
Fast Human Activity Recognition 

Shane Reid1, Sonya Coleman1, Dermot Kerr1, Philip Vance1 and Siobhan O’Neill2 

1School of Computing, Engineering and Intelligent Systems, Ulster University Magee Campus,  
Derry/Londonderry, Northern Ireland 

2School of Psychology, Ulster University Coleraine Campus, Coleraine, Northern Ireland 

Keywords: Social Signal Processing, Activity Recognition, MLP, Key Points, Feature Extraction. 

Abstract: Human activity recognition has been an open problem in computer vision for almost two decades. In that time 
there have been many approaches proposed to solve this problem, but very few have managed to solve it in a 
way that is sufficiently computationally efficient for real time applications. Recently this has changed, with 
keypoint based methods demonstrating a high degree of accuracy with low computational cost.  These 
approaches take a given image and return a set of joint locations for each individual within an image. In order 
to achieve real time performance, a sparse representation of these features over a given time frame is required 
for classification. Previous methods have achieved this by using a reduced number of keypoints, but this 
approach gives a less robust representation of the individual’s body pose and may limit the types of activity 
that can be detected. We present a novel method for reducing the size of the feature set, by calculating the 
Euclidian distance and the direction of keypoint changes across a number of frames.  This allows for a 
meaningful representation of the individuals movements over time. We show that this method achieves 
accuracy on par with current state of the art methods, while demonstrating real time performance. 

1 INTRODUCTION 

Human activity recognition, defined as the challenge 
of classifying an individual’s activity from a video, is 
one of the oldest problems in the field of video 
processing, having been studied for almost two 
decades. In that time there has been a number of 
proposed approaches to solving this problem, with the 
majority based on either spatio-temporal features 
(Dollar et al., 2005; Laptev, 2004; Zelnik-Manor & 
Irani, 2001), optical flow (Efros et al., 2003; Guo et 
al., 2010; Ke et al., 2005; Schüldt et al., 2004; Wang 
et al., 2011) or deep learning (D’Sa & Prasad, 2019; 
Lee & Lee, 2019; Sheeba & Murugan, 2019; Subedar 
et al., 2019). These methods have been shown to 
achieve high accuracy on common benchmark 
datasets but come with a significant computational 
cost. As such, their use for real time applications is 
limited.  

Feature extraction is an approach to reduce 
computational cost in image and video processing, for 
example, by compressing an image into a sparse set of 
interest points (Camarena et al., 2019). Early attempts 
to do this used general interest point detectors such as 
SIFT and SURF. However, these methods had a 

number of drawbacks, most notably that there was no 
agreed standard for human representation (Sun et al., 
2010). To solve these problems, specialized “key 
point” detectors were developed, which can be applied 
to an image and a set of locations of key body joints 
for each individual within the image is returned. Two 
of the most popular approaches are OpenPose (Cao et 
al., 2017) and AlphaPose (Xiu et al., 2018). 

Recently, (Camarena et al., 2019) presented an 
approach for fast human activity recognition, based on 
the method used in (Wang et al., 2013). In order to 
speed up this approach, they used a reduced feature set 
of six keypoints (those for the neck, right wrist, left 
elbow, left wrist, mid hip and left ankle), generated 
using OpenPose (Cao et al., 2017). In doing so they 
reduced the number of features used by approximately 
a factor of 5 and achieved an approximate 8 times 
improvement in speed over the original method 
(Wang et al., 2013), with a reduction in accuracy of 
only 1.4%. This enabled the approach to run 
sufficiently fast for real time classification, a 
breakthrough for human activity recognition.  In order 
to achieve this speed gain, their approach only 
sampled a small number of body keypoints. However, 
by doing this, they have a less generalizable 
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representation of the individuals body pose; this may 
limit the type of activity that can be detected. For 
example, in a situation where it is necessary to detect 
whether an individual is kicking with their right leg, 
this approach would struggle as they have extracted no 
keypoints relating to the right leg. In contexts where it 
is necessary to detect a large range of different actions, 
using a reduced set of keypoints may not be feasible.  

