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Abstract: The online fitting of a microscopic traffic simulation model to reconstruct the current state of a real traffic 

area can be challenging depending on the provided data. This paper presents a novel method based on limited 

data from sensors positioned at specific locations and guarantees a general accordance of reality and 

simulation in terms of multimodal road traffic counts and vehicle speeds. In these considerations, the actual 

purpose of research is of particular importance. Here, the research aims at improving the traffic flow by 

controlling the Traffic Light Systems (TLS) of the examined area which is why the current traffic state and 

the route choices of individual road users are the matter of interest. An integer optimization problem is derived 

to fit the current simulation to the latest field measurements. The concept can be transferred to any road traffic 

network and results in an observation of the current multimodal traffic state matching at the given sensor 

position. First case studies show promosing results in terms of deviations between reality and simulation.

1 INTRODUCTION 

In recent years, the evolution of Intelligent 

Transportation Systems (ITS) has been rapid due to 

constantly improving modelling software for traffic 

systems as well as the related sensor and computing 

technology. Depending on the different purposes of 

research and the wide range of data acquisition 

technologies there are several methods on how to 

reconstruct, analyze and improve the traffic state. The 

motives range from the strategic change of the traffic 

infrastructure or the recommendation of a certain 

route (e.g. navigation systems) to the improvement of 

the safety of road users. Another challenging aim is 

to control the traffic through its Traffic Light Systems 

(TLS). The stabilization of inner-city traffic with 

intelligent traffic controls offers a practicable and 

pleasant way of counteracting the problems of slow 

traffic and congestions at intersections. Therefore it is 

necessary to observe and approximate the current 

traffic situation in the surroundings of the TLS the 
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best possible way. Based on these requirements to 

develop a fast reacting solution for the control of 

TLS, this paper formulates a novel approach on how 

to online-estimate the current traffic state by 

combining a microscopic traffic simulation model 

with real-time field measurements. The methodology 

is developed for a real road traffic system in Schloß 

Neuhaus (Paderborn, Germany), but also transferable 

to any comparable road traffic system. On top of 

conventional induction loops and telegrams for public 

transport (PT), i.e. vehicle-to-infrastructure (V2I) 

communication, the road network is equipped with 

further detectors. Their online measurements consist 

of the arrival time and the speed of each individual 

crossing road user. Working on basis of radar 

technology, these detectors immediately classify 

vehicle types compliant with data policies. This 

classification plays a central role in this approach 

because the extra information provides new 

possibilities for traffic estimation and forecasting 

since there cannot be a direct detection of individual 
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vehicle routes by e.g. license plates (due to 

governmental restrictions in Germany). Thus, it is not 

possible to obtain complete and continuous 

information about the state of the complex traffic 

system. The simulation-based Dynamic Traffic 

Assignment (DTA) technique presented here 

estimates and predicts individual route choices for all 

road users in order to model the current traffic state. 

To overcome the difficulty of mutual interactions 

between road users and the traffic infrastructure such 

as TLS, a microscopic traffic simulation is used. This 

incorporation of a simulation offers a major 

advantage over a purely algorithmic information 

processing of the measured data. The concept 

attempts to solve the problem resulting from 

discontinuous, event-based and only locally recorded 

data by using route predictions to link past, current 

and future field measurements. All available data 

resources like the specially equipped radar detectors 

and the less informative induction loops can be 

combined in this versatile approach. In order to 

finally control the TLS optimally, the traffic has to be 

assigned dynamically using the online measured data. 

This requires a sufficient accordance of the real 

measured data with the data generated in the 

microscopic simulation. The resolution and accuracy 

of the simulation as well as the algorithmic efficiency 

are of particular importance. The microscopic level 

allows to distinguish between different vehicle types 

and enables the required online responsiveness of 

future TLS to individual road users. The needed fast 

responsiveness also implies short time intervals for 

the DTA algorithm. In order to remain efficient, the 

replicated simulation network itself has to be limited. 

It should only contain the main parts of the test area, 

i.e. solely the high traffic roads close to TLS and 

sensor locations. The traffic state reconstruction itself 

is formulated as an assignment problem. Based on the 

measurements of the mixed traffic of road users, the 

state description is mathematically translated into an 

integer linear programming problem for a predefined 

short time interval. 

2 LITERATURE REVIEW 

There are different purposes to estimate the traffic 

state within areas and therefore different ways to 

achieve the needed estimation. For example if cities 

want to improve their transport infrastructure, it is 

important to know which areas are usually loaded or 

free at what specific time. It is usually for such 

requirements that macroscopic statements on Origin-

Destination (OD) flows, which have been determined 

offline solely on the basis of historical data, are 

sufficient to make the necessary conclusions (Osorio, 

2019a; Osorio, 2019b). 

