On Formalising and Analysing the Tweetchain Protocol

Mariapia Raimondo' ®?, Simona Bernardi>®® and Stefano Marrone' ©¢

IDip. di Matematica e Fisica, Universita della Campania “Luigi Vanvitelli”, Caserta, Italy

2Dpto. de Informdtica e Ingenieria de Sistemas, Universidad de Zaragoza, Zaragoza, Spain

Keywords: Distributed Ledger Technology, Formal Modelling, Tweetchain, Tamarin Prover, Model Checking.

Abstract: Distributed Ledger Technology is demonstrating its capability to provide flexible frameworks for information
assurance capable of resisting to byzantine failures and multiple target attacks. The availability of develop-
ment frameworks allows the definition of many applications using such a technology. On the contrary, the
verification of such applications are far from being easy since testing is not enough to guarantee the absence
of security problems. The paper describes an experience in the modelling and security analysis of one of
these applications by means of formal methods: in particular, we consider the Tweetchain protocol as a case
study and we use the Tamarin Prover tool, which supports the modelling of a protocol as a multiset rewriting
system and its analysis with respect to temporal first-order properties. With the aim of making the modeling
and verification process reproducible and independent of the specific protocol, we present a general structure
of the Tamarin Prover model and of the properties to verified. Finally, we discuss the strengths and limitations
of the Tamarin Prover approach considering three aspects: modelling, analysis and the verification process.

1 INTRODUCTION

trial one: the presence of development frameworks
is spreading the usage of this technology by helping

The digitization of the economy and, more in gen- software designers in integrating blockchain in their

eral, of the society is an unstoppable process that re-
cent times are just accelerating. Being able to track
events and being sure of the identity of the parties in-
volved in a transaction are cornerstones of both dig-
ital economies and smart societies and their enabler,
the Internet of Things (IoT) technology.

This non-repudiation property is guaranteed by a
new family of technologies: the Distributed Ledger
Technology (DLT). Even if the concept of DLT
is not new, its mass diffusion started with Bit-
coin (Nakamoto, 2009) and other blockchain applica-
tions: a comprehensive explanation of the differences
between blockchain and DLTs can be found in (Pan-
war and Bhatnagar, 2020). From a security perspec-
tive, the literature (Lin and Liao, 2017; Yu et al.,
2018; Lee and Jang, 2020; Dai et al., 2017; Kumar
and Mallick, 2018) analyses a number of possible at-
tacks on blockchain, even if their practical relevance
has not been demonstrated.

Blockchain received a lot of interest not only from
the academic community but also from the indus-

https://orcid.org/0000-0001-7483-7987
@ https://orcid.org/0000-0002-2605-6243
¢ https://orcid.org/0000-0003-1927-6173

Raimondo, M., Bernardi, S. and Marrone, S.
On Formalising and Analysing the Tweetchain Protocol.
DOI: 10.5220/0010427907810791

applications and in getting its benefits. Such frame-
works differ from each other by many features: kind
of proof of stake, support to smart contracts, being
permissioned/permissionless, etc.

Some examples of such frameworks are:

* Exonum: a blockchain framework developed for
the enterprise panorama in 2017. It is based on
a Rust-based open source code and Application
Programning Interface (API)';

* Hyperledger Fabric: oriented to the develop-
ment of high-scaling enterprise applications in a
flexible-permissioned environmentz;

e Openchain: designed for issuing and managing
digital assets, it is more oriented to financial set-
tings. It relies on smart contract modules®;

* Ripple: a permissioned open source framework,
based on a Python API, it is based on probabilis-
tic voting. Features like “issuance” allow users
to lock a particular asset and transfer it and, ul-

Uhttps://github.com/exonum

Zhttps://github.com/hyperledger/fabric
3https://github.com/openchain

781

In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 781-791

ISBN: 978-989-758-491-6

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

timately, lowers the transaction cost, speeding up

the transaction while maintaining transparency*.

One of the most challenging contexts where
blockchain promises a greater impact is the field of
the IoT; such challenges are inherent to the nature of
the devices used in IoT. These devices present the fol-
lowing features that are hard to match with the re-
sources needed by DLTs and, more in general, by
cryptographic applications:

* limited computational power, that does not al-
low very cheap devices to participate to the
blockchain;

* absence of specific cryptographic hardware capa-
ble of accelerating such computations;

* low capacity of storing large transaction foot-
prints;

* limited battery that contrasts with the high energy
demand due to the continuous interaction with the
Peer-to-peer (P2P) network.

These applications are becoming more and more per-
vasive in both the economic and societal texture so
that they can be considered business critical applica-
tions. The capability to sell by software companies
operating in this field, also relies on their capabilities
to certify blockchain-based software and to guarantee
that the theoretical properties of DLTs are matched
by concrete protocols and software. Formal valida-
tion techniques would constitute a cornerstone in the
diffusion of such approaches.

The main objective of this work is to provide a
concrete experience in the modelling and analysis of
a block-chain based protocol with formal methods.
Rather than providing an overview and a generic com-
parison of such methods, this paper focuses on one
among the most promises methods, to clearly high-
light its strengths and weaknesses. In particular, the
formalism and the underlying solution tool used in
this paper is the well-known Tamarin Prover (Meier
et al., 2013), which is used since 2013 in the mod-
elling of cryptographic mechanisms.

Even if many of the concerns dealt with in this pa-
per can be generalized to a generic blockchain appli-
cation, the objective of this paper is to present an ap-
plication of Tamarin Prover modelling approach to a
case study: the Tweetchain protocol defined in (Buc-
cafurri et al., 2017a; Buccafurri et al., 2017b). This
protocol perfectly fits with the scope of this work
since it is meant to provide a light-weight public
ledger for IoT and crowd-sourcing applications.

