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Abstract: In modern intelligent vehicles, a huge number of components leads to complex cable harnesses with high 
reliability demands. Static connections protected by simple melting fuses are more and more replaced by 
intelligent power distribution and switching units. Thermal considerations play an important role with respect 
to reliability as thermal overload situations can lead to accelerated aging, damaged cables and finally to 
interruptions in the power supply. The calculation of the axial transient temperature distribution in cable 
structures is a complex task that is often solved numerically. In this paper, two analytical approaches to model 
the temperature of a single cable in air are presented, that are based on the use of Green’s functions in the 
time domain respectively Laplace domain. As sums appear, the convergence behavior is evaluated. The 
approaches are validated using a numerical reference solution. The influence of the cable length on the 
accuracy of the solutions is examined and complexity considerations are performed. An application example 
for intelligent vehicles is presented and discussed.  

1 INTRODUCTION 

The development of intelligent and connected 
vehicles is an ongoing process reaching for improved 
safety, efficiency and user comfort. In additional to 
established basic functions, a huge variety of features 
for automated driving is added. All those features 
require highly reliable power supply systems (Kong 
et al., 2019) depending on their safety relevance: 
Failure in entertainment systems is disturbing but not 
critical, whereas failure in safety-critical systems (e.g. 
autonomous driving functions) is crucial and must not 
appear. 

Classically, the electrical power supply is 
statically connected to the loads. The connecting 
cables are protected with simple melting fuses as 
shown in Figure 1(a). During the cable harness 
development, those cables and fuses must be 
dimensioned considering the maximum expected 
currents to avoid overload under all operating states. 
Based on an estimated worst-case current pulse, that 
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might appear extremely seldom, an appropriate cable 
needs to be chosen. Therefore, cables can be over-
dimensioned for the regular operating states (Horn et 
al., 2018). Once under operation, the highly 
temperature depending aging process in the cable 
begins. Using melting fuses, the duration of a 
maximum load condition and the real cable 
temperature cannot be monitored, so the remaining 
lifetime cannot be estimated.  

In recent vehicle developments, intelligent power 
distribution units (PDUs) with integrated intelligent 
fuses become more widespread (Kong et al., 2019) as 
shown in Figure 1(b). Such a PDU can flexibly switch  
 

 
Figure 1: Power supply in a vehicle using (a) a static 
connection with melting fuses or (b) a PDU for flexible and 
intelligent switching options. 

(a) (b) 
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loads on and off for functional but also fusing 
purposes. It is possible to control the power flow 
according to safety demands. Thus, highly safety-
critical systems can be prioritized regarding their 
power demands. The actual cable insulation 
temperature and aging status can be monitored based 
on the load history to evaluate the safety of operation 
at any time. This enables the operation closer to the 
cable limits, i.e. smaller cross sections can be chosen 
or temporarily the current can be increased. Therefore, 
more options are available in the decision process and 
different strategies can be implemented depending on 
the safety relevance of the connected systems. For 
example, a simple on/off switching strategy can be 
used that interrupts the current if a predefined 
temperature limit is exceeded and switches it on again 
as soon as the temperature falls below a second 
defined temperature as e.g. mentioned in (Önal et al., 
2020). So, the usage of an intelligent fuse can enhance 
the availability and reliability of the complete system 
or reduce its weight as over-dimensioned cables can 
be avoided. To enable a reasonable switching 
decision, the cable insulation temperature has to be 
known.  

As the insulation temperature often cannot be 
measured directly, thermal cable models based on 
current measurements are necessary. If additional 
information (e.g. the environmental temperature) is 
available, it can also be considered. Otherwise, worst-
case assumptions are necessary.  

Thermal cable models to be integrated into PDUs 
with cheap and less powerful microcontrollers should 
be as simple as possible. Very basic analytical models 
that neglect the axial heat flow along the cable (e.g. 
(Zhan et al., 2019) or (Olsen et al., 2013)) or the 
transient temperature development (e.g. (Brabetz et 
al., 2011) or (Holyk et al., 2014)) cannot predict the 
cable temperature very precisely. More complex 
models are often based on a two- or three-
dimensional model of the cable which is used for the 
numerically based simulation of the cable 
temperatures as, e.g., in (He et al., 2013). Nearly 
arbitrary environmental and load conditions can be 
modelled this way, but these methods require high 
computational effort. This effort can be drastically 
reduced by using analytical methods. In this paper, 
two different methods for analytical temperature 
calculations using Green’s functions are presented 
and discussed. Those allow a precise temperature 
calculation with low effort for a single insulated cable 
under special conditions based on the known current.  

In chapter 2, the fundamental model is presented. 
Earlier research is shortly summarized. The new 
analytical solution methods based on the use of 

Green’s functions in the time domain respectively 
Laplace domain are introduced in chapter 3. In 
chapter 4, those new methods are validated and 
compared to earlier developed methods with regard to 
their performance. In chapter 5, an application 
example is discussed: Failure leads to an overcurrent 
that causes a melting fuse to trip. Unlike, with an 
intelligent fusing strategy, the overload can be 
tolerated, and important automated driving 
applications can still be provided. An uncontrolled 
system breakdown is avoided. 