In contrast to these applications, which do not need 

an online data processing, there are others which 

require the estimation of the traffic state almost 

immediately. Examples are navigation systems for 

route suggestions or TLS to cope with the current 

situation in the best possible way. The intention in 

this research is to deliberately influence the traffic 

flow through the area’s TLS rather than the routes of 

the road users themselves. The more precise the road 

traffic model is, the more efficient the control strategy 

for the TLS can become. That justifies why this paper 

formulates an approach to maintain a well 

approximated traffic state that allows sophisticated 

signaling for the TLS optimization. In order to reach 

this aim, the simulation model needs to be adjusted 

with and to the data provided by the field 

measurements. There is already relevant literature 

like (Chen, Osorio, & Santos, 2019) which uses 

efficient Simulation-based Optimization (SO) 

algorithms to reduce travel times with signal control. 

However the control itself is mostly limited to a fixed-

time strategy or there are no complex phases used, i.e. 

there is no lane specific release within the phases or 

the very important phase transitions are unattended 

(Kamal, Imura, Hayakawa, Ohata, & Aihara, 2015; 

Zheng et al., 2019). In addition, it is usually not 

shown how the traffic state was identified to 

determine the control. Therefore it is to be assumed 

that a perfect knowledge of the current traffic state is 

presupposed or this important step was not 

considered. On the contrary, (Wang, Wang, Xu, & 

Wongpiromsarn, 2013)  are a positive example who 

disclose or at least name their data collection. The 

difficulty and novelty within this project is that not 

only green times or phase lengths for TLS are 

variable, but that the phase sequence itself with its 

complex phases should also be determined. This 

phase selection is based on the current traffic situation 

and thus in particular on the individual vehicles and 

their types considered in this estimation. Because of 

that, the traffic and especially the demand modelling 

is crucial. According to the guidelines for traffic 

simulation (Antoniou et al., 2014), the aim of the 

necessary calibration for microscopic simulation 

models is to close the gap between reality and 

simulation. The demand calibration is mentioned as 

basis for further steps such as car-following or lane-

changing models. Most other research deals with 

driver behavior settings as calibration parameters 

(Paz, Molano, Martinez, Gaviria, and Arteaga, 2015). 

Their focus lies on the vehicle distribution at local 
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detection positions and not on the route choice of 

individual vehicles to achieve those detections. This 

is a major difference to the research presented here. 

Their data bases mostly consist of complete pre-

defined OD connections or the test area is as simple 

as a highway with off- and on-ramps, e.g., in the 

Kalman Filter based application in (Antoniou, Ben-

Akiva, & Koutsopoulos, 2010). In a highway scenario 

there is no need for a complex route prediction since 

all detectors just have one predecessor and successor. 

The DTA concept presented in this paper is designed 

for a more complex urban network allowing vehicles 

to take routes to different subsequent detectors after a 

local detection. Therefore the selection of the 

individual routes can be considered as calibration 

parameters. In contrast to fully detected vehicle 

routes, field measurements just as the previous 

mentioned enhanced traffic counts (radar detections 

with vehicle type specification) are combined to 

estimate the most likely individual vehicle route. The 

combination of this data quality and the purpose to 

control an urban traffic network through its TLS is 

unique since also the online reaction time to estimate 

the traffic state has to be very short. For example in 

(Bierlaire & Crittin, 2004), the synthetic data have 

several minutes as time interval, which is not 

sufficient for this application. The desired choice of 

TLS phase sequences requires the reaction time of 

only a few seconds to adapt best to the current traffic. 

3 PROBLEM FORMULATION 

3.1 General Conditions & Idea 

The concept of this DTA algorithm is to feed a 

microscopic simulation model with real-time sensor 

measurements to act as an (almost continuous) event-

based observer for the current traffic state. Many 

operations can be performed offline in advance, but 

others like the processing of the measured data have 

to be done online whilst simulating the microscopic 

traffic scenario. The keyword real-time is crucial 

here, as there has to be sufficient computing time 

remaining for the prospective TLS control. In order 

to reconstruct the traffic situation between the local 

detector positions, predictive route choices have to 

link past and future measurements. The structure of 

the presented simulation-based method is sketched in 

Figure 1. The block diagram shows how the real 

world scenario interacts with the simulation and what 

kind of data is used for which purpose. As mentioned 

before, an essential aspect is the differentiation 

between the online and offline processing and 

calculations. There are several calculations which can 

be performed prior to the actual simulation as a kind 

of initialization process where for example average 

travel times for each vehicle type combined with the 

different traffic light states are computed. The 

intervals of other state estimators are relatively large 

(often minutes). The idea of adjusting a running 

simulation and the outsourcing of calculations are 

among others the reasons why very small update 

intervals (a few seconds) can be used for this online 

state estimation. 