The paper is structured as follows: Section 2 pro-
vides the background on Tweetchain protocol and

“https://github.com/ripple

782

Tamarin Prover. Section 3 shows the structure and
the details of the Tweetchain modelling and analy-
sis. Section 4 reports some considerations on the pre-
sented experience. Section 5 presents related works;
Section 6 summarises the paper and draws future re-
search directions.

2 BACKGROUND

In this section, basic concepts of Tweetchain and
Tamarin Prover are presented in Subsections 2.1
and 2.2, respectively.

2.1 The Tweetchain Protocol

The Tweetchain protocol has been developed and in-
troduced in (Buccafurri et al., 2017a; Buccafurri et al.,
2017b) to overcome the problems in applying full
public permissionless ledger based mechanisms in
the IoT domain. Tweetchain exploits the pervasive-
ness of Online Social Networks (OSN) in human-
to-machine and machine-to-machine communication;
the usage of OSN compensates the limitations of pure
blockchain-based approaches.

In fact, the Tweetchain community (C) is me-
diated by a special user, the welcome profile (W),
whose scope is to provide a sort of yellow pages
for all the “regular users” (x). Let us suppose that:
(1) each party has a Twitter account and signs in;
(2) a generic party u owns a chain of hash values

#HC) #HC?, ..., #HCl(fl) where the hash values are
the digests of the i — 1 messages already sent by u.
The Tweetchain registration scenario is specified by
the Unified Modeling Language (UML) sequence di-
agram of Figure 1.

Before interacting in any way with other
Tweetchain actors, each party has to sign in Twitter.
As afirst step to join C, x publishes a Hello tweet, con-
taining the first elements HCY and HC}, of the hash-
chains of x and W, respectively, to register itself to W.
W, after verifying the tweet, sends a Welcome tweet as
a response. The latter contains the hash value #H C“}‘,,
computed on the base of its hash-chain, and the Twit-
ter id (#TID)) of the Hello message sent by x.

The final step of the registration procedure pre-
scribes that x chooses among the members of C its
set of verifiers Vy = {v, s} C C, where s is described
in (Buccafurri et al., 2017a). To this aim, x gener-
ates this subset according to a publicly known pseudo-

SIn Twitter, each tweet has a unique id.

On Formalising and Analysing the Tweetchain Protocol

User Welcome page Verifier
T w v

Twitter
Sign in

Follows QW

publishes hello tweet:
< #HC;#HC"I” Hello QW >

_ publishes welcome tweet:
< #HCj, Welcome Qz H#HCL#TIDL >

Computes his verifiers
with PRNG

Sends Private followership

Verifies hello tweet

request Qv

Follows @z

Verifies followership
request

A

publishes foIIEJw_weIcome tweet:
< #HC) Welcome Qx #HCL#TIDL >

A

Figure 1: The Tweetchain registration scenario.

random algorithm and a public seed®. The use of pub-
licly verifiable information, in this phase, is motivated
by the necessity of assuring that each party in C does
not choose its set of verifiers in a malicious way. Af-
ter this check, each v, ; confirms and follows the user
x and publishes a Follow_welcome tweet.

Once the registration has been carried out, the user
x belongs to the community, thus he/she is able to gen-
erate a transaction intended for another user r of C. A
transaction, in this context, corresponds to the posting
of a t-tweet, a particular tweet reporting the last ele-
ment { of the hash-chain of the sender H C;, the Twit-
ter id TIDY of latest approved transaction (i.e., the
TID of the p-th t-tweet posted by user y) and, clearly,
the reference to the intended recipient. In particu-
lar, TIDY plays the role that the cryptographic hash
of the previous block (included in the header of an-
other block) plays in a blockchain, i.e., it allows to
link them.

As soon as x posts a t-tweet, the users of V; have
to validate the transaction using a particular protocol
shortly explained below. After the check, a verifier
v posts a confirmation tweet containing: the last ele-
ment j of its hash-chain H C/, the content of the trans-
action, the Twitter id TID;, of the transaction to vali-
date, and TIDgf , of the previous one, to link them, and
the boolean variable status that represents the result

6As a seed, the protocol may use the Twitter user id that
is unique and publicly available, as proposed by (Buccafurri
et al., 2017a); this choice is not mandatory.

of the validation process (1 - success, O - failure).
The verification protocol for a verifier v consists
of the following tasks:

1. checking that the sender has not already used the
hash-chain element HC.. involved in the t-tweet;

2. using HC. (or a previous elements in the hash-
chain) to search on Twitter for the related tweet
until a Hello tweet or another t-tweet is found,

3. checking that v has validated the tweet found in
the previous step;

4. verifying the validity of the transaction related to
TIDY, ie., looking for a “sufficient number” of
confirmation tweets on Twitter, posted by the ver-
ifiers of y’;

5. verifying that the recipient of the transaction be-
longs to the community.

To summarize, the underlying idea of Tweetchain is
to define a consensus protocol using tweets, to en-
code transactions, and meshed replications, to substi-
tute the proof of work and thus the need of fees for
miners. The consensus on transactions is based on the
presence of a sufficient number of valid confirmation
tweets from the community.

"The meaning of sufficient is clarified in (Buccafurri
et al., 2017a)

783

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

2.2 The Tamarin Prover

The Tamarin Prover (Meier et al., 2013) is a sym-
bolic model checker largely used for the modeling
and analysis of cryptographic protocols. This tool has
proved its suitability in analysing cryptographic pro-
tocols used in different application domains, which
span from 5G (Basin et al., 2018) to vehicular net-
works (Whitefield et al., 2017) and trusted computing,
using Elliptic Curve Cryptography (ECC) (Whitefield
et al., 2019). The current version of the tool is 1.6.0
and can be downloaded under GNU’s GPL v3.08.