Recently the work of (Reid et al., 2020) showed 
that by reducing the framerate and sample size used 
for keypoint based activity recognition, the 
computational cost can be reduced enough to perform 
real time activity recognition on upwards of 14 
individuals simultaneously.  However, this approach 
also comes with downsides, the most obvious of 
which is that by reducing the sample rate in this way, 
it may be difficult to detect actions which are 
characterized by rapid movements, such as clapping, 
where the movement may be completed between 
frames being sampled. Earlier methods for 
overcoming this issue using traditional keypoints 
involved measuring keypoint trajectories, but these 
approaches are limited by the fact that they are unable 
to track specific landmarks (e.g elbows, hands etc.) 
(Matikainen et al., 2009). Later improvements to such 
methods achieved impressive accuracies on a number 
of benchmark datasets but were still hampered by poor 
run-time performance (Jain et al., 2013). Due the 
recent breakthroughs in the area of human landmark 
detection, keypoint trajectories are once again coming 
into focus as a viable method for human action 
recognition (Choutas et al., n.d.; Yi & Wang, 2018). 

In this paper we present a keypoint trajectories 
based approach that builds on the approach of (Reid et 
al., 2020), where the set of key points for an 
individual, extracted over a given time period, are 
converted into a feature set of “keypoint changes”. 
These keypoint changes encode a history of the 
Euclidian distance and the direction of keypoint 
movement, measured over time. We measure the 
keypoint changes using a reduced sample rate and 
reduced sample size, but we also measure the short 
term keypoint changes between concurrent frames.  In 
this way we still maintain a sparse approach of (Reid 
et al., 2020) but are also able to detect actions which 
are characterised by rapid movements. 

The remainder of the paper is organized as 
follows. In Section 2 we outline the proposed 
approach, and the experimental design. In Section 3 
we present the performance evaluation results and 
discussion. In Section 4 we compare the results with 
other state-of-the-art methods. Finally, in Section 5 we 
conclude the paper and discuss possible future work.  

2 METHODOLOGY 

This section will describe the proposed keypoint 
based approach for fast human activity recognition 
based on the history of keypoint changes over time in 
terms of the Euclidian distance and direction. We use 
OpenPose for keypoint extraction (Cao et al., 2017) 
as it provides a high level of accuracy with very low 
computational cost that remains constant when more 
individuals are detected, unlike with other methods 
such as AlphaPose (Xiu et al., 2018).  

For each individual within an image OpenPose 
extracts a set of 25 body keypoints. This method 
works by first using a feedforward neural network to 
predict a set of 2D confidence maps of body part 
locations and a set of 2D vector fields of part affinity 
fields (PAFs) which encode the degree of association 
between parts. Then these confidence maps and the 
PAFs are parsed by a greedy inference method to 
output the 2D keypoints for all people in the image. 
For more details on the model architecture please see 
(Cao et al., 2017). 

It is worth noting, however, that the novel 
contributions of this paper are not reliant on any 
specific keypoint estimation approach and can be 
implemented with any methods, such as AlphaPose 
(Xiu et al., 2018), Megvii (Cai et al., 2019), or similar 
techniques. Regardless of the method used for 
keypoint extraction, each keypoint is defined as:  𝑘 = ሼ𝑥, 𝑦ሽ (1)

where 𝑥 and 𝑦 are the image coordinates of the 
extracted keypoint. We define the Euclidian distance 
between two keypoints 𝑘𝑖 and 𝑘𝑗 as: 