 

Figure 1: Block diagram of the presented DTA concept. 

The main online field measurements in this 

research consist of superior traffic counts, i.e. not 

only a time stamp for crossing the detector, but also 

the vehicle type and the current speed are detected via 

radar technology. These detectors are so-called 

TOPO-Boxes and this kind of detection is necessary, 

because the future TLS control should contain a 

vehicle specific prioritization. Nevertheless, the 

concept is able to be enhanced by incorporating less 

detailed measurements of induction loops and/or 

PT telegrams (V2I communication type of specific 

PT buses and the TLS). These additional sensor 

information are inferior to those of the TOPO-Boxes 

and therefore result in different interdependent levels 

in the decision making process of individual vehicle 

routing. The vehicle types within this whole approach 

are generally classified according to the 8+1 class 

defined by the German Federal Road Research 

Institute (BASt) in (Bundesministerium für Verkehr, 

Bau und Stadtentwicklung, 2012). Thus passenger 

vehicles along with motorcycles, trucks, trailer etc. 

are taken into account. Additionally bicycles are 

detected so that the detection and the simulation are 

extended to the so-called ‘8+1+F’ classification (RTB 

GmbH & Co. KG, 2019). 
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Subject to the variety of available data sources, the 

algorithm has multiple routing levels. The most 

important source allows the differentiation between 

the above defined vehicle types. This is the reason 

why the next subsection describes the highest routing 

level in more detail (TOPO-Box Routing) and the last 

subsection is dedicated to the interaction of all 

considered and already mentioned levels.  

3.2 TOPO-Box Routing 

Since the TOPO-Boxes are mandatory due to their 

type differentiation and their positioning between 

successive TLS, this part of the paper dives deeper 

into the mathematical description of the respective 

dynamic problem. Some aspects of graph theory are 

used to illustrate and explain the methodology of this 

traffic estimation problem. Inspired by relevant 

literature like (Bierlaire & Crittin, 2004), the traffic 

network under research is modelled by a directed 

graph to process the simulated data. The graph 

𝒢 = (𝒩, ℒ) is represented by its set of nodes 𝒩 and 

its set of links  ℒ . These nodes 𝒩  can either be 

junctions or geometric points which meet the given 

traffic infrastructure. The geometric points are the 

discretization tool to model curves etc. which directly 

influence the simulation, e.g. in terms of possible 

speeds and accelerations. Streets of the complex 

traffic system are therefore modelled through the 

links  ℒ . Special attention has to be paid to the 

TLS-nodes 𝒩𝑇𝐿𝑆 ⊆ 𝒩, as they play a central role in 

controlling the system. In contrast to (Bierlaire 

& Crittin, 2004), the sensors monitoring the system 

are not directly represented by a subset of the links ℒ, 

but as geometric points 𝒩𝒟 ⊆ 𝒩. The graph 𝒢 does 

only depend on the given infrastructure and not on the 

time and is therefore used to describe the empty 

traffic network. For all links 𝐿 ∈ ℒ the respective 

travel time to reach each detector 𝐷 ∈ 𝒩𝒟 is 

calculated. For the presented approach it is important 

that these travel times are stored prior to the actual 

online simulation to determine the traffic state. Due 

to different traffic light states and system loads, the 

travel times will be modified over time. Any vehicle 

state at any time can be accurately transmitted to the 

data processing of the algorithm by the occupancy 

vector 𝜉(𝑡). It contains the vehicle type, the current 

speed and the current position on a specified edge of 

each single vehicle such that 

𝜉(𝑡) ∈ 
ℕ|𝑁𝑣𝑒ℎ(𝑡)|⏟    

vehicle type
×
ℝ |𝑁𝑣𝑒ℎ(𝑡)|⏟      

vehicle speed
× 

 
        ℝ|𝑁𝑣𝑒ℎ(𝑡)|⏟      

vehicle position
×

ℕ|𝑁𝑣𝑒ℎ(𝑡)|⏟    

vehicle's link
.

 
 

(1) 

The time dependent traffic state can be represented 

through this occupancy with 𝑁𝑣𝑒ℎ(𝑡)  being the 

current number of vehicles in the system and each 

vehicle type is associated with a different integer 

(first entry of each row of 𝜉(𝑡)). 
The aim of this theoretical construction is to help 

assigning individual vehicles within the simulation to 

specific sensors when there is a new measurement in 

reality. The basic idea for the decision whether or not 

a vehicle should be routed to a nearby sensor is to 

check if the vehicle ‘fits’ to the corresponding sensor 

measurement. The most important criteria to fit are 

the accordance of measured and simulated vehicle 

type and the needed travel time to reach the sensor. 