According to the classical model checking ap-
proach, a security protocol model and a specification
of the desired properties have to be fed to the Tamarin
Prover to begin the analysis process; furthermore, the
tool also allows the user to add rules to check the be-
haviour of the adversary.

Protocols and properties can be specified, respec-
tively, with labeled multiset rewriting rules and first
order logic formulas over symbols (i.e., the lemmas).
The adversary model, set by default, is the Dolev-Yao
model (Dolev and Yao, 1983): such an adversary con-
trols the network and can delete, inject, modify and
intercept messages on the network.

There are two ways of constructing proofs (i.e.,
analysing the model): the automated mode, that com-
bines deduction and equation reasoning with heuristic
to guide the proof search; and the interactive mode,
which allows the user to manually guide the proof
search while still exploiting the automated proof
search efficiency. In both the cases, the Tamarin
Prover generates a Labeled Transition System (LTS)
from the protocol and the adversary models, where:
(1) the states are multisets of facts, and the initial state
is the empty set; and (2) each transition transforms a
state (i.e., a multiset of facts) into another state, ac-
cording to the used rewrite rule.

Security properties to be verified are specified us-
ing lemmas, which are identified by a name and a
guarded first-order formula over the action facts (i.e.,
the transition labels). There are two types of lemmas:
exists-trace lemmas, to check the existence of a trace
holding the property, and all-traces, to verify whether
the property holds for all the possible traces.

Moreover, it is possible to constrain the state-
space exploration by means of special lemmas named
restriction, which allow the analyst to define proper-
ties that each trace must satisfy.

Finally, when modelling a non-trivial protocol, it
might happen to run into the partial deconstruction,
which can lead to non-termination when verifying
lemmas. A way to overcome this problem is to use

8https://github.com/tamarin-prover

784

the keyword sources in some lemmas, which will help
in the pre-computation phase. Recently, the Tamarin
Prover developers have improved the tool providing
support to the users by automating the generation of
sources lemmas (Cortier et al., 2020).

3 MODELLING AND ANALYSING
TWEETCHAIN

This section describes the modelling of the
Tweetchain protocol and a preliminary security
analysis of the protocol with the Tamarin Prover tool.

In particular, Figure 2 depicts the overall structure
of the Tamarin Prover model, that includes both the
model of the protocol and the security properties to be
verified on the model itself during the analysis. The
model of the protocol is detailed in Subsection 3.1,
whereas the specification of the security properties
and the results of the analysis are described in Sub-
section 3.2.

3.1 The Model of the Protocol

The model of the Tweetchain protocol (top part of
Figure 2) has been developed trying to preserve the
notation and the structure used in (Buccafurri et al.,
2017a) as far as possible. In particular, the model is
composed of six sections: Entering Twitter, Joining
Community, Utility rules, Followership, Transaction,
and Restriction. The first five sections correspond to
Tamarin rules while the last one contains Tamarin ax-
ioms.

The Entering Twitter section, corresponds to the
initial fragment Twitter Sign in of the sequence
diagram in Figure 1, and the action of signing
into Twitter is modelled with two Tamarin rules,
create_entity Wand create_entity, which create
the Welcome page W and a generic user x, respec-
tively. The need to differentiate W and all the users
that want to join the community arises from the ne-
cessity of avoiding modelling (and analysing) issues.
In fact, with the rule create_entity.W, it is gener-
ated a persistent fact ! Community_ID W(...), which
contains the necessary information that any user x
needs to check the authenticity of a tweet posted from
W, and the hashchain of W, that has to be available
to a generic user x that aims at joining the commu-
nity, whilst the hashchain of x bears only when he/she
sends a Hello tweet.

The Joining Community section includes three
Tamarin rules: hello_tweet, welcome_tweet and
community_joined. There are a few highlights that
are worth mentioning: the first rule models the action

I rule hello_tweet:
let
HC_1_x = h(“root_HC_x)

SO}

4 in

On Formalising and Analysing the Tweetchain Protocol

5 [St-0(x, id-x, pubk-x, 1ltk_-x), !Community_ID_W($W, id_-W, pubk_-W, HC_1_W),

6 Fr(~“TID_1_x), Fr(“root_HC_x)]

7 —[Neg(x,$W), HELLO_sent(x, $W), UniqueHello(x)]1-—>
8 [St-1(x, id-x, pubk-x, 1ltk_x, HC_1_x, ’HELLO_.sent’, “TID_1_x), HC(x, <’empty’, HC_1.x>) ,

9 Out(< <x, HC-1_x, HC_1_W, ’Hello’, $W>, sign(<x, HC_-1_x, HC_1_.W, ’Hello’, $W>,1ltk_-x)>),
10 Out(< <x, " TID-1_x>, sign(<x, TID_-1_x>,1tk_-x)>) 1]

Listing 1: Specification of the hello_tweet rule.

Model

Entering Twitter Transaction

create_entity W | @ |
create_entity | @ t_tweet |
@ confirmation_status_* |

TID_chain

Joining Community

hello_tweet | transaction_ended

welcome_tweet | Utility rules

community_joined | reveal_ltk |

Followership Restriction

follow_welcome_tweet | inequality |

@@ @@ @] || @@

followership_request | @ equality |

attestation_follow | uniqueEnt |

Tracing Guards

@ reach_Gen
@ reach_HELLO_s
@ reach_HELLO_r

@ reach_WELCOME_r

@tracefWELCOMEsfHE...