2 PRELIMINARY WORK 

This section is based on (Henke and Frei, 2020). 
There, the fundamental model was presented for a 
single cable of length 𝐿 oriented in 𝑧-direction con-
sisting of a conductor (radius 𝑟ୡ) and an insulation 
(outer radius 𝑟୧) as shown in Figure 2(a). A current 𝐼 
flows through the cable. The equivalent circuit for an 
infinitesimally short cable segment shown in Figure 
2(b) is used. Per unit length (pul) quantities are 
marked with an upstroke. The pul heat source 𝑃ᇱ 
represents the cable heating induced by the current 𝐼 
that flows through the conductor and depends on the 
conductor temperature 𝑇. The pul capacitance 𝐶ᇱ  is 
used to model the heat storing capacity of the 
complete cable (conductor and insulation). The pul 
admittance 𝐺ᇱ describes the heat conduction through 
the insulation layer and the heat transfer from the 
cable to the ambient air via convection and radiation 
and depends on the cable surface temperature 𝑇ୱ and 
the ambient air temperature 𝑇 . The axial heat flow in 
the conductor is modelled using the pul resistance 𝑅ᇱ. 
The axial heat flow in the insulation is neglected due 
to the low thermal conductivity of the insulation 
compared to the conductor. 

 
Figure 2: (a) Examined single cable. (b) Thermoelectric 
equivalent circuit for infinitesimally short cable segment. 

From this equivalent circuit, the partial differential 
equation (1) is derived for the conductor temperature 𝑇ሺ𝑧, 𝑡ሻ with the initial and boundary conditions (2). 

 𝜕ଶ𝑇 𝜕𝑧ଶ⁄ − 𝐴 𝜕𝑇 𝜕𝑡⁄ − 𝐵𝑇 = −𝐶,   (1)𝐴 = 𝑅ᇱ𝐶ᇱ, 𝐵 = 𝑅ᇱ𝐺ᇱ, 𝐶 =  𝑅ᇱሺ𝐺ᇱ𝑇 − 𝑃ᇱሻ,   𝑇ሺ𝑧, 0ሻ = 𝑇଴, 𝑇ሺ0, 𝑡ሻ = 𝑇ଵ, 𝑇ሺ𝐿, 𝑡ሻ = 𝑇ଶ. (2)

(a) (b)
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This differential equation can be solved using the 
Laplace transform. In the Laplace domain, an 
ordinary differential equation remains, and an 
analytical solution is found. Using the approximation 
(3), which is valid for long cables (large 𝐿 ), the 
analytical expression (4) in the time domain is 
calculated.  

 𝑒ି௅ඥோᇲሺீᇲା஼ᇲ௦ሻ ±  1 ≈ ±1, (3)𝐷ଵሺ𝑧ሻ = erf ቀ𝑧ඥ𝐴 ሺ4𝑡ሻ⁄ ቁ (4)𝐷ଶሺ𝑧ሻ =  𝑒ି|௭|√஻ ቊerf ቆ𝐴|𝑧| − 2√𝐵𝑡2√𝐴𝑡 ቇ − 1ቋ
+ 𝑒|௭|√஻ ቊerf ቆ𝐴|𝑧| + 2√𝐵𝑡2√𝐴𝑡 ቇ − 1ቋ , 𝑧୐ = 𝐿 − 𝑧, 𝑇୐ሺ𝑧, 𝑡ሻ = 𝐶𝐵 + ൬𝐶𝐵 − 𝑇଴൰ 𝑒ି஻஺௧ሾ1 − 𝐷ଵሺ𝑧୐ሻ− 𝐷ଵሺ𝑧ሻሿ + ൬𝐶𝐵 − 𝑇ଵ൰ 𝐷ଶሺ𝑧ሻ2 + ൬𝐶𝐵 − 𝑇ଶ൰ 𝐷ଶሺ𝑧୐ሻ2 . 

 
As already mentioned above, the parameters 𝑃ᇱ 

and 𝐺ᇱ in the equivalent circuit are not constant but 
depend on the cable and surface temperatures. This 
nonlinear dependency was neglected in the above 
presented solution. To take it into account, an 
iterative solution approach was developed in (Henke 
and Frei, 2020) and is shortly resumed here: After an 
initialization, the surface temperature 𝑇ୱ  and the 
parameters 𝑃ᇱ and 𝐺ᇱ are calculated. Those are used 
to find the conductor temperature 𝑇. As termination 
condition, the absolute difference 𝜎୘ = |𝑇௞ − 𝑇௞ାଵ| 
between two iterations is calculated. The process is 
continued until this difference falls below Δ୘,୐୧୫୧୲ =0.001 K. In Figure 3, this approach is summed up.  