Since the simulation has to run in real-time, the 

simulation must be regularly adapted to the 

measurements so that the traffic state can be well 

estimated. Other criteria like the speed are less 

appropriate, as they can be very discontinuous due to 

curves, for example, and thus make the assignment 

process more difficult. But since the speed is 

measured, this information is used in a different way 

to predict the future vehicle situation the best way 

(explained later). It is a key aspect of the approach 

that each of the mentioned vehicle types is handled 

separately resulting in several subproblems. 

Obviously there are several situations in complex 

traffic systems where the route of vehicles has to be 

assigned in different ways. In this DTA concept each 

vehicle can be in any of the following positions to get 

routed, which can be determined depending on the 

current occupancy 𝜉(𝑡)  and the current 

measurements. The first case is that the respective 

vehicles are not in reach of any sensor; i.e. the travel 

time to arrive at any of the specified sensors lies 

beyond a user-defined threshold of the algorithm. 

This means that those vehicle cannot fulfill any of the 

measurements. The second case is that vehicles are 

close to just one sensor. Here it is determined that if 

there exists a detection in the reality, the vehicle is 

routed towards this sensor to satisfy the measurement 

(i.e. ‘deterministic routes or vehicles’). The last 

scenario is that vehicles are able to reach multiple 

detectors due to their calculated travel time. 

Depending on the measurements of these sensors it is 

possible to construct an optimization problem which 

minimizes the travel time and maximizes the 

assignment of currently available vehicles 

simultaneously (so-called ‘flexible routes or 

vehicles’). The derivation of this binary optimization 

problem follows. 

The time discretization of the problem is 

determined by the step size  𝜏 . Of particular 

importance for the construction of the online 
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optimization problem is the difference between 

deterministic and flexible routed vehicles. The 

previous designation indicates that vehicles with just 

one reachable detector can be directly assigned to the 

respective detector, whereas the routes for vehicles in 

a ‘flexible assignment area’ are not predefined. The 

assignment of these vehicles to sensors that have 

current demand is subject of optimization. The 

complexity of this optimization problem depends on 

the number of vehicles 𝑛  which are able to reach 

multiple detectors as well as on the number of 

reachable sensors  𝑞𝑖  for each of these vehicles 

𝑖 ∈ {1, … , 𝑛}. Because not all vehicles are even within 

range of a single sensor it applies 

𝑛 ≠ 𝑁𝑣𝑒ℎ(𝑡) . A flexible vehicle with its ℕ ∋ 𝑞𝑖 ≥
2 reachable detectors results in 𝑞𝑖  binary 

optimization variables 𝑥𝑖,1, … , 𝑥𝑖,𝑞𝑖  which determine 

whether or not a vehicle will be routed towards the 

respective sensor. The total number of optimization 

variables at the 𝑘th step is 

𝑁(𝑘𝜏) =∑𝑞𝑖(𝑘𝜏)

𝑛

𝑖=1

. (2) 

Because each of the vehicles can only be routed 

once, the sum of all optimization variables for each of 

the 𝑛 vehicles needs to be less than or equal to 𝑏1,𝑖 =

1. This leads to the first 𝑛 inequality conditions of the 

optimization problem for the 𝑘th time step 

𝐴1𝑥(𝑘𝜏) ≤ 𝑏1(𝑘𝜏) 

∑𝑎1,𝑖𝑗 ⋅ 𝑥𝑗(𝑘𝜏)

𝑁

𝑗=1

≤ 𝑏1,𝑖(𝑘𝜏) = 1, 

 ∀𝑖 ∈ {1, … , 𝑛},   𝑘 ∈ ℕ0, 

(3) 

where 𝑎1,𝑖𝑗 ∈ {0,1} assigns the optimization variable 

𝑥𝑗(𝑘𝜏) to the vehicle 𝑖 ∈ {1, … , 𝑛}. In order to route 

the exact number of detected vehicles in the 

corresponding time interval to the respective sensors, 

additional constraints are added to the problem 

formulation. These constraints are based on the 

number of sensors 𝑆 =̂ |𝒩𝒟| and ensure that already 

assigned deterministic vehicles are considered. This 

second part of the restrictions yields to 

∑𝑎2,𝑖𝑗 ⋅ 𝑥𝑗(𝑘𝜏)

𝑁

𝑗=1

≤ 𝑚𝑖(𝑘𝜏) − 𝑑𝑖(𝑘𝜏)

=: 𝑏2,𝑖(𝑘𝜏), 

 ∀𝑖 ∈ {1,… , 𝑆},   𝑘 ∈ ℕ0, 

(4) 

with 

 𝑎2,𝑖𝑗 ∈ {0,1} assigning the optimization variable 

𝑥𝑗  to the sensor 𝑖 ∈ {1, … , 𝑆}, 

 𝑚𝑖(𝑘𝜏) ∈ ℕ0 being the total number of 

measurements for sensor 𝑖 ∈ {1, … , 𝑆}, 
 𝑑𝑖(𝑘𝜏) ∈ ℕ0 being the number of already (in 

this time interval) deterministically routed 

vehicles to sensor 𝑖 ∈ {1, … , 𝑆}, 
 𝑏2,𝑖(𝑘𝜏) ∈ ℕ0representing the measurements 

still to be fulfilled for sensor 𝑖 ∈ {1, … , 𝑆}. 

