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Abstract: Urban growth estimation is an essential part of urban planning in order to ensure sustainable regional 
development. For such purpose, analysis of remote sensing data can be used. The difficulty in analysing a 
time series of remote sensing data lies in ensuring that the accuracy stays stable in different periods. In this 
publication, aerial images were analysed for three periods, which lasted for 9 years. The main issues arose 
due to the different quality of images, which lead to bias between periods. Consequently, this results in 
difficulties in interpreting whether the urban growth actually happened, or it was identified due to the incorrect 
segmentation of images. To overcome this issue, datasets were generated to train the convolutional neural 
network (CNN) and transfer learning technique has been applied. Finally, the results obtained with the created 
CNN of different periods enable to implement different approaches to detect, analyse and interpret urban 
changes for the policymakers and investors on different levels as a map, grid, or contour map. 

1 INTRODUCTION 

Urban planning is an essential economic activity for 
regions seeking to maintain prosperity. It is essential 
to identify urban growth patterns to be able to provide 
recommendations for infrastructure planning. One 
approach might be waiting for an area to expand and 
plan the infrastructure later; however, in this case, the 
cost of the projects might increase. An alternative 
approach could be estimating future urban growth 
patterns and planning infrastructure projects in 
advance. Proper preparation for such projects could 
increase the sustainability of the region in terms of 
social benefit and economic growth potential. In 
addition, the identified urban growth patterns can also 
be used by private companies to plan investment 
strategies, not limiting to government institutions. 
Urban growth analysis can be conducted using 
different data sources and methodologies. For 
instance, social-economic indicators of the region 
could be analysed to estimate the demographic 
change. However, this kind of data mainly focuses on 
the temporal aspects, with a limited focus on spatial 
ones. Thus, for urban growth analysis, remote sensing 
data can be used more effectively. Remote sensing 
data consists of satellite images, radar images, aerial 

images, etc. A comprehensive overview of remote 
sensing data for economics has been provided by 
(Donaldson & Storeygard, 2016). To detect change in 
remote sensing data, mainly two approaches are used. 

One approach is unsupervised learning, which 
focuses on change detection of pixels without clearly 
identifying the types of detected objects. Similar 
applications have been conducted in video analysis, 
which focuses on unsupervised learning, i.e. change 
of individual pixels, rather than recognition of the 
specific object. Goyette et al. (2012) created a dataset 
for testing change algorithms in videos. This dataset 
has been widely used to develop algorithms (Goyette 
et al., 2012). Kanagamalliga and Vasuki (2018) 
proposed a video flow analysis approach, in which 
firstly the background is extracted and later the 
contour of the movable object is determined 
(Kanagamalliga & Vasuki, 2018). Wang et al. (2019) 
developed a motion tracking algorithm based on 
tubelet generation, which compares the change in 
frames to improve the video object detection (B. 
Wang et al., 2019). Similar approaches have been 
previously developed to evaluate change and monitor 
the disturbances in satellite images based on 
vegetation index, which is suitable for disaster 
monitoring (Verbesselt et al., 2010; Verbesselt et al., 
2012). Similar change detection methods have also 
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been tested with satellite images. For example, Celik 
(2009) proposed principal component analysis and k-
mean clustering to develop an unsupervised change 
detection algorithm (Celik, 2009). Jong and Bosman 
(2019) developed an unsupervised change detection 
algorithm by using convolutional neural networks (de 
Jong & Sergeevna Bosman, 2019). 

Another approach is to use supervised learning 
and detect precise objects from remote sensing data, 
such as roads, buildings, forests, etc. For example, 
Wang et al. (2015) proposed a deep learning approach 
to extract road networks from satellite images (J. 
Wang et al., 2015). Nahhas et al. (2018) developed a 
deep learning approach for building detection in 
orthophotos (Nahhas et al., 2018). Langkvist et al. 
(2016) integrated satellite images with digital surface 
models to improve per-pixel classification of 
vegetation, ground, roads, buildings, and water 
(Längkvist et al., 2016). Marmanis et al. (2016) 
developed a deep learning algorithm for aerial image 
classification with a 88.5% accuracy (Marmanis et 
al., 2016). Transfer learning is also widely applicable 
in remote sensing area. Xie et al. (2016) extracted 
light intensity of satellite images, validated the 
approach with respect to the survey data, used transfer 
learning to train the model on known data and applied 
it to estimate poverty levels in Uganda (Xie et al., 
2016). Wurm et al. (2019) used a similar approach of 
transfer learning to estimate slums. The initial model 
was trained on high quality satellite images of 
QuickBird and transferred to Sentinel-2 images, 
which allowed for gaining higher accuracy in 
estimating slums (Wurm et al., 2019). After 
identifying the objects in remote sensing data, they 
can be combined with various social-economic 
indicators, thus reducing the costs of surveys. Jean et 
al. (2016) developed a machine learning approach to 
predict poverty from satellite images. The approach 
integrated the deep learning model with survey data, 
which helped reduce the costs and increase the 
accuracy of social demographic indicators (Jean et al., 
2016). Suraj et al. (2018) developed a machine 
learning algorithm to monitor the development 
indicators from satellite images (Suraj et al., 2018). 