∆൫𝑘𝑖, 𝑘𝑗൯ = ට൫𝑥𝑖 − 𝑥𝑗൯2 + ቀ𝑦𝑖 − 𝑦𝑗ቁ2
(2)

and the angle between them as: 𝜃൫𝑘𝑖, 𝑘𝑗൯ = 𝑎𝑡𝑎𝑛2 ቆ𝑦𝑖 − 𝑦𝑗𝑥𝑖 − 𝑥𝑗ቇ (3)

where atan2 is the function which returns the 
unambiguous angle θ between the two keypoints on 
the Euclidian plane. We can then define the keypoint 
change between these two keypoints as: 𝑐൫𝑘,𝑘൯ = ൛∆൫𝑘, 𝑘൯, 𝜃൫𝑘, 𝑘൯ൟ (4)

For two sets of keypoints L and M extracted for an 
individual at time t and t-λ defined as: 𝐿௧ = ൛𝑙ଵ, 𝑙ଶ, 𝑙ଷ … 𝑙ఊൟ (5)𝑀௧ିఒ = ൛𝑚ଵ, 𝑚ଶ, 𝑚ଷ … , 𝑚ఊൟ (6)
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where 𝜆 is the time difference in seconds and 𝛾 is the 
number of keypoints that are extracted (as we are 
using OpenPose the value for 𝛾 used is 25). The set 
of keypoint changes between L and M are calculated 
as: 𝐶ሺ𝐿௧, 𝑀௧ିఒሻ = ൛𝑐ሺ𝑙ଵ, 𝑚ଵሻ, 𝑐ሺ𝑙ଶ, 𝑚ଶሻ, 𝑐ሺ𝑙ଷ, 𝑚ଷሻ, … 𝑐൫𝑙ఊ, 𝑚ఊ൯(7)

To compute the coarse representation of the 
individual’s movement (in our experiments this was 
done using a 0.2s time period) we calculate 15 such 
sets of keypoint changes in order to build up a 
temporal history. The final feature vector at time t is 
defined as: 𝐶𝑜𝑎𝑟𝑠𝑒௧ = ሼ 𝐶ሺ𝐿௧, 𝑀௧ିఒሻ, 𝐶ሺ𝐿௧ିఒ, 𝑀௧ିଶఒሻ, … 𝐶ሺ𝐿௧ିଵସఒ, 𝑀௧ିଵହఒሻሽ (8)

To compute the fine-grained representation of an 
individual’s movement, again a set of 15 such 
keypoint changes is used in order to build up a 
temporal history of the individuals movement over 
time.  This feature vector is defined as: 𝐹𝑖𝑛𝑒௧ = ሼ 𝐶ሺ𝐿௧, 𝑀௧ିఌሻ, 𝐶ሺ𝐿௧ିఒ, 𝑀௧ିఒିఌሻ, … 𝐶ሺ𝐿௧ିଵସఒ, 𝑀௧ିଵସఒିఌሻሽ (9)

 
Figure 1: Graph representation of an MLP. The weights are 
represented by the edges of the graph.   

where 𝜀 is defined as a short time period such that 𝜀 ൏𝜆 (in our experiments the value for 𝜆 was 0.2 seconds 
and the value for 𝜀 was 0.04 seconds). 
For the combined approach, the feature vector is 
simply defined as: 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑௧ = ሼ𝐶𝑜𝑎𝑟𝑠𝑒௧, 𝐹𝑖𝑛𝑒௧ሽ (10)

These features were subsequently used to train a 
multi-layer perceptron for classification.  

Multilayer perceptron (MLP) refers to a 
feedforward artificial neural network. Arguably one 
of the simplest forms of an artificial neural network, 
an MLP consists of at least three layers of neurons, an 
input layer, a hidden layer and an output layer.  Based 
on the biological neural networks that make up the 

brain (Minsky & Papert, 1988), MLPs are one of the 
oldest methods for supervised machine learning. 
Despite this they are still used for a large number of 
problems, and serve as a foundation for deep learning 
(Lin, Liang, 2020). 
   Figure 1 shows a simple graph representation of the 
MLP algorithm, which can be briefly described at 
follows.  For an input vector of length I feeding into 
a hidden layer of J neurons, we define a set of weights 𝑤, , where 𝑗 refers to the neuron in question and 𝑖 
refers to the neuron in the previous layer to which j is 
connected. Formally for input vector X defined as: 𝑋 = ሼ𝑥: 𝑥 ∈ ℝூሽ (11)