 
Figure 3: Iterative approach for nonlinearities. 

3 APPROACHES BASED ON 
GREEN’S FUNTIONS 

In this section, two new approaches for the solution 
of the partial differential equation (1) are presented. 
Both of them are based on Green’s functions.  

3.1 Time Domain Approach 

In this approach, Green’s functions are used to solve 
the partial differential equation directly in the time 
domain. The problem can be classified as 

inhomogenous differential equation with 
inhomogenous boundary and initial conditions as 
generally, 𝐶, 𝑇଴, 𝑇ଵ and 𝑇ଶ are not zero. According to 
the principle of superposition, the complete solution 
results as superposition of solutions that take into 
account only one of the inhomogeneities assuming 
the others to vanish: 

 𝑇ୋሺ𝑧, 𝑡ሻ = 𝑇ୋ|஼ୀ భ்ୀ మ்ୀ଴ + 𝑇ୋ| బ்ୀ భ்ୀ మ்ୀ଴+ 𝑇ୋ|஼ୀ బ்ୀ మ்ୀ଴ + 𝑇ୋ|஼ୀ బ்ୀ భ்ୀ଴ (5)
 

From the corresponding Green’s function (6), the 
different solution parts (eq. (7)) are calculated. The 
solution for 𝑇ଶ ≠ 0 is calculated using the solution 
for 𝑇ଵ ≠ 0 by replacing 𝑇ଵ  with 𝑇ଶ  and 𝑧 with 𝐿 − 𝑧 
due to symmetry considerations. The superposition of 
all four parts leads to the complete solution (8). 

 𝐿୬ = 2𝑛𝐿, 𝐺ଡ଼ଵଵሺ𝑧, 𝑡|𝑧଴, 𝜏ሻ = 𝑒ି஻஺௧√−𝐴2ඥ𝜋ሺ𝑡 − 𝜏ሻ ⋅ ෍ ቈ𝑒஺ሺ௅౤ା௭ି௭బሻమସሺ௧ିఛሻ − 𝑒஺ሺ௅౤ା௭ା௭బሻమସሺ௧ିఛሻ ቉ஶ௡ୀିஶ , (6)

𝑇ୋ|஼ୀ భ்ୀ మ்ୀ଴ = න 𝐺ଡ଼ଵଵሺ𝑧, 𝑡|𝑧଴, 0ሻ𝑇଴ d𝑧଴௅
଴ , (7)𝑇ୋ| బ்ୀ భ்ୀ మ்ୀ଴ = න න 𝐺ଡ଼ଵଵሺ𝑧, 𝑠|𝑧଴, 0ሻ𝐶 d𝑧଴d𝑠௅

଴
௧

଴ , Ψሺ𝑧, 𝑡ሻ = ඥ−1 ሺ𝐴𝜋𝑡ሻ⁄ 𝜕୸ ෍ 𝑒஺ሺ௅౤ା௭ሻమସ௧ ି஻஺௧ஶ௡ୀିஶ , 𝑇ୋ|஼ୀ బ்ୀ మ்ୀ଴ = න Ψሺ𝑧, 𝑠ሻ𝑇ଵ d𝑠௧
଴ . 𝑇ୋሺ𝑧, 𝑡ሻ = 𝑇୐ሺ𝑧, 𝑡ሻ (8)+ ෍ ሺ𝐶 𝐵⁄ − 𝑇଴ሻ𝑒ି஻௧ ஺⁄ ሾ𝐷ଵሺ−𝑧୐ + 𝐿୬ሻஶ௡ୀଵ+ 𝐷ଵሺ−𝑧୐ − 𝐿୬ሻ − 𝐷ଵሺ𝑧 + 𝐿୬ሻ − 𝐷ଵሺ𝑧 − 𝐿୬ሻሿ+ 0.5ሾሺ𝐶 𝐵⁄ − 𝑇ଵሻሼ𝐷ଶሺ𝑧 + 𝐿୬ሻ − 𝐷ଶሺ𝑧 − 𝐿୬ሻሽ+ ሺ𝐶 𝐵⁄ − 𝑇ଶሻሼ𝐷ଶሺ𝑧୐ + 𝐿୬ሻ − 𝐷ଶሺ𝑧୐ − 𝐿୬ሻሽሿ.

 
Here, the earlier term from the solution in the Laplace 
domain 𝑇୐ሺ𝑧, 𝑡ሻ  appears again and is extended by 
additional terms. This new solution is complete, as no 
approximations were necessary. Nevertheless, 
because of the infinite sum, in an implementation 
only a finite number of terms can be considered, 
which results in an approximation.  