In summary, it can be stated that most of the 
publications focus on detection of specific object at a 
micro level in high resolution images. For the lower 
resolution images (e.g. Copernicus), research is 
mainly conducted on recognition of the type of land 
use (e.g. agriculture land). Usually these images are 
integrated with radar images and focus on reflection 
analysis. Only a limited number of studies been 
identified, in which analysis for a time-series of 
images at a country level is performed. In most of 

them, limited information on the methodological 
approach and possible issues is provided. Thus, our 
publication focuses on filling this gap.  

In this publication, we focus on extraction of 
indicators from a time series of visual information in 
relation to geospatial data. The difficulty in analysing 
a time series of remote sensing data lies in ensuring 
that the accuracy stays stable in different periods. For 
instance, if one period of aerial images has an 
accuracy of 90%, and another of 86%, it would be 
unclear whether the urban change actually happened, 
or it was calculated due to the error of the machine 
learning (ML) model. Thus, it is important to ensure 
consistent accuracy of object detection between 
different periods. In this paper, the available dataset 
of the same geographical region in different time 
periods was of different quality due to the image 
spectrum and resolution. This was caused by the fact 
that with time, technical capabilities enabled attaining 
better quality (i.e. before 2000, visual data for the 
same region was available only in grey scale 
compared to the current RBG of 16 bit depth). 
Moreover, the ground truth data may vary due to the 
time delay between the real actions, which are visible 
in real time and data input to registers or external 
databases. To overcome these limitations, transfer 
learning technique has been applied. The initially pre-
trained DeepLabv3 model with a ResNet50 backbone 
trained on the ImageNet data has been selected. Next, 
model adjustment has been carried out in two steps, 
with coarse and fine-tuning datasets. The coarse 
dataset was created automatically by randomly 
selecting different locations and merging it with the 
labels of Open Street Map. The fine-tuning dataset 
was created according to the same principles; 
however, the images were manually reviewed by 
removing those, for which the labelled data did not 
meet the actual visible data. Finally, to ensure that the 
model of different periods provides similar accuracy, 
we normalised all datasets according to the one of the 
worst quality (oldest in time) and the fine-tuning 
operation for different time periods was performed 
for separate models, where loss behaviour was 
tracked for the sub-model of each period. 
Incidentally, such strategy allows to better adapt each 
sub-model for the variances of photo in different 
periods, i.e. seasons, times of the day, etc. 
Afterwards, results obtained with the created ML 
model of different periods will enable to implement 
different approaches to detect, analyse and interpret 
urban changes for policy makers and investors. This 
means that the approaches used to analyse the parsed 
data may be applied on different levels, i.e. on the 
finest level, the processed data can be seen as a map.  
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Figure 1: Example of view difference at the same place in different periods. 

On the middle level, the difference of the indicator 
can be analysed to easily detect the change of the 
selected indicator in grid cells and their clusters. On 
the highest level, the change of the indicator can be 
presented as a contour map. 

2 METHODOLOGY AND DATA 
ANALYSIS 

2.1 Methodology Overview and 
Selection of Dataset 

The idea that urban changes in time can be 
determined by the view visible in aerial photos is 
demonstrated by the example, where the number of 
buildings at same place differs (see Fig 1). 

A different speed of changes of buildings, forests, 
land use, etc. in the regions may result in different 
development speed of the region. Visual data of 
Lithuania has been selected for the analysis of the 
relationship between the information obtained using 
computer vision to track and interpret the visual 
information (raster graphics). The research focuses on 
two main objectives:  

a) to create a machine learning (ML) model, 
which enables to obtain interpretable values 
on the country level in different time periods 
and to analyse them on a granular level; 

b) to perform an analysis of the ML model results 
according to its suitability for the 
identification of different urban growth 
patterns.  