The weights W with J rows and I columns can be 
defined as: 𝑊 = ሼ𝑤: 𝑤 ∈ ℝൈூሽ (12)

and the set of biases B defined as: 𝐵 = ሼ𝑏: 𝑏 ∈ ℝሽ (13)

The net inputs to a given neuron j are then calculated 
as the sum of the inputs multiplied by their respective 
weights plus the bias value:  

𝑛𝑒𝑡ሺ𝑗ሻ =  𝑥. 𝑤 + 𝑏ூ
ୀଵ (14)

The net output is then calculated using an activation 
function F. In this paper we use a rectified linear 
activation function defined as: 𝐹ሺ𝑥ሻ = maxሺ0, 𝑥ሻ (15)

Therefore, the output for a given neuron j can be 
expressed as: 𝑦 = 𝐹൫𝑛𝑒𝑡ሺ𝑗ሻ൯ (16)

For a network with more than one hidden layer, the 
output from the previous layer is used as the input for 
the next layer. Thus, each hidden layer has its own set 
of biases and weights. The final layer of the network 
is the output layer and outputs the prediction of the 
network. A SoftMax activation function was used on 
the final layer to determine the prediction.  

In order to train the network, the weights and 
biases are updated via backpropagation, using a 
stochastic gradient decent optimizer in order to 
minimize the network loss function.  In this paper we 
use a sparse categorical cross entropy loss function 
defined as: 

𝐶𝐶𝐸ሺ𝑦, 𝑦ොሻ = − 1𝑁  𝑦 ∙ 𝐿𝑜𝑔൫𝑦ො൯ே
ୀ (17)
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where N is the number of elements in the training set, 𝑦 is the ground truth, 𝑦ො is the estimate, log is the 
natural log and ∙ is the inner product. The network is 
trained over a maximum of 500 epochs, with early 
stopping used to prevent overfitting. 

3 EXPERIMENTAL SETUP 

For the first experiment, a coarse representation of the 
keypoint changes was used, as defined in equation 8. 
The value used for λ was 0.2 seconds. This results in 
an overall temporal history of 3 seconds, and the 
resulting feature vector with 750 features.  

For the second experiment, the fine-grained 
representation defined in equation 9 was used. The 
value used for λ was 0.2 seconds and the value used for 
ε was 0.04. This enabled a finer grained representation 
of the instantaneous change of the keypoint, while 
maintaining a feature vector of 750 features.  

For the final experiment, the combined approach 
described in equation 10 was used. Again, the value for 
λ was 0.2 seconds and the value for ε was 0.04 seconds. 
The resulting feature vector contained a total of 1500 
features. This enabled a more robust representation of 
the keypoint changes over the given time period.  

In each of the three experiments, these features 
were subsequently used to train an MLP for activity 
recognition.  The network has four hidden layers, 
each containing 450 neurons with a rectified linear 
activation function. These parameters were optimized 
using a grid search in order to maximize classification 
accuracy. As discussed in Section 2, the network was 
trained using a stochastic gradient descent optimizer 
to minimize a sparse categorical cross entropy loss 
function.  

For our experiments, the data were split using 
leave-one-out cross validation as recommended by 
(Gao, Z., Chen, M. Y., Hauptmann, A. G., & Cai, 
2010), where the set of videos for one individual is 
used for testing and the rest are used for training. The 
task therefore is to classify the activity exhibited by 
an unknown individual. The model was trained over 
a maximum of 500 epochs. In order to prevent 
overfitting, early stopping was used if the training 
accuracy failed to increase after 10 epochs. 

4 ACCURACY EVALUATION 

We evaluated the approaches on two simple but well-
known datasets, the KTH dataset (Schüldt et al., 
2004) and Weizmann dataset (Gorelick et al., 2007). 