If there are more vehicles that can be 
deterministically routed than measurements 
(𝑚𝑖(𝑘𝜏) < 𝑑𝑖(𝑘𝜏)), the adjusted field measurements 
are set to zero, i.e. 𝑏2,𝑖(𝑘𝜏) = 0 and just the nearest 
𝑚𝑖(𝑘𝜏) vehicles are routed. 

Through this inequality constraints the 

optimization problem can be formulated as 

𝐦𝐢𝐧 
   𝑥∈{0,1}𝑁

𝑓(𝑥(𝑘𝜏)) 

subject to  [
𝐴1
𝐴2
] 𝑥(𝑘𝜏) ≤ [

𝑏1(𝑘𝜏)

𝑏2(𝑘𝜏)
]. 

(5) 

Just as already introduced, the objective 𝑓(𝑥(𝑘𝜏)) 

can be chosen to minimize the travel times of the 

vehicles to satisfy the detections and simultaneously 

maximize the number of assigned vehicles in the 

simulation. In this case the objective would be 

𝑓(𝑥(𝑘𝜏), 𝑡(𝑘𝜏)) 

= (𝑤𝑡𝑡(𝑘𝜏) − 𝑤𝑎)𝑥(𝑘𝜏), 
(6) 

where 

 𝑡(𝑘𝜏) ∈ ℝ𝑁 are the travel times for each vehicle 

to the respective sensors, 

 𝑤𝑡 , 𝑤𝑎 ∈ ℝ describe weighting factors for travel 

time and assignment. 

If the current demand of a specific sensor cannot 

be satisfied through the assignment of available 

vehicles, new vehicles have to be inserted into the 

simulation to fulfill the measurement, i.e. the 

inequality constraints in (4) are not met with equality. 

Notice that these insertions or spawns lead to a 

general consistency in terms of traffic counts and 

their equivalents in reality are incoming vehicles from 

unobserved side streets. Once a vehicle is assigned to 

a detector in the simulation, it cannot be reassigned 

until it reaches the desired detector. A follow-up 

destination is set for each vehicle assignment, i.e. a 

route prediction based on probabilities derived from 

historical data is performed. The details of this 

stochastic process will not be further discussed here. 

It closes the gap between the matching of a field 

measurement and the intrusion of a vehicle into an 

area for successive routing. Without the follow-up 
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routes there would be no routable vehicles for the 

TOPO-Box Routing and all vehicles would have to be 

spawned or generated. The data processing of the 

historical ‘offline’ route prediction is done prior to the 

main simulation and updated frequently during the 

simulation. In doing so, a daytime-specific route can 

be assigned to the vehicles online. This route can be 

considered as less prioritized than the online route 

choice determined by the optimization. The routable 

vehicles for each vehicle type within the simulation 

can be derived from the current occupancy 𝜉(𝑘𝜏) 
with an additional query whether the previous 

destination has already been reached. In the end of 

every simulation step there has to be a check if still 

routable vehicles are about to cross a detector. Since 

these vehicles were not assigned through the routing, 

a crossing is not justified and the vehicles need to be 

removed from the simulation to ensure the 

measurements of reality. In reality, these vehicles 

have entered unobserved roads or parking lots. 

3.3 Interaction of Different Routings 

The previous section points out the concept of the top 

level routing, but there are two more implemented 

levels which optionally help the traffic state 

estimation to be more accurate. It is clear that the 

more information and data the algorithm is capable of 

processing, the more precise the traffic estimation can 

become and the better the TLS-control can adapt to 

the current traffic. The second routing level affecting 

all types of vehicles is based on the induction loop 

data. As they are widely used nowadays, this 

information can complement the TOPO-Box 

measurements without the need to buy additional 

measuring equipment. For the purpose of controlling 

TLS they are extremely worthy since the radar 

technology is quite vulnerable in congested areas. 

Therefore, the TOPO-Boxes are not set up in the 

direct vicinity of an intersection. On the contrary, the 

induction loops are usually only to be found in these 

areas which is why the combination of data sources 

can be particularly profitable. The third and last data 

source uses V2I-technology, but exclusively for 

regularly driving PT buses. Those buses transmit 

their PT line number at specified locations within the 

system when approaching and leaving TLS. Right 

now it is already used to prioritize the PT, but in a 

way that has a strong negative impact on the other 

traffic and thus additionally leads to unnecessary 

congestion. 