3.2 Laplace Domain Approach 

The second new approach operates in the Laplace 
domain as the earlier described solution. There, some 
terms caused problems with the transform back into 
the time domain as expressions with several 
exponential functions depending on √𝑠 needed to be 

true
falseendinitialization
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transformed. To avoid this problem, using Green’s 
functions, expressions are derived, that can be 
transformed back into the time domain more easily. 
This approach is used in the electrical transmission 
line theory as well (Antonini, 2008). For homogenous 
boundary conditions (9) the conductor temperature 𝑇ୋ୐  is calculated via eq. (10) from the Laplace 
domain Green’s function 𝐺୘ of the problem (11). 

 0 = 𝑇ୋ୐ሺ𝑧, 𝑠ሻ|௭ୀ଴ = 𝑇ୋ୐ሺ𝑧, 𝑠ሻ|௭ୀ௅, (9)𝑇ୋ୐ሺ𝑧, 𝑠ሻ =  − න 𝐺୘ሺ𝑧, 𝑧଴, 𝑠ሻ௅
଴ 𝐼ୱ d𝑧଴, 𝐼ୱ = 𝐴𝑇଴ + 𝐶 𝑠⁄ . (10)

𝐺୘ሺ𝑧, 𝑧଴, 𝑠ሻ = − 2𝐿 ෍ 𝜓୬ሺ𝑧ሻ𝜓୬ሺ𝑧଴ሻሺ𝑠𝐴 + 𝐵ሻ + 𝑛୐ଶ
ஶ௡ୀଵ , 𝜓୬ሺ𝑧ሻ = sinሺ𝑛୐𝑧ሻ , 𝑛୐ = 𝑛𝜋 𝐿⁄ . (11)

 
A series approach for the Green’s function is used 
instead of the direct usage of the Green’s function of 
the Helmholtz equation. This way, the result in the 
Laplace domain (12) can easily be transformed back 
into the time domain (see eq. (13)). 

 𝑇ୋ୐ሺ𝑧, 𝑠ሻ = 4𝐼ୱ𝐿 ෍ sinሺ𝑚୐𝑧ሻሺ𝑠𝐴 + 𝐵ሻ + 𝑚୐ଶ 1𝑚୐ஶ௠ୀ଴ , 𝑚୐ = ሺ2𝑚 + 1ሻ𝜋 𝐿⁄ . (12)𝑇ୋ୐ሺ𝑧, 𝑡ሻ = 4 𝐿⁄ ⋅  ෍ sinሺ𝑚୐𝑧ሻ 𝑚୐⁄ஶ௠ୀ଴  (13)⋅ ቂ𝑇଴𝑒ି ೟ಲൣ௠మైା஻൧ + 𝐶 ቀ1 − 𝑒ି ೟ಲൣ௠మైା஻൧ቁ ሺ𝐵 + 𝑚୐ଶሻൗ ቃ.
 

By now, homogenous boundary conditions were 
assumed. The result can be applied for inhomogenous 
boundary conditions (14) by setting the reference 
temperature to 𝑇ଵ = 𝑇ଶ. If the cable end temperatures 
are not equal, the expansion (15) is necessary. The 
transformation back into the time domain leads to eq. 
(16). The boundary conditions at 𝑧 = 0 m and 𝑧 = 𝐿 
are fulfilled for the limit (17), but this solution is 
unsteady at the cable ends.  

 𝑇ୋ୐ሺ𝑧, 𝑡ሻ|௭ୀ଴ = 𝑇ଵ = 𝑇ୋ୐ሺ𝑧, 𝑡ሻ|௭ୀ௅ = 𝑇ଶ ≠ 0 (14)𝑇ୋ୐,୧ሺ𝑧, 𝑠ሻ = 𝑇ଶ𝑠 dd𝑧଴ 𝐺୘ሺ𝑧, 𝑧଴, 𝑠ሻ|௭బୀ௅ (15)− 𝑇ଵ 𝑠⁄ d d𝑧଴⁄ 𝐺୘ሺ𝑧, 𝑧଴, 𝑠ሻ|௭బୀ଴ + 𝑇ୋ୐ሺ𝑧, 𝑠ሻ 𝑇ୋ୐,୧ሺ𝑧, 𝑡ሻ = 𝑇ୋ୐ሺ𝑧, 𝑡ሻ (16)+ 2𝜋 ෍ ቈ1 − 𝑒௡మైି஻஺ ௧቉ 𝑛୐ଶ sinሺ𝑛୐𝑧ሻ𝑛ሺ𝑛୐ଶ − 𝐵ሻஶ
௡ୀଵ ሾ𝑇ଵ − ሺ−1ሻ௡𝑇ଶሿlim௭→଴ 𝑇ୋ୐,୧ሺ𝑧, 𝑡ሻ = 𝑇ଵ, lim௭→௅ 𝑇ୋ୐,୧ሺ𝑧, 𝑡ሻ = 𝑇ଶ. (17)

 
Additionally, the expansion converges slowly (see 
section 4.3). So, the practical applicability is limited. 