The KTH dataset contains short video clips of 6 
distinct actions: Walking, Jogging, Running, Boxing, 
Clapping and Waving. For each activity there are 25 
sets of videos each containing a different individual. 
Each video set contains 4 videos, each with a different 
background: outdoors, outdoors with a different 
scale, outdoors with different clothes and indoors.  
This results in a total of 600 video clips, with an 
average length of 4 seconds, recorded at a rate of 
25fps. The videos have a resolution of 160x120 
pixels. Figure 2 shows example frames from the 
dataset. The results were validated using “leave one 
out” cross validation, where 24 of the video sets were 
used for training and one set was used for testing. The 
OpenPose library (Cao et al., 2017) was used for 
keypoint extraction as it provides a high degree of 
accuracy with real time performance. 

  
Boxing Clapping 

 
Waving Walking 

  
Jogging Running 

Figure 2: Example frames of the six activities from the KTH 
dataset. 

The confusion matrix for the first experiment 
(coarse approach), where the keypoint changes were 
each calculated over a time period of 0.2 seconds, is 
presented in Table 1. These results show that this 
approach achieves a classification accuracy of > 93% 
for four of the six activities. The average accuracy 
across all activities for this approach was 92.7%. The 
approach did struggle to differentiate between the 
jogging and running activities as these activities 
appear to be quite similar. However, this proposed 
approach was still able to separate these two classes 
with over 70% accuracy. 

The results for the second experiment (fine 
grained), where the keypoint changes were calculated 
over a 0.04 second time period, are presented in Table 
2. As can be seen from Table 2, the accuracy of the 

IMPROVE 2021 - International Conference on Image Processing and Vision Engineering

94



approach decreased when the changes were 
calculated over this shorter time period and the 
approach again struggled to differentiate between the 
running and jogging activities. However, the 
accuracy of the three non-locomotion activities 
(Boxing, Clapping and Waving), while lower than the 
coarse 0.2 second approach, remained over 93%. The 
average accuracy of this approach was 89.8%, a 
reduction of ~3% compared to the coarse approach in 
table 1. We postulate that this slight reduction in 
accuracy may be due to the fine grain keypoint 
changes not encoding as much temporal information 
about the movement as the coarse representation. 

Results for the third experiment (combined 
approach) where the keypoint changes were 
calculated over both a 0.2 second time period and 
0.04 seconds are presented in Table 3. These results 
show that using both sets of keypoint changes 
resulted in an increase in classification accuracy for 
all six classes. The classification accuracy for the 
three non-locomotive classes is now over 96%.  

Additionally, the accuracies for the three 
locomotive activities are all over 80%. It is still 
difficult to differentiate between the jogging and 
running classes. However, this combined approach is 
more accurate than both the coarse and fine grained 
approaches individually. The average accuracy for 
this approach was 94.2%. This is an increase of 
~1.6% over the coarse approach, and ~4.6% over the 
fine-grained approach.    

It is worth noting that the approach of (Reid et al., 
2020) achieved a total accuracy of 90.2% on this 
dataset. Our coarse approach detailed above 
outperforms their method by >2% and the combined 
approach improves upon that by ~4%, while still 
using a reduced sample rate for action recognition.  
To demonstrate that our proposed approach is not 
dataset dependent, we also evaluated it using the 
Weizmann dataset (Gorelick et al., 2007). This 
dataset contains short video clips of 9 distinct actions: 
walking, running, jumping, stepping sideways, 
bending, waving with one hand, waving with two 
hands, jumping in place, jumping jack and skipping. 
For each activity there are 10 sets of videos, each 
containing a different individual. This results in a 
dataset of 90 videos, recorded at a rate of 50fps 
interlaced. The videos had a resolution of 180 x 144 
pixels. Again, “leave one out” cross validation was 
used to verify the results, with one set used for testing 
and nine sets used for training. 