Because of that, the TOPO-Box Routing is 

extended in this approach with the so-called 

Induction-Loop Routing and the PT-

Telegram Routing. The TOPO-Boxes are the most 

detailed and reliable data source in terms of detecting 

vehicles, but due to the relatively poor network 

coverage and the network complexity it is still hard to 

estimate the traffic state between measuring points. 

The induction loops are lane based, so better capable 

of detecting turning ratios at intersections and the 

PT telegrams directly offer the future route of the 

concerning bus since it is static. Figure 2 illustrates 

the algorithm’s answer to the question how those 

advantages can be combined. It shows the mutual 

interaction (if allowed) of the different routing 

concepts according to the drawn arrows. All routing 

concepts have their own general spawn and routing 

strategies, which change based on the vehicles’ 

previous assignments of other concepts. 

 

Figure 2: Methods and interaction of the different routing 

concepts. 

To understand these interactions, it is important to 

recall the principle of the TOPO-Box Routing. Here, 

the vehicles (of all different types) get fixed routes 

until passing the detector. Afterwards they are 

equipped with flexible follow-up routes based on 

stochastic turning ratios, historical data, etc. This 

means that after crossing the aim detector an 

‘educated guess’ is made how the vehicle will behave 

until a successive measurement that fits the vehicle 

comes up. As a consequence the routes of the non-

assigned vehicles (not assigned to a consecutive 

TOPO-Box) can be manipulated to fit all different 

data sources e.g. those of the induction loops. In 

Figure 2 the boxes are divided into ‘spawn’ and 

‘routing’. This addresses exactly whether a 

corresponding vehicle in the vicinity of the sensor is 

available for this routing or not. The routing level 

interactions describe the vehicle handling depending 

on the previously used routing. An arrow from the 
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Induction-Loop Routing to the TOPO-Box Routing 

therefore implies the influence of the Induction-Loop 

Routing on vehicles which have already been 

assigned by the TOPO-Box Routing. As an example, 

if a truck is detected by a TOPO-Box with no truck in 

the vicinity of this sensor, a new one is spawned, 

routed to this sensor and provided with a stochastic 

follow-up route. Continuing this example, the truck 

enters an intersection after crossing the TOPO-Box 

with the desire to drive straight (derived from the 

stochastic follow-up route). Suppose an induction 

loop on the left turning lane is activated, then, as 

indicated in Figure 2, the position of the truck is 

changed and shifted to the left lane. Also, the route is 

manipulated in such a way that the vehicle turns left 

and approaches a destination in that direction. 

Otherwise, if the target TOPO-Box location is behind 

crossing the intersection straight, then the truck could 

not be used for the Induction-Loop Routing. This is 

because the left lane is not on the truck’s route, so the 

change of position towards the induction loop 

indicated by the arrow cannot be applied. Depending 

on the absence of other vehicles a new one (passenger 

type) would have to be spawned to match the 

measurement. The usage of the PT telegrams is rather 

simple and therefore kept short, since for buses the 

educated guess can be swapped with the determined 

fixed routes known due to the PT lines information. 

After overwriting, the routes are fixed and the PT 

buses can only be delayed or repositioned. 

4 ALGORITHMIC PROCEDURE 

For the traceability of the algorithm a step-by-step 

guideline is presented in order to outline the 

interaction of the microscopic traffic simulation 

performed in SUMO (Lopez et al., 2018) and the 

algorithmic data processing in MATLAB. First the 

required traffic network for the simulation and the 

correct representation of the traffic infrastructure has 

to be built accurately in SUMO. This is a time-

consuming process, but clear due to the 

unambiguousness of the infrastructure. The necessary 

communication of microscopic traffic simulation and 

data processing is realized with the interface 

TraCI4Matlab (Acosta, Espinosa, & Espinosa, 

2015).A brief summary of the concept to reproduce 

the dynamics of the traffic system is as follows: 

Step 0. Pre-Simulation calculation of all necessary travel 
times. Loading and processing of historical data to 
assign prediction routes (follow-up routes). 
Initialization of the SUMO simulation. 

Step 1. Change of the traffic lights according to the 
recorded data and adaptation of the travel times. 

Step 2. Check of the current vehicle situation in the traffic 
system to decide their availability for the different 
routing concepts. 

Step 3. TOPO-Box Routing. 
For each vehicle type: Solution of the integer linear 
optimization problem. 

a. Generation of the inequality constraints using the 
current measurements and the simulation’s vehicle 
states. Vehicles in areas with just one reachable 
sensor within the travel time threshold are assigned 
and given follow-up routes. 

b. Performing of the integer linear optimization. 

c. Assignment of the flexible vehicles resulting from 
the optimization with determination of consecutive 
destinations. 

d. If there is still unsatisfied demand (leftover 
detections), new vehicles of the respective type are 
created and added to the simulation at the required 
location with subsequent post-destination routes. 