4 VALIDATION 

In this section, the derived approaches are evaluated. 
If not stated differently, the following 6 mmଶ-cable 
is evaluated: The solid copper conductor has the 
radius  𝑟ୡ = 1.382 mm , the specific heat capacity 𝑐ୡ = 3.4 ⋅ 10଺ J/mଷK, the thermal conductivity 𝜆ୡ =386 W/Km  and the resistivity 𝜌 = 1.86 ⋅ 10ି଼ Ωm 
at 20 °C. The linear temperature coefficient is 𝛼୘ =3.93 ⋅ 10ିଷ 1/K. The conductor is surrounded by a 
PVC insulation. The total radius of the cable with 
insulation is 𝑟୧ = 2 mm. The specific heat capacity of 
the insulation material is 𝑐୧ = 2.245 ⋅ 10଺ J/mଷK, the 
thermal conductivity is 𝜆୧ = 0.21 W/Km  and the 
emissivity is 𝜀 = 0.95. The examined cable is loaded 
with the current 70 A . 25 °C  is the environmental 
temperature 𝑇 , which is as well the temperature of 
the whole cable at 𝑡 = 0 s (𝑇଴). The beginning (𝑇ଵ) 
and the end (𝑇ଶ) of the cable have the temperature 50 °C.  

As reference solution 𝑇୮ୢୣ୮ୣ , the numerical 
solution of the partial differential equation (1) of the 
problem is calculated using the function pdepe of 
MATLAB (MathWorks, 2020). Generally, partial 
differential equations of the form (18) with initial 
conditions 𝑢ሺ𝑥, 0ሻ and boundary conditions (19) are 
solved by this function. As in the concrete problem, 
the cable surface temperature 𝑇ୱ is necessary for the 
calculation of the parameters of the equivalent circuit, 
the formulation (20) is implemented. The nonlinear 
material parameters are directly considered here, so 
further iterations are not necessary. 
 𝑐ሺ𝑥, 𝑡, 𝑢, 𝜕𝑢 𝜕𝑥⁄ ሻ 𝜕𝑢 𝜕𝑡⁄ = 𝑠ሺ𝑥, 𝑡, 𝑢, 𝜕𝑢 𝜕𝑥⁄ ሻ+𝑥ି௠ 𝜕൫𝑥௠𝑓ሺ𝑥, 𝑡, 𝑢, 𝜕𝑢 𝜕𝑥⁄ ሻ൯ 𝜕𝑥⁄  (18)𝑝ሺ𝑥, 𝑡, 𝑢ሻ + 𝑞ሺ𝑥, 𝑡ሻ𝑓ሺ𝑥, 𝑡, 𝑢, 𝜕𝑢 𝜕𝑥⁄ ሻ = 0 (19)𝑢 = ሺ𝑇 𝑇ୱሻ், 𝑥 = 𝑧, (20)𝐴 𝜕𝑇 𝜕𝑡⁄ = 𝜕ଶ𝑇 𝜕𝑧ଶ⁄ − 𝐵ሺ𝑇ୱሻ𝑇 + 𝐶ሺ𝑇, 𝑇ୱሻ,   0 = 0 + 𝑇 − 𝑇ୱ − 𝑅஛ᇱ ሺ𝑇 − 𝑇 ሻ𝐺ᇱሺ𝑇ୱሻ. 
4.1 Convergence Behavior 

In Figure 4, the convergence of the sums appearing in 
the above presented solutions is evaluated. The 
deviation from the numerically calculated temperature Δ𝑇 = ห𝑇 − 𝑇୮ୢୣ୮ୣห is shown here. A cable of the very 
short length 𝐿 = 0.1 m is examined as later on in this 
paper, it is shown, that especially for short cables, the 
new solutions drastically improve the accuracy of the 
predicted temperatures. For comparison, the results 
calculated via the old approximation solution are 
given. As can be seen, those lead to much higher 
deviations than the new solutions. The series solution 
derived via Green’s functions in the time domain and 
the series solution for 𝑇ଵ = 𝑇ଶ  from the Laplace 
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domain converge very fast. Unlike, the series solution 
considering the boundary conditions 𝑇ଵ ≠ 𝑇ଶ shows a 
bad convergence behavior. In this solution, instead of 
the position 𝑧 = 0 m, the slightly higher value 𝑧 =1 mm  is inserted in the calculation because of the 
unsteady behavior of the solution at this position. 
Because of the bad convergence, this solution is not 
applicable for the solution of real problems and will 
not be further evaluated in the following. 

 
Figure 4: Deviation between analytically (approximation 
(app), series time domain (std), series Laplace domain 
(sLd)) and numerically calculated temperatures depending 
on the number of addends at (a) the beginning and (b) the 
middle of the cable. 