@tracefWELCOMELWE...

@ trace_FOLLOW_WEL...

@traceﬁPRIVATE?REQr... |

@ trace_VERIFstart_TRA...

Figure 2: The structure of the Tamarin Prover model.

of posting a Hello tweet by a user x, who wishes to
join the community, and contextually creates his/her
hash-chain (HC (.. .) fact, highlighted in Listing 1).

The second rule models the reception of the Hello
and the sending of the Welcome messages by W the
latter represents the confirmation that x has joined the

community. The state reached by x is modelled by a
persistent fact ! Community_ID(...).

The last part of the registration (i.e., Followership
phase) concerns the building of the set V, of the fol-
lowers of x, which are designated as verifiers of the
transactions generated by x. We propose a simpli-
fied model for this phase, as the entire sequence of
interactions would be tricky to model and to man-
age: concretely, we model the verification step that
x sends the follow request to a user y who belongs to
the community. The Followership phase is modelled
by means of three rules: followership_request,
follow.welcome_tweet and attestation_follow.

The Transaction section deals with the generation
and confirmation of a new transaction. Let us assume
a user x, belonging to the community, wants to gener-
ate a new transaction addressed to a recipient . The
first task x has to do is to retrieve the chain containing
the IDs of the approved transactions; such a retrieved
chain is generated by means of another Tamarin rule
(i.e., TID_chain).

The transaction is modelled with the rule t _tweet
(shown in Listing 2). The application of this rule gen-
erates a new fact TID_temp(...), where the ID of
the transaction is stored, whilst the TID_chain(...)
is carried unchanged. This two-step mechanism is
mandatory as a new transaction ID can be added to
the chain only when it is approved by the community.
Moreover, user x ensures that user r belongs to the
community, too. At last, the transaction verification
is modelled by two rules confirmation_status_1
(shown in Listing 3) and confirmation_status_0.
Both rules recover the TID_chain and TID_temp and
check that: 1) the user x has used its last hash-
chain element in the transaction (Eq(...) fact),
and 2) that the verifier v and the recipient r are two
distinct users (Neq(...) fact). Then, depending
on the success or failure of the checks, v posts a
new tweet containing a boolean variable status set
to 1, or O, and updates, or leaves unchanged, the
TID_chain, respectively. The last rule of the proto-
col is transaction_ended and models the reception
of the confirmation tweet.

785

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

I rule t_tweet:

2 let

3 HC_new_x = h(HC_b_x)

4 in

5 [st_x_2(x, id-x, pubk.x, 1ltk_x, HC_.1_x, ’FOLLOW_WELCOME.received’, TID_1_x),
6 HC(x, <HC_.a-x, HC_-b_-x>), !Community_-ID(r, id-r, pubk.r, HC_1.r),

7 TID_chain(<issuer_prec, TID_prec>) , Fr(~TID_x)]

8 —[Neg(x,r), TRANSACTION_sent(x,r, TID.x), OUT_-TRANS(TID_prec)]1—>

9 [St_x_3(x, id-x, pubk.x, 1ltk_x, HC_1_x, ’TRANSACTION_sent’, TID_-1_.x),

10 HC(x, <HC_b_x, HC_new_x>),

TID_chain(<issuer_prec, TID_prec>) ,

TID_temp(<x, ~TIDx>) ,

11 Out(<x, “TID.-x>), Out(< <x, HC_new_x, TID_prec, ’content’, r>,

12 sign(<x, HC.-new_-x, TID_prec, ’content’, r>,

ltk-x) >) 1

Listing 2: Specification of the t _tweet rule.

I rule confirmation_status-1:

S}

!Community_ID(x, id.x, pubk.x, HC_1_x),

TID_chain(<issuer_succ, TID_succ>) ,

[st.2(v, id_.v, pubk.v, 1ltk_.v, HC_1_v ,’WELCOME_received’, TID_1_v),

TID_temp(<x, TID.x>) ,

A HC(x, <HC_old_x, HC_new_x>), HC(v, <HC_old_v, HC_new_v>),

5 In(< <x, HC_new.x, TID_succ, ’content’, r>, auth_msg >)]

6 —1[Neg(v,x), Neq(v,r) ,

7 Eq(wverify(auth.msg, <x, HC_new_x, TID_-succ, ’content’, r>, pubk_x), true),

8 Eq(h(HColdx), HCmnewx) , VERIF_starts(v,x)]1—>

9 [st_.v_-3(v, id_-v, pubk.v, 1ltk_v, HC_1_v ,’CONFPOS_sent’, TID_1_.v), TID_chain(<x, TID_x>),

10 Out(< <v, HC_new_v, x, TID.x, ’1’, TID_succ,
11 sign(<v, HC.new-v, x, TID.x, ’1’, TID_succ,

>content’, r>,
’content’, r>, ltk-v) >)]

Listing 3: Specification of the confirmation_status_1 rule.

To facilitate the analysis process with the Tamarin
Prover, the model includes some additional features
in the Utility Rules and Restriction sections.

The Utility Rules section contains the reveal 1tk
rule that can be used when the attacker should not be
able to retrieve some information. In particular, dur-
ing the analysis, this rule checks if the adversary has
stolen some private information of a party (e.g., a pri-
vate key).

For the same sake of analysis complexity reduc-
tion, we defined a set of restrictions in the Restriction
section: equality and inequality, and uniqueEnt,
which ensures that each entity involved in the proto-
col is created only once.