Different data sources for analysis have been 
investigated. Firstly, Copernicus Sentinel Missions 
was considered as a data source. However, after 
serious consideration it yielded the following 
problems: 

 low resolution for building segmentation 
and initial tests demonstrated bad results; 

 only recent data is stored, and historical 
data is not available. 

Admittedly, there are several methods to improve 
the model accuracy, e. g. Shermeyer and Etten (2019) 
applied super-resolution to satellite images and 
concluded that super-resolving native 30 cm imagery 
to 15 cm yielded the best results of 13 – 36% 
improvement when detecting objects (Shermeyer & 
Van Etten, 2019). The image can be also enhanced 
using a discrete wavelet transform as was done in the 
study of Witwit et al. (2017) (Witwit et al., 2017). 
Furthermore, studies have been conducted where 
Sentinel 2 data was used to classify the building areas 
of the ground (Krupinski et al., 2019), (Corbane et al., 
2020); however, due to a wider period of data and 
better quality, ORT10K was chosen as an alternative 
source for this study. The first period data resolution 
of ORT10K was 0.5 m x 0.5 m and 8 bit RGB depth 
(7 bit effective), for the second and third periods, 
image resolution increased to 0.25 m x 0.25 m per 
pixel, while the colour depth for the second period 
was 8 bit RGB and 16 bit for the third. The principal 
scheme of the research is shown in Fig. 2. The 
detailed steps of analysis are described in the 
following chapters. 

2.2 Computer Vision Model 

Dataset Preparation and Normalisation. The 
ORT10LT contains 3 periods of country-specific 
visual information. For labelling (indicators), the 
Open Street Map (OSM) data source was chosen as 
ground truth. Automatic query OSM database was 
used for labelling. Technically, the process can be 
described as follows: the ORT10LT segments were 
cut by the chosen geographic points in the country 
and then labelled directly from the OSM database 
(Fig. 3). 
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Figure 2: Principal scheme of the ML model construction and extraction of interpretable indicators. 

 
Figure 3: Dataset preparation. 

The OSM data has a lot of categories; however, in 
this research, only 3 categories have been selected: 
houses, forests and other. Water and road categories 
have also been considered for inclusion into the 
model, but due to the fact that the photos were taken 
in different seasons (spring/summer), it was 
concluded that the river flood might affect the water 
area significantly. Moreover, while using RGB only, 
water in some regions can be hard to distinguish from 
vegetation (green water). The road category was left 
out due to the fact that OSM mapping data defines 

roads only as lines (not polygon): although the width 
of the road can be technically guessed from the data, 
it is not always correct. Finally, following the dataset 
analysis, two types of problems were identified in the 
selected dataset: 

 logical – the OSM data does not always 
match the photos due to mistakes in 
mapping or changes in the environment; 

 quality – the results for photos taken in 
different periods or locations may vary due 
to their quality: 
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a b c d 

Figure 4: a, b) image selected with a house centred; c, d) image selected randomly. 

(a) images were taken at a different time of the 
day, which results in varying lighting (early 
morning vs noon); 

(b) subtle angle differences between photos; 
(c) the equipment used to capture the images in 

different location differs (different colour 
response and dynamic range; the captured 
images are blurry due to the fact that the 
photos were taken early in the morning or at 
night). 

The logical problem has been solved in the dataset 
preparation stage. The training dataset image size 
chosen was 1024x1024 pixels (the main constraint 
being the GPU memory limit). To avoid the initial 
bias in the dataset distribution, when e.g. only rural 
areas are selected for the initial training dataset, the 
dataset was prepared according to the indicators 
(houses, vegetation), which would be analysed in the 
next stage. The first part of the dataset was created by 
picking a random building from the OSM database 
and focusing it in the middle of the input image. The 
second part was constructed by applying the same 
technique where random points for the whole country 
have been selected. Finally, for the coarse dataset, 
5,000 images have been selected (4,000 with 
buildings and 1,000 with vegetation, covering a total 
area of 1,250 km2). Different techniques of initial 
image selection and a relatively large number of 
images allow for ensuring that different cases are 
covered for the whole country dataset. Examples of 
different parts are provided in Fig. 4. 

The fine-tuning dataset was created according to 
the same principles; however, the images were 
manually reviewed by removing the ones, for which 
the labelled data did not meet the actual visible data. 
Ultimately, 320 images (210 with buildings and 110 
with vegetation, covering a total area of 80 km2) were 
selected. 