4.2 Validation with Numerical Solution 

Now, a cable with the length 𝐿 = 1 m is evaluated. In 
Figure 5(a), the cable temperature calculated with the 
numerical reference solution is shown depending on 
the time 𝑡 and the spatial coordinate 𝑧. In Figure 5(b), 
for three cases, the results calculated via the 
numerical reference solution and via the three 
analytical solutions are compared: The transient 
temperature development is evaluated  at 𝑧 = 0.5 m 
(middle of the cable). For the times 𝑡 = 200 s 
(transient area) and 𝑡 = 600 s (stationary), the axial 
temperature development along the cable is evaluated. 
Here, for the new solution “series (time domain)” 
based on the Green’s functions in the time domain, 
only one addend from the sum is taken into account, 
for the solution based on the Green’s functions in the 
Laplace domain (“series (Laplace domain)”), 10 
addends are used. As shown in Figure 5(c) for the 
position 𝑧 = 0.5 m, convergence is not reached for 
this number of terms. Nevertheless, the usage of so 
few terms is evaluated here as in practical 
applications, also only a low number of terms can be 
considered due to restricted calculation power. All of 
the presented solutions show a similar development. 
So, for this case, all three solutions can be used.  

 
Figure 5: Results for the cable length 1 m. (a) Numerical 
reference solution. (b) Results for fixed position 
respectively time. (c) Convergence behavior example. 

For a very short cable, the approximation used in 
the solution from the Laplace domain (Henke and Frei, 
2020) is not valid anymore. That is why for short 
cables, huge deviations between the old solution and 
the reference solution are expected. To evaluate 
theperformance of the newly derived solutions, the 
calculation is repeated for a cable with the length 𝐿 =0.1 m. In Figure 6, the results are presented. Because 
of the short cable length, the conductor temperature in 
the middle of the cable is much lower than before as 
the cable ends cool the cable in this example (see 
Figure 6(a)). In Figure 6(b), it is shown, that the 
solution resulting from the Laplace domain without 
Green’s functions is not able to model the temperature 
development correctly, but, as expected, massive 
deviations appear. The set boundary conditions at the 
cable ends are not fulfilled anymore. If just one 
addend of the sum resulting from the Green’s function 
solution in the time domain (solution “series (time 
domain)”) is added, the result matches to the 
numerical reference solution much better. The 
solution based on Green’s functions in the Laplace 
domain (“series (Laplace domain)”) also predicts the 
correct temperatures quite well. As can be seen for the 
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time 𝑡 = 30 s , in the transient case, both series 
solutions show noticeable deviations to the numerical 
reference solution, but those are much lower than 1 K. 
Furthermore, the set boundary con-ditions are fulfilled 
by both solutions. So, all in all, for this very short cable, 
the usage of the new series solutions massively 
improves the accuracy of the predicted temperatures. 

 
Figure 6: Results for the cable length 0.1 m. (a) Numerical 
reference solution. (b) Results for fixed position 
respectively time. 

4.3 Influence of the Cable Length 

As shown in Figure 6, for short cables, the 
approximation causes deviations from the numerical 
solution. For the stationary case, even the set boundary 
conditions (cable end temperatures) are not calculated 
correctly. In Figure 7, this effect is studied. The 
dependency of the deviation between the different 
analytical solutions and the numerical reference 
solution from the cable length is presented for the time 𝑡 = 1000 s at the beginning of the cable (𝑧 = 0 m) 
and in the middle of the cable (𝑧 = 0.5 𝐿). As can be 
seen for the cable beginning, for short cables, the 
deviation of the Laplace approximation grows 
exponentially. Using the new solutions based on the 
usage of Green’s functions in the time domain by 
simply adding one more term improves the results, but 
for cable lengths below 0.4 m , rising deviations 
appear as well. Using more terms (shown for 5 
addends here) ensures a stable behavior in the 
complete evaluated area down to 0.1 m . The same 
behaviour is also observed using the series solution 
from the Laplace domain for identical cable end 
temperatures 𝑇ଵ = 𝑇ଶ (10 addends). In the middle of  

 
Figure 7: Deviation between the analytically and 
numerically calculated temperatures depending on the cable 
length at (a) the beginning and (b) the middle of the cable.  

the cable, also, for short cables, using the new 
solutions improves the accuracy of the solution. For 
longer cables, the series solution from the Laplace 
domain shows a worse accuracy. Here, more terms 
need to be taken into account to improve this. So 
especially for short cables, the new solutions can 
improve the results. By changing the number of 
addends that is used in the solutions, the accuracy of 
the solutions can directly be adapted. 

Also, the cable cross-section area influences the 
deviations. A critical cable length 𝐿ୡ୰୧୲ is introduced, 
under which the Laplace approximation cannot be 
used any longer. This critical cable length is defined 
as the cable length, at which the deviation for the 
stationary temperature in the middle of the cable 
exceeds 3 K. The critical cable length is calculated for 
different cables that are characterized by their 
conductor radius 𝑟ୡ. For each cable length, the current 
through the cable is chosen so that the stationary 
temperature in the middle of the cable is ሺ100 ±0.2ሻ °C. Using the bisection method, this current and 
the corresponding critical cable lengths are found. For 
the cable length, an uncertainty of 1 mm is allowed as 
stop criterion. The results are shown in Figure 8. A 
linear correspondence between the critical cable 
length and the conductor radius is observed: The 
smaller the cable conductor radius, the shorter the 
critical cable length is. So especially for short cables 
with a high cross section, the approximation from 
(Henke and Frei, 2020) cannot be used as its accuracy 
is very bad there. Then, the new solutions can replace 
this method as analytical calculation approaches. 