3.2 Security Analysis of the Protocol

The security analysis of the protocol is carried out us-
ing the model, described in Subsection 3.1, and the
security properties to be verified (bottom part of Fig-
ure 2), which are herein described.

Before specifying the security properties of inter-
est, we performed a preliminary analysis aimed at
checking the correctness of the model. Concretely, we
defined a set of lemmas that enable to check the states
reachability of the LTS. The structure of a reachability
lemma is simple: it checks the existence of the nec-
essary entities and a timepoint for which a specific

786

rule is used, i.e., a specific state of the LTS is reached
from the initial state. These lemmas are marked with
areach_... name.

An example of reachability lemma is shown in
Listing 4 that is used to verify the execution of the
attestation_follow rule, defined in the protocol
model.

| lemma reach FOLLOW_WELCOME_s: exists—trace
2 " Ex y x #i. FOLLOW_WELCOME_sent (y,x) @i"

Listing 4: Specification of a reachability lemma.

This rule models the sending action by a verifier y,
after the reception of a followership request sent by x.
In particular, the lemma checks the reachability of the
state FOLLOW_WELCOME_sent at timepoint i, where the
verifier y sends a Follow_welcome tweet to x.

The security properties of interest concern the au-
thenticity of the messages sent over Twitter. In partic-
ular, with reference to the analysis carried out in (Buc-
cafurri et al., 2017a), we checked whether the Trans-
action Authenticity property holds for the modelled
protocol’. We did not analyzed the other two prop-
erties, considered in the work by (Buccafurri et al.,

9This property is meant to verify that each transaction
can always be verified by the Tweetchain community: see
SP1 in (Buccafurri et al., 2017b).

2017b), because of the modelling simplification of the
verification step adopted in this work.

The authenticity is verified for each exchanged
message, i.e., for each pair of send-receive rules, and
it corresponds to check the following property in the
LTS: “If user x receives a message m from user y, then
y has sent m to x earlier”. In the protocol model, the
sender authenticity is obtained by signing the mes-
sages with his/her private key, and any user can verify
the identity of the sender using the built-in message
theory of Tamarin that defines a signature scheme.

Thus, for a given message m exchanged in the reg-
istration scenario shown in Figure 1, we defined two
different lemmas for the verification of its authenticity
that account of the capability of the adversary to steal
the private key of the parties involved in the communi-
cation. Such lemmas are labeled as fake_trace_...
and trace_. . .: in the former, the adversary is able to
steal confidential data (i.e., the private keys) whereas
in the latter, he/she is not.

Listing 5 and Listing 6 show the two types
of lemmas used to check the authenticity of the
follow_welcome tweet message. The lemma in
Listing 5 can be read as follows: “for each fol-
low_welcome tweet, received by x at time instant i
with y as a sender, then there exists a time instant j,
subsequent to 7, in which y has sent such a message to

i)

X.

I lemma fake_trace FOLLOW_WELCr_FOLLOW_WELCs:
2 "All y x #i. FOLLOW_WELCOME_received(y,x) @

; ==>
4 Ex #j. FOLLOW_WELCOME_ sent(y,x) @j & j<i"

Listing 5: Specification of a fake_trace_... lemma.

The trace_. .. lemma (Listing 6) has two more con-
straints (lines 3-4) in the premise than the previous
lemma (Listings 5). Such constraints limit the capa-
bility of the adversary to steal the private key of any
user involved in the communication, i.e., the adver-
sary is not able to impersonate him/her.

I lemma trace_FOLLOW_WELCr_FOLLOW_WELCs:
2 "All y x #i. (FOLLOW_WELCOME_received(y,x)

Qi
: & not (Ex #r. RevLtk(x) @r)
4 & not (Ex #r. RevLtk(y) @r))
5 ==

6 Ex #j. FOLLOW_WELCOME_sent(y,x) @j & j<i"

Listing 6: Specification of a trace_. .. lemma.

It is straightforward that for these messages it is cru-
cial to check that the adversary cannot impersonate
other users, and, thus, we expect that the analysis

On Formalising and Analysing the Tweetchain Protocol

gives different results between fake_trace... and
trace_... lemmas. The analysis results of the most
relevant lemmas are reported in Table 1.

Table 1: Results for the Tweetchain protocol.

Lemma Result
fake trace WELCOMEs _HELLOs false
trace _WELCOMEs_HELLOs true
fake_trace WELCOMEr_WELCOMEs false
trace _WELCOMEr_WELCOMEs true
fake_trace PRIVATE_REQr_PRIVATE_REQs false
trace_ PRIVATE_REQr_PRIVATE_REQs true
fake_trace FOLLOW_WELCr_FOLLOW_WELCs false
trace FOLLOW_WELCr_FOLLOW_WELCs true

As mentioned in Subsection 2.2, when modelling
large protocols in Tamarin, it might happen to run
into partial deconstruction, and it happened for the
Tweetchain protocol, too. In fact, most of the proofs
of non-trivial lemmas of our model did not termi-
nate, because the tool had troubles in determining the
source of a variable (namely, the tweet ID TID).

To overcome this issue, a source lemma has been
added. Such a lemma helps in the pre-computation
phase, as it adds information useful to the model
checker. In particular, in this case, the source lemma
expresses that whenever a t_tweet (containing the
TID variable) is used, then either the adversary stole
and sent it over the public channel or a TID_chain
rule has been applied before.

Table 2 shows the comparison of the model anal-
ysis with and without the source lemma.

Table 2: Comparison of verification with and without
source lemma.