Step 4. Induction-Loop Routing. 

Step 5. PT-Telegram Routing. 

Step 6. Removal of vehicles that would cross the TOPO-
Boxes unwanted (no detection recorded at this time) 
in the considered time interval. 

If the desired simulation period is covered, stop, 

otherwise return to step 1 for the next simulation step. 

After this short overview some aspects will be 

described in more detail. Prior to the initialization 

step 0 the traffic network must be provided. Since 

SUMO is used as simulation tool, its own network 

editor NETEDIT (Lopez et al., 2018) is employed to 

prepare the test area usually using OSM-data like in 

(Feldkamp & Strassburger, 2014), but with the 

SUMO-internal program OSMWebWizard. Also the 

local sensors can be positioned here. To initialize the 

simulation, the net information is employed to create 

look-up tables including the travel times via 

TraCI4Matlab. These tables store the travel times 

depending on traffic light signals and vehicle types. 

Since the road permissions for vehicles within the 

network vary with their types and the simulation also 

uses different general driving parameters, this 

calculation procedure has to be done for each of the 

vehicle types. A not further discussed offline-

algorithm determines the probabilities for the 

follow-up routesup routes after reaching a destination 

in the third step and also for step 4 beginning from the 

induction loop lane. This algorithm tries to link traffic 

counts of different detectors based on measurements 

of the past creating routing probabilities. Even if no 

historical data is available, random follow-up routes 

can be assigned. 
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Figure 3: Transformation of the real test area in a) to the OSM-imported SUMO network in b) and its reduction to the 

‘observable’ main roads equipped with the positions of TOPO-boxes and TLS in c). 

After this preparation, the SUMO simulation can be 

started. SUMO is used to handle the driver specific 

behavior and mutual interaction between all vehicles 

of all types. Each simulation step begins with the 

setting of the current TLS signals and the query of the 

current vehicle state. Based on an implemented 

trigger, the routable vehicles with no fixed route are 

filtered (follow-up routes from previous steps). The 

filtering is followed by the different routing concepts 

ordered according to their priority and ability to 

interact with steps 3 to 5. Step 3 guarantees the 

satisfaction of the detected vehicle demand through 

whether deterministic, optimization based or 

necessary leftover routing. These routing types are 

superior to the follow-up routing after crossing a 

detector. The superiority itself is realized by 

overwriting the previous route. Since the TOPO-Box 

measurements also include the vehicles’ speeds, the 

velocity parameters of the routed vehicles are 

adjusted through a simple not further explained 

algorithm. For the removal of vehicles that do not 

correspond to a field measurement, the routing trigger 

and the distance to the upcoming detector is checked. 

If a certain distance is underrun, the vehicle is 

removed (step 6). As mentioned before, this 

corresponds to unobservable events such as stopping 

at parking lots or turning into unobserved roads or a 

false route prediction. The procedure for the 

reconstruction of the traffic state is highly sequential 

which is why certain modifications can have positive 

impacts in terms of efficiency. The removal of 

vehicles has to be performed every simulation step for 

each vehicle type whereas the vehicle assignment 

based on the real-time data can be split for the types 

and distributed on several seconds to increase the 

efficiency without losing the consistency with field 

measurements. 

5 CASE STUDY 

5.1 Test Area Setup 

The chosen test area of the pilot project in Schloß 

Neuhaus (Paderborn, Germany) covers a total area of 

approximately 2 𝑘𝑚2 with multiple entries and exits. 

In the following Figure 3 a bird's eye view of the real 

road network in a) (Land NRW, 2019) is transferred 

via the import of OSM data (OpenStreetMap 

contributors, 2019) into a SUMO traffic simulation 

network in b). Besides some necessary manual 

adjustments, especially to replicate the real TLS and 

the multimodality of the road permissions, the import 

has been reduced by the unobservable roads (see c)). 

The final network consists of a total of 441 nodes 

(junctions and geometrical points) and 622 edges or 

links including six TLS which will be object of future 

optimization. These key numbers of the respective 

graph are a result of a post-import discretization to 

determine the travel times depending on the edges 

more correctly because their length is limited to a 

maximum of  40 𝑚.  This way, a more time-

consuming online calculation can be avoided. The 

real test area is equipped with around 

20 TOPO-Boxes, which are also shown in Figure 

3 c). Those detectors are capable of measuring the 

current traffic for both directions of the road on which 

they are installed. For this reason, twice the number 

of sensors are inserted in the simulation at the 

corresponding positions. Concerning the other data 

sources, there are nearly 70 induction loops 

surrounding the six TLS controlled intersections and 

60 notification marks of the pt telegrams. The TLS 

junctions are also illustrated in Figure 3 c). This 

system architecture enables the application of the 

routing without further adjustments. 