 
Figure 8: Critical cable length depending on conductor 
radius. 
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4.4 Complexity Considerations 

The numerical complexity has a major impact on the 
runtime and practical applicability. Here, for the 
analysis of the complexity of the different solutions, 
only the appearance of functions as the exponential 
function, the error function or the sine in the final 
calculation formula are compared. The square root 
and the calculation of the cable parameters are not 
considered here. In the solution from the time 
domain, the approximation from the Laplace domain 
without Green’s functions (11 function evaluations) 
appears again. Each additional term from the sum 
goes with 20 function evaluations. Compared to that, 
the evaluation of a single term from the solution from 
the Laplace domain Green’s functions takes much 
less effort (2 function evaluations). This rough 
estimation of the complexities of the different 
approaches also motivates the above used number of 
terms: Taking one additional term into account for the 
series solution in the time domain results in a total 
number of 31 function evaluations, whereas 20 
evaluations are necessary for the series solution in the 
Laplace domain. So, although a higher number of 
addends is taken into account, the series solution in 
the Laplace domain causes less calculation effort. 

5 APPLICATION EXAMPLE 

The standard ISO 6722 defines critical insulation 
temperatures based on the insulation aging due to 
thermal stress. For PVC, the continuous operation 
temperature (3000  hours) is 𝑇ଷ଴଴଴୦ = 105 °C . The 
corresponding short-term temperature (240 hours) is 𝑇ଶସ଴୦ = 130 °C  and the thermal overload 
temperature (6 hours) is 𝑇଺୦ = 155 °C. So, on the one 
hand, higher temperatures drastically reduce the 
expected lifetime of the insulation material. On the 
other hand, this means that thermal overload can be 
tolerated for a short time, if necessary, but the 
accelerated aging has to be considered. In Figure 9, 
the insulation lifespan is presented depending on the 
insulation temperature. For temperatures higher than 𝑇 ୣୡ, a degradation of the insulation occurs even after 
short times. If the temperature becomes higher than 𝑇୤୧୰ୣ, the insulation can start to burn and operation is 
not possible at all. Melting fuses are supposed to keep 
the cable temperature in the dark green area, short-
time overload situations that lead to accelerated cable 
aging (light green area) or the need to replace the 
cable afterwards (yellow area) cannot be tolerated. 
Unlike, intelligent fuses can support controlled 
overload situations.  

In Figure 10, a possible use-case for overload 
handling using simple melting fuses on the one hand 
and intelligent fuses on the other hand is presented. In 
case of a simple melting fuse, if the fuse trips, a hard 
interruption of functions results, which causes an 
undefined and potentially unsecure state of the 
complete system. Using an intelligent fuse, the 
overload is detected but the cable is not directly 
disconnected. First, the advanced driver assistance 
systems (ADAS) controller is asked whether an 
emergency operation is necessary. In case of a 
requested emergency operation the cable can be 
operated in the light green or even yellow area of 
Figure 9. This way, in many cases, a defined and safe 
state can be achieved by controlled measures, and 
afterwards it can be decided whether the cable has to 
be replaced. The safety and reliability of the complete 
system is massively improved.  

 
Figure 9: Lifespan of the cable insulation depending on the 
insulation temperature with different operating regions. 

 
Figure 10: Overload handling with (a) melting fuses and  
(b) PDUs in combination with intelligent fuses. 

An example is shown in Figure 11: A 48 V ADAS 
controller has a power consumption of 2 kW . The 
power supply is realized via a PDU with intelligent 
fuses. The cable that connects the PDU and the 
ADAS controller has a length of 3 m  and is 
dimensioned for a rated current of 42 A. Maximum 
environmental and contact temperatures of 𝑇 = 𝑇ଵ =𝑇ଶ = 85 °C  are assumed. Then, to ensure a 
temperature below 𝑇ଷ଴଴଴୦ = 105 °C, a cable with a 
cross-section area of 10 mmଶ is necessary (stationary 
maximal cable temperature: 99.0 °C). It is assumed 
now that due to a failure the power consumption of 

(a) (b)
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the ADAS controller rises to 4 kW  at 𝑡 = 0 s , but 
essential functions still work (partial failure). Then, 
the current through the cable rises as well: 𝐼 ୰୰୭୰ ≈83 A . Assuming an initial cable temperature of 100 °C, the corresponding cable temperature deve-
lopment in the middle of the cable (hottest spot) is 
shown in Figure 12. After 27 s , the temperature 𝑇ଷ଴଴଴୦ = 105 °C  is reached. A melting fuse would 
break the circuit here to protect the cable and 
automated driving applications would not be possible 
any longer. In contrast, in an intelligent fusing PDU, 
the actual cable temperature and cable aging can be 
considered: The short-term temperature 𝑇ଶସ଴୦ =130 °C is reached after about 290 s. The critical ther-
mal overload temperature 𝑇଺୦ = 155 °C  is not 
reached at all as the maximum longterm temperature 
is 138 °C. Therefore, an intelligent fuse does not trip, 
but monitors the cable aging. Automated driving is 
still possible, and the vehicle can be transferred into a 
safe state by performing a controlled shutdown. 