Lemma Source | No Source
reach FOLLOW_WELCOME_s true non-term
reach_TRANSACTION_s true non-term

fake _trace WELCs_HELLOs false false
trace_WELCs_HELLOs true non-term
fake_trace PR_REQr_PR_REQs false non-term
trace_PR_REQr_PR_REQs true non-term
fake_trace F_WELCr_F_WELCs false non-term
trace_F_WELCr_F_WELCs true non-term

Finally, some data about the analysis times are re-
ported. Far from being a formal performance analy-
sis of Tweetchain model solution, the proposed model
has been solved in batch mode using the follow-
ing HW/SW configuration: a Linux Ubuntu Server
20.04.1 LTS hosting a Tamarin 1.6.0 and running
on a quad-code Intel(R) Xeon(R) CPU E5-2650L v4
1.70GHz, with 8 Gb of RAM. In case of analysis ter-
mination, it took at most few minutes to analyse each
lemma.

787

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

4 DISCUSSION AND
LIMITATIONS

The discussion of the main results of the case study
is reported in three main threads: modelling, analysis
and process.

4.1 Modelling

The language of Tamarin has been proved to be a good
tool for the modelling of security features in commu-
nication protocols.

This fact is because Tamarin provides primitives
oriented to security modelling: elements as hashing,
encryption, fresh value computation, represent a valu-
able aid for the modeller.

On the other hand, the difference in the scope
between Tamarin and other “general-purpose” model
checkers is reflected by some modelling choices that
make Tamarin not perfectly fitting into the problem
here tackled. One of the main limitations of the lan-
guage is constituted by the absence of a way to model
arrays. Such a modelling element is present in other
model checkers — e.g., NuSMV and SPIN — and al-
lows to model hash chains, a crucial passage in the
modelling of the verification steps.

Another passage in the Tweetchain verification
step that is hard to model is the consensus mecha-
nism where a sufficient number of verifiers agree with
the sent transaction. The difficulty relies upon that, as
well as for integers and bytes, there is no possibility to
model arrays of protocol participants; hence, to model
a majority voting would be very hard in Tamarin.

In the proposed model, we have overcome all
these difficulties by reducing the weight of the com-
putational aspects model. In this way, it is easier to
obtain a partial model of the Tweetchain protocol. At
the best of our knowledge, indeed, Tamarin represents
a useful modelling framework for protocols and not
for code: computational aspects are tough to model in
Tamarin, and hence some alternatives should be ex-
plored and, in case, integrated.

A notable alternative is constituted by the State-
ful Applied Pi Calculus (SAPiC) formalism which
promises to improve the modelling power of the
Tamarin Prover with the possibility of dealing with
global protocol state. As multiset rewriting is a “low-
level” specification language with no direct support
for concurrent message passing, encoding protocols
correctly becomes tricky. The difficulties found in
this paper are common to a part of the scientific com-
munity. SAPiC proposes a process calculus which is
a variant of the applied pi-calculus with constructs
for manipulation of a global state by processes run-

788

ning in parallel. The language can be translated into
Tamarin Prover, preserving all security properties ex-
pressible in a dedicated first-order logic (Li et al.,
2019). Expressing the Tweetchain model according
to the SAPiIC notation constitutes one of the future
works of this paper.

4.2 Analysis

A first consideration is that the analysis phase
strongly depends on the model and that a flawed
model always affects its capability to be analysable.
This is a fact for many formal languages, including
Tamarin where the tuning activity of a model is a non-
trivial task.

A great support is given by the interactive mode,
which is an excellent way to analyse (and debug) a
model and to shorten the model tuning task. It is far
from the intentions of Tamarin development group,
in fact, to create a “push-button” technology: using
the interactive mode is the only way to know if there
is some partial deconstruction left. Moreover, it pro-
duces graphs of the proofs of the lemmas, allowing
the users to explore the proof state space and to in-
spect the attack graphs. In this way, the modeller has
a previous feedback on the model enabling a faster
tuning phase.

In particular, for what concerns the partial decon-
struction, sometimes it is difficult to find the perfect
source lemma. In fact, it is necessary to solve partial
deconstruction, but it has to be proved true, as it helps
the tool in the precomputation phase and thus all the
proofs of the model rely on the sources lemmas. The
graphical user interface helps a lot in this task.

Furthermore, the authors have used the version
1.6.0 of Tamarin, that introduced the mechanisms of
automatic generation of source lemmas. This mech-
anism, as well as other restriction-related elements,
can dramatically improve the efficiency of the anal-
ysis process; instead, a less-than-perfect choice of
lemmas and restrictions can easily lead to a non-
terminating analysis process. As the Tamarin devel-
opers highlighted in (Cortier et al., 2020), this feature
only worked with many simple protocols, and thus it
was not useful for our large Tweetchain protocol.

4.3 Process

Formal modelling is an error-prone task, especially
when handling with complex protocols involving one
protocol relying on the security features exposed by
another protocol or security mechanism. As the com-
plexity and the pervasiveness of networked systems
grow, it is more and more uncommon to see “inde-

pendent” security solutions. The Tweetchain confirms
this trend by relying, as an example, on the security of
Twitter, as the description of the protocol prescribes
(see Section 2.119). Asa consequence, there is a need
for a compositional method at both modelling and
analysis levels. By adopting the first level, methods
and tools related to the reuse of existing models (e.g.,
a TLS model) into the wider model using this proto-
col, fosters the generation of larger models. By adopt-
ing the second level of composition, the reuse is at the
analysis level. At the best of our knowledge, there are
just a few attempts to support Tamarin composition at
model-level (Blot et al., 2017).