The results from the first experiment (coarse 
approach), where the keypoint change was measured 
over 0.2 seconds are presented in Table 4. As can be 
seen, the accuracy of the approach for the Weizman  
 

Table 1: Coarse Approach.  

Coarse Approach 
Walk Jog Run Box Clap Wave

Walk 94.0 4.7 0.57 0.45 0.18 0.11 
Jog 10.5 78.7 10.1 0.41 0.12 0.14 
Run 4.02 22.4 72.8 0.35 0.17 0.18 
Box 1.23 0.23 0.12 96.8 1.14 0.52 
Clap 0.83 0.13 0.1 0.83 94.9 3.2 
Wave 0.63 0.12 0.08 0.41 2.68 96.1 

Total Accuracy 92.7% 

Table 2: Fine Grained approach. 

Fine Grained approach 
Walk Jog Run Box Clap Wave

Walk 87.9 13.0 2.33 0.88 0.36 0.12 
Jog 8.05 67.5 22.8 0.34 0.26 0.07 
Run 1.25 17.5 72.3 0.24 0.24 0.05 
Box 1.62 1.07 0.93 94.8 1.32 1.31 
Clap 0.62 0.38 0.74 1.88 93.9 3.02 
Wave 0.60 0.58 0.87 1.87 3.89 95.4 

Total Accuracy 89.8% 

Table 3: The combined approach accuracy results for the 
KTH dataset. 

Combined approach 
Walk Jog Run Box Clap Wave

Walk 94.3 4.49 0.65 0.37 0.12 0.08 
Jog 7.61 82.6 9.41 0.29 0.08 0.06 
Run 2.44 17.0 80.1 0.31 0.1 0.11 
Box 1.1 0.12 0.06 97.4 0.76 0.58 
Clap 0.2 0.03 0.02 0.55 96.4 2.81 
Wave 0.15 0.02 0.01 0.35 2.34 97.1 

Total Accuracy 94.2% 

dataset was significantly lower than for the previous 
dataset. This may be due to two factors: firstly the size 
of the dataset was significantly smaller, only 90 
videos as opposed to 600 in the KTH dataset, and 
secondly the duration of the videos was much shorter, 
averaging ~2 seconds per activity rather than the ~4  
seconds for the KTH dataset. This makes it difficult 
for our approach to build a complete history of the 
keypoint changes for the action. However, the 
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approach still achieved an accuracy of ~70%, with the 
majority of classes being classified correctly.  

Like the KTH dataset, it was difficult for the 
coarse approach differentiate between activities 
which were similar in appearance. The two waving 
activities, waving with one hand and waving with two 
hands, were very similar, with below 50% accuracy 
for both activities. Additionally, the three locomotive 
activities, skipping, running, and walking had a large 
degree of similarity with each other, as with the KTH 
dataset. The skipping activity also had a large degree 
of similarity to the jumping activity.  

The results for the second experiment (fine grained 
approach) where the keypoint change was measured 
over 0.04 seconds, are presented in Table 5. As can be 
seen, the average accuracy of this approach was 
approximately 2% higher than for the coarse 0.2 
second approach.  The confusion between the two hand 
waving classes was significantly lower than with the 
coarse approach. However, the confusion between the 
skipping and running classes was significantly higher. 
These results indicate that the effectiveness either 
coarse or fine grained keypoint changes depends on the 
activities which are being classified.   

The results for the third experiments (combined 
approach), where the keypoint changes were 
calculated over 0.2 seconds (coarse) and 0.04 seconds 
(fine) are presented in Table 6. As can be seen, this 
approach outperformed both other approaches by a 
significant margin. The average classification 
accuracy was ~7% higher than the fine-grained 
approach, and ~9% more accurate than the coarse 
approach. The accuracy for every activity was 
significantly higher than for either method 
individually. There is still some confusion between 
classes which are similar in appearance, with the skip 
class having high confusion with both the running and 
jumping classes. However, this was significantly 
lower than for the other two approaches individually.  

