It is evident that the current architectural trend of
lightweight hypervisors tends to march forward a new
era and lightweight VMs might have the potential to
partially replace the role of traditional VMs. How-
ever, these lightweight hypervisors have not reached
the point to become a mature alternative, and thus tra-
ditional VMs would still be the preferred options for
many organizations. Kata is on the right track to earn
the title of having the security of a VM and offering
the performance of a container.

Future research on reducing the memory footprint
of lightweight hypervisor based containers would be
practical. A research using optimized Xen hypervi-
sor with customized unikernels (Manco et al., 2017)
opens the possibility of creating lighter and safer VMs
than containers is worth looking into.

REFERENCES

Agache, A., Brooker, M., Iordache, A., Liguori, A., Neuge-
bauer, R., Piwonka, P., and Popa, D.-M. (2020). Fire-
cracker: Lightweight virtualization for serverless ap-
plications. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’20), pages
419–434.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R., Slominski, A., et al. (2017). Serverless comput-
ing: Current trends and open problems. In Research
Advances in Cloud Computing, pages 1–20. Springer.

Bellard, F. (2005). QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference
(ATC’05), pages 41–46.

Combe, T., Martin, A., and Di Pietro, R. (2016). To Docker
or not to Docker: A security perspective. IEEE Cloud
Computing, 3(5):54–62.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015).
An updated performance comparison of virtual ma-
chines and Linux containers. In 2015 IEEE Inter-
national Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 171–172.

Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A.
(2007). KVM: The Linux virtual machine monitor. In
the Linux symposium, volume 1, pages 225–230.

Kozhirbayev, Z. and Sinnott, R. O. (2017). A performance
comparison of container-based technologies for the
cloud. Future Generation Computer Systems, 68:175–
182.

Li, Z., Kihl, M., Lu, Q., and Andersson, J. A. (2017). Per-
formance overhead comparison between hypervisor

and container based virtualization. In IEEE 31st In-
ternational Conference on Advanced Information Net-
working and Applications (AINA), pages 955–962.

Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer,
S., Sati, S., Yasukata, K., Raiciu, C., and Huici, F.
(2017). My VM is lighter (and safer) than your con-
tainer. In 26th Symposium on Operating Systems Prin-
ciples (SOSP’17), pages 218–233.

Mao, M. and Humphrey, M. (2012). A performance study
on the VM startup time in the cloud. In IEEE
Fifth International Conference on Cloud Computing
(CLOUD 2012), pages 423–430.

Matthews, J. N., Hu, W., Hapuarachchi, M., Deshane, T.,
Dimatos, D., Hamilton, G., McCabe, M., and Owens,
J. (2007). Quantifying the performance isolation prop-
erties of virtualization systems. In 2007 Workshop on
Experimental Computer Science, pages 6–es.

McDougall, R. and Anderson, J. (2010). Virtualization per-
formance: perspectives and challenges ahead. ACM
SIGOPS Operating Systems Review, 44(4):40–56.

Merkel, D. (2014). Docker: lightweight Linux containers
for consistent development and deployment. Linux
journal, 2014(239):2.

Neiger, G., Santoni, A., Leung, F., Rodgers, D., and Uh-
lig, R. (2006). Intel virtualization technology: Hard-
ware support for efficient processor virtualization. In-
tel Technology Journal, 10(3).

Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thomp-
son, K., Trickey, H., and Winterbottom, P. (1995).
Plan 9 from Bell Labs. Computing systems, 8(2):221–
254.

Russell, R. (2008). Virtio: towards a de-facto standard for
virtual I/O devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103.

Comparative Performance Study of Lightweight Hypervisors Used in Container Environment

223