 
Figure 11: Simple application example for the use in 
intelligent vehicles. 

 
Figure 12: Cable temperature development for the 
application example. 

6 CONCLUSIONS 

In this paper, two new approaches for the analytical 
transient axial temperature calculation of single 
cables were presented. Those approaches are based 
on the use of Green’s functions in the time domain 
respectively Laplace domain. The results are series 
representations. By choosing an appropriate number 
of addends, a high accuracy of the proposed methods 
can be obtained even for short cables. A constant 
cable temperature at the beginning of the calculation 
time, constant cable termination temperatures, a 
constant current through the cable and a constant 
ambient temperature are assumed. Regarding 

applications for example for intelligent vehicles, the 
presented solutions can be used as fast approach for 
the temperature calculation in cables and therefore 
provide a basis for decisions in time- and safety-
critical environments.  

The presented example shows the potential of 
analytical solutions that can deal with limited 
resources and still model the essential thermal effects 
with an accuracy that allows them to be used in 
protective applications. In the example, a melting fuse 
would break the circuit due to an overcurrent and 
automated driving would not be possible any longer. 
Unlike, using a smart fuse with the presented 
analytical methods, the overcurrent can be tolerated 
and a controlled shutdown is enabled. 

ACKNOWLEDGEMENTS 

The work for this contribution was partly financed by 
the European Fund for regional development (EFRE), 
Ministerium für Wirtschaft, Innovation, Digitali-
sierung und Energie of the State of North Rhine-
Westphalia as part of the AFFiAncE project. 

REFERENCES 

Antonini, G., 2008. A Dyadic Green’s Function Based 
Method for the Transient Analysis of Lossy and 
Dispersive Multiconductor Transmission Lines. In 
IEEE Trans. Microw. Theory Techn., 56(4), 880-895. 

Brabetz, L., Ayeb, M., Neumeier, H., 2011. A new 
approach to the thermal analysis of electrical 
distribution systems. In SAE Technical Paper. 

He, J., Tang, Y., Wei, B., Li, J., Ren, L., Shi, J., Wu, K., Li, 
X., Xu, Y., Wang, S., 2013. Thermal Analysis of HTS 
Power Cable Using 3-D FEM Model. In IEEE Trans. 
Appl. Supercond., 23(3), 5402404-5402404. 

Henke, A., Frei, S., 2020. Transient Temperature 
Calculation in a Single Cable Using an Analytic 
Approach. In JFFHMT, 2020(7), 58-65. 

Holyk, C., Liess, H.-D., Grondel, S., Kanbach, H., Loos, F., 
2014. Simulation and measurement of the steady-state 
temperature in multi-core cables. In Electric Power 
Systems Research, 116, 54–66. 

Horn, M., Brabetz, L., Ayeb, M., 2018. Data-driven 
modeling and simulation of thermal fuses. In IEEE Int. 
Conf. ESARS-ITEC, 1-7. 

Kong, W., Luo, Y., Qin, Z., Qi, Y., Lian, X., 2019. 
Comprehensive Fault Diagnosis and Fault-Tolerant 
Protection of In-Vehicle Intelligent Electric Power 
Supply Network. In IEEE Trans. Veh. Technol., 68(11), 
10453-10464. 

MathWorks, 10.11.2020. Documentation pdepe: 
https://de.mathworks.com/help/matlab/ref/pdepe.html. 

𝑧=1.5
 m 

Analytical Approaches for Fast Computing of the Thermal Load of Vehicle Cables of Arbitrary Length for the Application in Intelligent
Fuses

403



Olsen, R., Anders, G. J., Holboell, J., Gudmundsdóttir, U. 
S., 2013. Modelling of dynamic transmission cable 
temperature considering soil-specific heat, thermal 
resistivity, and precipitation. In IEEE Trans. Power 
Del., 28(3), 1909–1917. 

Önal, S., Henke, A., Frei, S., 2020. Switching Strategies for 
Smart Fuses Based on Thermal Models of Different 
Complexity. In Int. Conf. EVER, 1-10. 

Zhan, Q., Ruan, J., Tang, K., Tang, L., Liu, Y., Li, H., Ou, 
X., 2019. Real-time calculation of three core cable 
conductor temperature based on thermal circuit model 
with thermal resistance correction. In The Journal of 
Engineering, 2019(16), 2036–2041. 

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

404