These results show that using the combined key 
point changes can result in a significant improvement 
in classification accuracy while still maintaining a 
sparse representation of the video frame. This may be 
because certain activities are easily identifiable when 
observed over a long period, whereas other activities 
are more easily identified over a shorter period. For 
example, the two hand waving activities were more 
easily identified when keypoint changes are 
calculated over a shorter time period, whereas the 
locomotion activities were more easily identified over 
a larger time period. By calculating the changes over 
both short and long time periods, the MLP can more 
easily differentiate between both sets of activities, 
thus improving the average accuracy. 

Table 4: Coarse approach.  

 

Table 5: Fine grained approach. 

 

Table 6: The combined approach accuracy results for the 
Weizman dataset. 

 

5 RUNTIME EVALUATION 

We computed the computation time of the combined 
approach using the Weizmann dataset which consists 
of 5701 frames. Experiments were conducted on an 
Intel XeonE5-1620 PC running Ubuntu version 
18.04.3. The GPU used was a Nvidia Titan Xp with 
16GB RAM. This is consistent with other approaches 
such as  (Camarena et al., 2019) who also used GPU 
accelerated hardware when testing the runtime of 
their approach. The time taken for the OpenPose 
library to compute the key points for the entire set was 
227.3 seconds. This is a rate of 39.8ms per frame and 
represents the most significant bottleneck of this 
approach. The time taken to compute the set of 
keypoint changes for the entire dataset is 1.7 seconds; 
approximately 0.3ms per frame. Additionally, it takes 
the MLP algorithm 1 second to classify the activities 
for the test set, which consists of 701 frames. 
Therefore, classification is performed at a rate of 
1.39ms. The total computation time for the entire 
pipeline is 41.5ms per frame; 24.0 frames per second. 
The runtime for the KTH dataset was also calculated 
and found to be the same. Hence, the approach is fast 
enough to perform activity recognition in real time. 

Bend Jack Jump P.Jump Run Slide Skip Walk Wave 1 Wave 2
Bend 85.3% 0.3% 6.3% 0.2% 0.2% 0.9% 1.9% 0.3% 1.7% 3.0%
Jack 0.3% 92.0% 0.5% 5.5% 0.0% 1.0% 0.0% 0.0% 0.4% 0.3%

Jump 1.7% 0.7% 77.9% 0.0% 0.7% 2.2% 13.3% 2.4% 0.4% 0.7%
P.Jump 0.0% 11.2% 0.7% 76.4% 0.0% 1.1% 0.0% 0.0% 0.4% 10.2%

Run 0.0% 0.2% 6.6% 0.0% 51.2% 4.4% 18.0% 19.0% 0.2% 0.2%
Slide 0.0% 0.5% 3.6% 0.0% 4.1% 84.0% 2.3% 2.9% 2.0% 0.7%
Skip 1.0% 0.2% 19.2% 0.0% 13.9% 3.1% 46.3% 10.6% 5.3% 0.4%
Walk 0.0% 0.0% 2.7% 0.0% 10.5% 1.8% 5.2% 79.7% 0.1% 0.0%

Wave 1 2.5% 1.2% 1.7% 1.5% 0.0% 2.0% 1.4% 0.5% 46.4% 42.9%
Wave 2 5.4% 3.8% 1.1% 5.1% 0.0% 2.1% 1.1% 0.0% 32.9% 48.4%

Total Accuracy 69.6%

Bend Jack Jump P.Jump Run Slide Skip Walk Wave 1 Wave 2
Bend 86.5% 0.9% 0.0% 6.4% 0.0% 0.2% 1.3% 3.0% 0.5% 1.3%
Jack 0.4% 90.5% 0.0% 7.8% 0.0% 0.1% 0.7% 0.0% 0.0% 0.4%