To solve the problems related to the different 
quality of images, normalisation procedure was used 
as follows: 

a) resolution was normalised to 0.5 m/pixel; 
b) contrast was normalised using a 2%–98% 

percentile interval; all pixels over and under 
the interval were clipped to minimum or 
maximum values; 

c) standard computer vision normalisation 
procedure was applied (mean=[0.485, 0.456, 
0.406], std=[0.229, 0.224, 0.225]). 

Model Training and Result Analysis on the Finest 
Level. Various models and visual analysis methods 
can be used for object detection, segmentation, or 
instance segmentation (Längkvist et al., 2016; Liu et 
al., 2020; Marmanis et al., 2016; Wurm et al., 2019). 
The argumentation for selecting the model deals with 
the computational restriction to be able to analyse the 
whole country in different periods. For this reason, 
DeepLab3 with a ResNet50 backbone was chosen 
(the main prerequisite being to be able run on limited 
VRAM devices: NVIDIA RTX 2080ti with 11GB 
RAM). The loss function was changed from Softmax 
entropy loss to focal loss (Corbane et al., 2020) due 
to the nature of data, absence of labels and 
mislabelled areas (for example, areas without 
buildings, or just background). Focal loss is an 
alternative approach to loss function, which focuses 
on misclassified examples and imbalanced data (such 
as representing a single class in the entire detection 
region, for example, forest only) and yields good 
practical results. Formally, focus loss 𝐹𝐿ሺ𝑝௧ሻ can be 
defined by the following equation: 

𝐹𝐿ሺ𝑝௧ሻ ൌ െ𝛼ሺ1 െ 𝑝௧ሻఊ𝑙𝑜𝑔ሺ𝑝௧ሻ (1)

where 𝛼 is for 𝛼 - balanced form to reduce impact 
for detection outliners; 𝛾 – is the focal factor. When  
𝛾 = 0, focal loss is the same as cross-entropy loss; 
however, with higher 𝛾 values, the loss reduces the 
impact of easy examples and scales down the total 
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a b

Figure 5: a) coarse learning loss; b) fine-tuning losses for 3 periods using fine-tuning. 

loss value, which in turn increases the probability of 
correcting misclassified examples. The class 
classification function 𝑝௧ has the following definition: 

𝑝௧ ൌ ൜
𝑝 𝑖𝑓𝑦 ൌ 1

1 െ 𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

where 𝑦 specifies the ground truth class 𝑦 ∈ {±1} 
and 𝑝 ∈[0,1] is the model probability for the class. For 
this experiment, 𝛼 =0.25 and 𝛾 =2.  

The technical specifications of the selected model 
are as follows: 

 input layer: 1024 x 1024 pixels (result 
taken from 896 x 896 pixels) ~ 448 m x 
448 m (or ~0.2 km2) area; 

 coarse learning: learning rate 0.5e-3; 
momentum 0.5; 5,000 samples per epoch; 

 fine-tune: learning rate 5e-05; momentum 
0.1; 100 samples per epoch. 

The mean value of focal loss (1) during the 
training process of the model is provided in Fig 5 

From the training process (see Fig. 5.) it can be 
seen that the initial model with the coarse dataset 
converges slower compared to models with the fine-
tuning dataset. Furthermore, all models for the fine-
tuning operations start from a similar loss function 
value and correspond to the initial one of the coarse 
dataset. It could be explained by the fact that errors in 
the test vector of the coarse dataset compared to the 
correctly labelled parts do not outweigh the errors in 
different periods. In addition, it can be clearly seen 
that the single model for each time period works 
better with the fine-tuning dataset, for which the 
incorrectly labelled data has been removed. Such 
model separation strategy for each period provides 
two valuable properties. On the one hand, if, in the 
model training process, the image quality 
normalisation process between periods leaves some 
shortcomings and the image still has differences due 
to its technical quality or seasonality between the 

periods, then the model adapts easier to the photo 
specifics, the dataset necessitating revision for the 
model training is smaller, and better final results can 
be obtained. On the other hand, the model training 
results can be compared between different periods to 
validate that models work well for different periods 
and provide similar results, which allow for 
comparison of results of different time periods. In 
case of a bias of building detection between periods, 
the quality of normalisation should be taken into 
account, or correction coefficients could be applied to 
minimise the bias. 