Another family of mechanisms is related to auto-
matic generation of Tamarin models from high-level
formalisms (e.g., from UML Sequence Diagrams).
Even if there are plenty of approaches able to generate
formal models automatically, there are no scientific
works specifically focusing on Tamarin. A scientific
paper proposes the generation of Tamarin model from
the Alice & Bob notation (Basin et al., 2015): this is
undoubtedly a starting point for future research tasks.
It is necessary to point out that a full automation of
the modelling task can be achieved only in case of
existing compositional approaches.

It seems natural that, even if this paper must limit
this discussion merely on the Tweetchain protocol,
many of the considerations here reported can be ex-
tended to other DLT approaches.

S RELATED WORKS

In the scientific literature, many papers formalise and
analyse blockchain mechanisms. These works are
framed into the general research directions that the
scientific community has drawn on the topic of the
blockchain (Lu, 2019). It is worth to underline that
many of the works dealing with formal verification fo-
cus on smart contracts; in particular, they apply both
traditional and specific methods (e.g., the application
of functional programming techniques as in (Bharga-
van et al., 2016)) to verify Solidity programs or to
define subsets of general purpose programming lan-
guages for securely writing smart contracts in a se-
cure manner. Two surveys of these works are in (Al-
makhour et al., 2020; Liu and Liu, 2019a).

Among all the formal verification techniques,
model checking has received a lot of interest due to
the possible goal of a “push-button” technology able

10The reader should note that also the Twitter au-
thentication mechanisms relies on external protocols as
HyperText Transfer Protocol over Secure Socket Layer
(HTTPS),Transport Layer Security (TLS), OAuth.

On Formalising and Analysing the Tweetchain Protocol

to verify security properties without the human inter-
action. Belonging to this category, there are the fol-
lowing works: (Liu and Liu, 2019b), which models
smart contracts using Colored Petri Nets (CPN); (Os-
terland and Rose, 2020), which translates Solidity
in Promela to verify them by SPIN; (Lahbib et al.,
2020), where the Event-B framework is used for both
modelling and analysing smart contract using both
model checking and simulation; (Nehai et al., 2018),
that models smart contracts with NuSMV.

Another recent and interesting survey starts with
a quantitative analysis of the research works in this
field (Singh et al., 2020). The two most interesting
analysis dimensions are related to the addressed secu-
rity concern aspects and to the used formal method.
Fig. 3 reports the figure from the cited paper high-
lighting that less than one paper over five addresses
security concerns: please note that, in the pie chart,
both the absolute number of the works falling in a cat-
egory and the percentage with respect to the overall
considered works are provided (comma-separated).

Among the papers related to theorem proving that
aim at tackling the problem of security assurance of
blockchain protocols, we mention the work (Sun and
Yu, 2020) where the famous Coq theorem prover has
been successfully adopted.

At the best of our knowledge, none of these works
explicitly addresses cryptographic issues even if, the
work published in (Li et al., 2019) models and anal-
yses a smart contract protocol using Tamarin Prover.
Furthermore, authors of (Li et al., 2019) still focus
on the internal smart contract mechanisms while the
submitted paper is on the exchange protocol. An-
other missing aspect of the blockchains this work at-
tempts to model and analyse is related to the verifica-
tion mechanism of transaction chains.

6 CONCLUSIONS

This paper has presented a concrete experience in
formal validation of a blockchain based protocol in
Tamarin. This experience confirmed the value of the
Tamarin Prover as a valid tool for the modelling and
the analysis of security mechanisms; but, differently
from other case studies, the Tweetchain protocol puts
in evidence some limitations of the tool.

Section 4 reports a discussion on the limit of the
approach proposed in this paper and has also high-
lighted which are the points where to focus future re-
search effort. Among these, the first points where to
focus research attention are: the definition of an au-
tomated methodology deriving formal models from
high-level formalisms (e.g., UML, Domain Specific

789

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

Issues and vulnerability aspects of smart contracts tackled

1,3%

= Contract Functionality Verification
= Privacy
Security
Scalability
= Bug bounty
= Trustworthy Data Feeding

= Blockchain consensus protocol
correctness

Figure 3: The issues and vulnerability aspects of smart contracts tackled by formalization approaches (Singh et al., 2020).

Modeling Language (DSML)) by using Model Driven
Engineering (MDE) approaches; the usage of differ-
ent model checkers that support array type naturally
and where it would be simpler to model chain of
hash codes (e.g. Promela and SPIN (Ben-Ari, 2008),
NuSMYV (Cimatti et al., 2002), UPPAAL (Behrmann
et al., 2004) — where also timing issues could be con-
sidered).

ACKNOWLEDGEMENTS

The work of Mariapia Raimondo was formerly
funded by the grant “Orio Carlini” for young re-
searchers 2019 — GARR Consortium (Italy). Cur-
rently, she is granted by INPS — Istituto Nazionale di
Previdenza Sociale (Italy) — with the PhD program
— XXXVl cycle.

REFERENCES

Almakhour, M., Sliman, L., Samhat, A., and Mellouk, A.
(2020). Verification of smart contracts: A survey. Per-
vasive and Mobile Computing, 67.

Basin, D., Keller, M., Radomirovi¢, S., and Sasse, R.
(2015). Alice and bob meet equational theories. Lec-
ture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 9200:160-180.

Basin, D., Radomirovic, S., Dreier, J., Sasse, R., Hirschi,
L., and Stettler, V. (2018). A formal analysis of 5g au-
thentication. In Proceedings of the ACM Conference

on Computer and Communications Security, pages
1383-1396.

790

Behrmann, G., David, A., and Larsen, K. (2004). A tu-
torial on uppaal. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
3185:200-236.

Ben-Ari, M. (2008). Principles of the SPIN model checker.
Springer-Verlag London.