Jump 0.0% 0.0% 60.9% 8.7% 2.0% 0.0% 24.5% 3.9% 0.0% 0.0%
P.Jump 0.6% 6.1% 0.2% 91.4% 0.0% 0.0% 0.9% 0.0% 0.0% 0.7%

Run 0.0% 0.0% 7.1% 9.8% 40.5% 0.7% 35.1% 6.8% 0.0% 0.0%
Slide 0.0% 8.8% 0.9% 9.0% 0.5% 77.9% 1.8% 1.1% 0.0% 0.0%
Skip 0.0% 0.0% 20.0% 8.2% 24.7% 0.4% 37.6% 9.2% 0.0% 0.0%
Walk 0.1% 0.0% 3.1% 5.6% 1.4% 0.6% 4.7% 84.2% 0.1% 0.1%

Wave 1 0.6% 0.0% 0.0% 6.3% 0.0% 0.6% 0.8% 2.3% 73.4% 16.1%
Wave 2 3.7% 1.9% 0.2% 8.2% 0.0% 0.3% 1.0% 0.8% 29.8% 54.2%

Total Accuracy 71.9%

Bend Jack Jump P.Jump Run Slide Skip Walk Wave 1 Wave 2
Bend 90.1% 0.3% 2.2% 0.0% 0.3% 1.4% 2.3% 0.3% 1.6% 1.4%
Jack 0.3% 95.9% 0.1% 1.6% 0.0% 1.2% 0.0% 0.0% 0.4% 0.4%

Jump 1.3% 0.4% 78.6% 0.2% 2.4% 2.4% 14.0% 0.4% 0.0% 0.2%
P.Jump 0.0% 2.8% 0.2% 94.4% 0.0% 1.7% 0.0% 0.0% 0.0% 0.9%

Run 0.2% 0.0% 0.7% 0.0% 56.1% 3.2% 22.9% 16.6% 0.0% 0.2%
Slide 0.0% 0.2% 2.3% 0.0% 2.3% 92.1% 0.9% 1.1% 0.7% 0.5%
Skip 1.2% 0.0% 17.8% 0.0% 18.6% 2.4% 49.8% 9.6% 0.0% 0.6%
Walk 0.0% 0.0% 1.1% 0.0% 8.9% 2.0% 2.4% 85.6% 0.0% 0.0%

Wave 1 0.8% 0.0% 0.5% 0.2% 0.0% 3.2% 0.5% 0.2% 75.8% 19.0%
Wave 2 2.1% 2.4% 0.8% 0.3% 0.0% 3.2% 1.6% 0.0% 30.6% 59.0%

Total Accuracy 79.0%
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Table 7 presents comparative results for the 
proposed approach and other state of the art 
approaches using the KTH dataset. Table 7 shows that 
the approach of Wang et al., (Wang et al., 2013) 
achieves an accuracy of 95.7%. While this is higher 
than the proposed approach, the computational cost of 
this method prevents it from running in real time. We 
also compare our approach with that in (Reid et al., 
2020) who used a reduced sample rate and sample 
size to achieve real time performance using body 
keypoints. The proposed approach performs 
significantly better, indicating that the use of keypoint 
changes is a more robust alternative to simply 
reducing the sample rate and sample size while 
maintaining the real-time performance.  

Table 7: Comparison of approaches on the KTH dataset. 

Performance evaluation using the KTH 
dataset 

Approach Accuracy Speed/FPS 
(Wang et al., 2013) 95.7% 3 
(Reid et al., 2020) 90.2% 24 

Keypoint Changes 94.2% 24 

6 CONCLUSION 

We have presented a method for human activity 
recognition based on calculating the key points 
changes (Euclidean distance and angle). We have 
shown that this approach achieves accuracy on par 
with current state of the art methods, while using a 
sparse representation. Further, we have conducted 
run-time experiments and shown that this method is 
sufficiently fast enough for real time applications. In 
future work we will investigate how this approach 
performs for multi-person activity recognition and 
adapt this approach for more complex activities and 
scenes involving one or more people.  
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