3 ANALYSIS OF RESULTS 

Finally, the model has been developed using 3 main 
indicators. The direct results obtained with the 
developed model of different periods enabled to 
analyse and interpret the results on different levels. 
Firstly, the analysis of urban change could be 
conducted on the country level. 

The buildings detected in the aerial images can be 
depicted as polygons scattered through the region. 
From this information, it is possible to create a plot 
for spatial distribution by using kernel density. Fig. 6. 
shows the kernel distribution of buildings identified 
in the last period of images (year 2015 – 2017). The 
figure represents the whole Lithuania, which area is 
65,300 km². The distribution clearly identified the 
major cities of Lithuania, i.e. Vilnius, Kaunas, 
Klaipėda, Panevėžys, and Šiauliai. 

On the middle level, it is possible to identify more 
clearly the change of the region by creating a heat 
map. For the creation of the heat map, the country was 
divided into a grid, with the identification of the total 
number of buildings detected per grid. Then, the 
difference between the periods and grids was 
obtained. 
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Figure 6: Kernel density plot of the detected buildings. 

a b

Figure 7: Heat map of difference between building detection in different periods in Klaipėda region. a) periods P2 and P1 
compared; b) periods P3 and P2 compared. 

Fig. 7. represents the heat map of the difference 
between the periods P2 and P1, and P3 and P2 in 
Klaipėda region. To provide validity to the heat map, 
actual images of the areas that have grown the most 
were provided for each period. By obtaining a higher 
frequency of remote sensing data and applying the 

same methodological approach, more precise urban 
change could be identified. Currently, only 3 periods 
were analysed; however, if other satellite images 
were to be collected, more periods could be 
identified. With the higher frequency of data, future 
growth patterns could be forecasted.  
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a) b) c) 

Figure 8: a) Original ORTO10LT view; b-c) processed results and transparent original results with processed results of the 
selected period (in this case, 2009-2010). 

a b

Figure 9: a) OSM data of Kaunas city centre; b) processed data of Kaunas city centre of the selected  time period (in this case, 
2009-2010).

On the finest level, each period has its own layer 
which can be visualised using standard map software, 
i.e. QGis, ArcGis, etc. Fig. 8-9 demonstrate the 
results obtained with the model using the QGIS 
software. 

4 DISCUSSION AND 
CONCLUSIONS 

Object detection approaches are usually applied to 
specific problems and small regions (Liu et al., 2020), 
(Ye et al., 2019), (Wu et al., 2018), (Dornaika et al., 
2016), (Vakalopoulou et al., 2015), while on a 
country level, only a limited amount of research has 
been conducted (Al-Ruzouq et al., 2017), (Albert et 
al., 2017), (Jean et al., 2016). Studies, which applied 
object detection on a country level, were usually 
focused on the final result rather than the process 
itself. In this case, our publication fills in the missing 
gap by providing a methodological approach of how 
to prepare the training data and reduce the error 
between the time series of remote sensing data of 
different quality. Thus, the provided methodological 

approach can be applied in different countries for 
aerial or satellite images in order to determine the 
urban growth patterns. Several issues were identified 
when analysing the aerial images in a time series, 
which were caused by the fact that in time, the 
technical capabilities enable to obtain better quality 
(i.e. before 2000, visual data for the same region was 
available only in grey scale compared to the current 
RBG of 16 bit depth) or valid external data to ensure 
the ground truth dataset for model training is 
unavailable altogether. In this work, transfer learning 
technique has been applied for creating a machine 
learning model. The initially pre-trained DeepLabv3 
model with a ResNet50 backbone trained on the 
ImageNet data has been selected. The model 
adjustment was carried out in two steps. Firstly, 
adjustment was performed on the OSM data with an 
autogenerated coarse dataset and the final adjustment 
for each period with the revised data has been applied 
at the fine-tuning stage. In the dataset preparation 
stage, it was demonstrated that the neural network 
using a base dataset such as OSM is capable of 
making segmentation on a country level; however, 
expert input is necessary due to the differences in 
mapping, use of the most recent ground truth data and 
the assumption that there are not much changes in 
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data over the years. Moreover, normalisation of the 
different quality images on spectrum and contrast 
allows for creating segmented categorical maps of 
different periods. It enables to analyse and interpret 
the results on different levels, where both generalised 
and granular data is available. The generalised results 
could be used to detect exceptional patterns by using 
a contour or heat map, while for the granular level 
analysis, it is possible to review a map on a specific 
location, so that the experts could better understand 
and interpret the generalised results.  
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