TOPO-boxes

TLS

b) c)a)
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5.2 Simulation Results 

The approach was tested using several data sets from 

different days in the near past, i.e. selected days in 

October and November 2020 building various 

scenarios with different vehicle loads. For the 

following average data shown in Table 1, each of the 

scenarios included a 30-minute time slot.  

Table 1: Average deviation between real-life and 

simulation measurements. 

Total TOPO-Box Crossings  −1 % 

Total Induction Loop Crossings +20 % 

Vehicle Speeds −6 % 

The exceeding of the induction loop counts is based 

on the lower priority of those measurements. The 

TOPO-Boxes are the most important and reliable data 

sources and therefore the Induction-Loop Routing is 

not able to change already assigned vehicle routes. 

Since Induction-Loop Routing itself tries to meet its 

unfulfilled measurements, the number of crossings is 

increased by 20 % because the rights to manipulate 

the vehicle routes are intentionally missing (see 

Figure 2). The vehicle speeds vary minimally 

dependent on the higher local occupancy of the 

system. Some intentional safety mechanisms in 

SUMO prevent the exact mapping of the set speeds to 

make the overall simulation more realistic. With this 

system setup, the average speed deviation of 6% 

corresponds to a difference of less than 1𝑚 𝑠⁄ .  If the 

induction loop measurements prove to be more 

reliable in the future, the occurring deviations can 

even be reduced by allowing more interactions 

towards the top level routing (see Figure 2 again). 

Generally it can be said that due to the design of the 

approach the TOPO-Box measurements are almost 

perfectly approximated. But in order to get a better 

temporal breakdown of the results as well as some 

explicit vehicle counts a specific example is given 

below in Figure 4. It illustrates exemplary 

measurements of the above mentioned time slots, 

where each slot and each sensor provides comparable 

results for each vehicle type. In the upper part of 

Figure 4, the crossings of the passenger vehicles are 

shown. The accordance of simulation and reality is 

easy to notice as well as the absence of settling 

processes. This is due to the fact that the time interval 

used for all test results shown in this paper is only 3 𝑠. 
Additionally, the speeds for the corresponding 

vehicles are pictured in the lower part of the figure. 

The real average speed for this time slot is 10.30 𝑚 𝑠⁄  

and the simulated average is 9.97𝑚 𝑠⁄ . 

The distribution of the induction loop crossings or 

counts is not shown separately here, as it is 

comparable to Figure 4 (with more deviation), but 

does not include the same information because no 

speeds are measured in reality. Due to the 

PT-Telegram Routing there is nearly no deviation of 

TOPO-Box crossings for buses (≪ 1 %) since the 

routes are fixed and the area coverage of the 

telegrams together with the TOPO-Boxes allows 

steady adjustments. 

As a conclusion for the results, the estimation at 

the local detection points (TOPO-Boxes and 

induction loops) works very good and in combination 

with SUMO also the speeds can be simulated 

accurately. 

 

Figure 4: Comparison of the reality and simulation 

measurements for a single TOPO-Box regarding passenger 

vehicles. 

6 CURRENT & FUTURE WORK 

The individual routes are not directly necessary for 

the actual control of the traffic system. Since these 

traffic records are also very expensive and difficult to 

enforce in Germany, a simulated validation option is 

preferred. This is why currently an extensive 

validation study is performed using ground truth 

models and surrogate data as suggested in (Antoniou 

et al., 2014). First examples with some vehicle 

convoys show good results, as the system states can 

be estimated reliably, but the study still has to be 

extended to a completely realistic traffic. 

In the future, the presented method will have to be 

improved while maintaining its generic character. 
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Within possible enhancements it is important to take 

note of an efficient implementation because of the 

real-time capability. Also, topics like the robustness 

to corrupted measurements have to be discussed more 

detailed. At the moment incorrect detections are 

compensated at the next sensor. In terms of sensor 

coverage, at least the main roads of the network have 

to be covered. Pedestrians are another aspect which 

will be added to the simulation based on their 

identification by pressing the corresponding push 

buttons at the intersection. This information will be 

taken directly from the TLS control unit. 

In parallel, various TLS control concepts are 

currently under development, which have to be 

coupled with the presented traffic state estimator. 

This coupling will become very interesting, 

especially under the aspect of state estimations with 

deviations from reality. 

The last future issue addressed here is that to reach 

the overall goal of controlling TLS in the field based 

on such a state estimation, some additional interfaces 

and latencies should be kept in mind. Especially their 

common standards, i.e. in this project the OCIT 

standard (OCIT Developer Group (ODG), 2019), 

have to be considered. 
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