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Golla-
mudi, A., Gonthier, G., Kobeissi, N., Kulatova, N.,
Rastogi, A., Sibut-Pinote, T., Swamy, N., and Zanella-
Béguelin, S. (2016). Formal verification of smart con-
tracts: Short paper. In PLAS 2016: Proceedings of
the 2016 ACM Workshop on Programming Languages
and Analysis for Security, page 91-96, New York, NY,
USA. Association for Computing Machinery.

Blot, E., Dreier, J., and Lafourcade, P. (2017). Formal Anal-
ysis of Combinations of Secure Protocols. In /0th In-
ternational Symposium on Foundations & Practice of
Security, page 15, Nancy, France.

Buccafurri, F., Lax, G., Nicolazzo, S., and Nocera, A.
(2017a). Overcoming limits of blockchain for iot ap-
plications. In ACM International Conference Pro-
ceeding Series, volume Part F130521.

Buccafurri, F., Lax, G., Nicolazzo, S., and Nocera, A.
(2017b). Tweetchain: An alternative to blockchain for
crowd-based applications. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
10360 LNCS:386-393.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pi-
store, M., Roveri, M., Sebastiani, R., and Tacchella,
A. (2002). Nusmv 2: An opensource tool for sym-
bolic model checking. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics),
2404:359-364.

Cortier, V., Delaune, S., and Dreier, J. (2020). Automatic
generation of sources lemmas in tamarin: Towards au-
tomatic proofs of security protocols. Lecture Notes in
Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioin-
Sformatics), 12309 LNCS:3-22.

Dai, F, Shi, Y., Meng, N., Wei, L., and Ye, Z. (2017).
From bitcoin to cybersecurity: A comparative study
of blockchain application and security issues. In
2017 4th International Conference on Systems and In-
formatics, ICSAI 2017, volume 2018-January, pages
975-979.

Dolev, D. and Yao, A. (1983). On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198-208.

Kumar, N. and Mallick, P. (2018). Blockchain technology
for security issues and challenges in iot. In Procedia
Computer Science, volume 132, pages 1815-1823.

Lahbib, A., Ait Wakrime, A., Laouiti, A., Toumi, K., and
Martin, S. (2020). An event-b based approach for
formal modelling and verification of smart contracts.

Advances in Intelligent Systems and Computing, 1151
AISC:1303-1318.

Lee, M. and Jang, D. (2020). A survey of blockchain se-
curity issues. JP Journal of Heat and Mass Transfer,
2020(Special Issue 1):29-35.

Li, X., Su, C., Xiong, Y., Huang, W., and Wang, W. (2019).
Formal verification of bnb smart contract. In Proceed-
ings - 5th International Conference on Big Data Com-
puting and Communications, BIGCOM 2019, pages
74-78.

Lin, L.-C. and Liao, T.-C. (2017). A survey of blockchain
security issues and challenges. International Journal
of Network Security, 19(5):653-659.

Liu, J. and Liu, Z. (2019a). A survey on security verification
of blockchain smart contracts. IEEE Access, 7:77894—
77904.

Liu, Z. and Liu, J. (2019b). Formal verification of
blockchain smart contract based on colored petri net
models. In Proceedings - International Computer
Software and Applications Conference, volume 2,
pages 555-560.

Lu, Y. (2019). The blockchain: State-of-the-art and research
challenges. Journal of Industrial Information Integra-
tion, 15:80-90.

Meier, S., Schmidt, B., Cremers, C., and Basin, D. (2013).
The TAMARIN prover for the symbolic analysis of
security protocols. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 8044
LNCS:696-701.

Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic
cash system.

Nehai, Z., Piriou, P.-Y., and Daumas, F. (2018). Model-
checking of smart contracts. In Proceedings - IEEE
2018 International Congress on Cybermatics: 2018
IEEE Conferences on Internet of Things, Green Com-
puting and Communications, Cyber, Physical and So-
cial Computing, Smart Data, Blockchain, Computer
and Information Technology, iThings/GreenCom/CP-
SCom/SmartData/Blockchain/CIT 2018, pages 980—
987.

Osterland, T. and Rose, T. (2020). Model checking smart
contracts for ethereum. Pervasive and Mobile Com-
puting, 63.

On Formalising and Analysing the Tweetchain Protocol

Panwar, A. and Bhatnagar, V. (2020). Distributed ledger
technology (dlt): The beginning of a technologi-
cal revolution for blockchain. In 2nd International
Conference on Data, Engineering and Applications
(IDEA), pages 1-5.

Singh, A., Parizi, R., Zhang, Q., Choo, K.-K., and Dehghan-
tanha, A. (2020). Blockchain smart contracts formal-
ization: Approaches and challenges to address vulner-
abilities. Computers and Security, 88.

Sun, T. and Yu, W. (2020). A formal verification frame-
work for security issues of blockchain smart contracts.
Electronics (Switzerland), 9(2).

Whitefield, J., Chen, L., Kargl, F., Paverd, A., Schneider, S.,
Treharne, H., and Wesemeyer, S. (2017). Formal anal-
ysis of V2X revocation protocols. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 10547 LNCS:147-163.

Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne,
H., and Wesemeyer, S. (2019). A symbolic analysis of
ECC-based direct anonymous attestation. In Proceed-
ings - 4th IEEE European Symposium on Security and
Privacy, EURO S and P 2019, pages 127-141.

Yu, Y., Li, Y., Tian, J., and Liu, J. (2018). Blockchain-based
solutions to security and privacy issues in the internet
of things. IEEE Wireless Communications, 25(6):12—
18.

791

