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Abstract: The availability of decentralized edge computing locations as well as their combination with more centralized 
Cloud solutions enables the investigation of various trade-offs for application component placement in order 
to optimize application behaviour and resource usage. In this paper, the goal is to investigate key 
functionalities and operations needed by a middleware layer so that it can serve as a generalized architectural 
and computing framework in the implementation of a Cloud/Edge computing continuum. As a primary 
candidate, FaaS frameworks are taken under consideration, given their significant benefits such as flexibility 
in execution, maturity of the underlying tools, event driven nature and enablement of incorporation of arbitrary 
and legacy application components triggered by diverse actions and rules. Related work, gaps and enablers 
for three different layers (application design and implementation, semantically enriched runtime 
adaptation/configuration and deployment optimization) are highlighted. These aid in detecting necessary 
building blocks of a proposed generalized architecture in order to enclose the needed functionalities, covering 
aspects such as diverse service environments and links with the underlying platforms for orchestration, 
dynamic configuration, deployment and operation. 

1 INTRODUCTION 

The current Cloud computing landscape is 
characterized by an extreme diversity of offerings and 
services, incorporating multiple solutions. These 
include centralized Cloud providers (such as typical 
VM offerings, dedicated nodes, hardware enhanced 
resources such as GPUs and FPGAs etc), edge and 
fog environments, HPC facilities, mobile computing 
applications etc. implementing the Everything as a 
Service approach. On the other hand, applications are 
typically consisted of a multitude of components, 
others in need of locality and others in need of 
significant computational resources. These 
applications portray varying abilities to exploit the 
underlying services, varying requirements for 
operation, control and technologies/programming 
structures on which they rely (Ferrer et al, 2017).  

For achieving a true smart cloud computing 
continuum, i.e. a unified approach on available 
resources, one should examine the domain from three 
main perspectives: 

- Perspective 1: Continuum in terms of application 
design and definition, leading to a generalized 
adaptive approach for building the software or 
service stack. Adaptation to dynamic conditions 
(unexpected loads and failures), to different 
computing paradigms (microservices and 
functions) and functionalities of the new 
execution environment is paramount. Enabling 
the combination of edge/cloud resources can 
significantly enhance aspects such as latency 
(Bittencourt et al, 2018). 

- Perspective 2: Continuum in terms of 
functionalities, deployment and management 
approaches. The scale and differentiation in the 
new cloud/edge interplay has become quite 
complex, thus managing dependencies and 
mechanisms across continuum resources has 
become a daunting task (Lynn et al, 2020). Once an 
application has been defined, can it be seamlessly 
managed by an underlying framework and 
distributed based on a given set of goals and 
constraints? Can the application exploit specific 
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features of the used service, such as GPU 
processing, multiple cores in the node etc.? If yes, 
which executable version of it and with which 
parameter set should be used during deployment, 
without user intervention? In order to achieve that, 
a relevant set of semantic descriptions should exist.  

- Perspective 3: Continuum in terms of the 
relativity inserted between space (of deployment) 
and time (of execution) (Foster, 2019). Utilizing a 
centralized service far away from the observer 
may introduce latency or other factors that render 
this selection as more time consuming than a 
localized deployment. The analysis of this trade-
off should result in a unified space-time 
combinatorial approach for service selection 
while considering space-time continuum 
distorting factors like multitenancy and resulting 
performance interference (Kousiouris et al, 2011). 
Therefore, dynamic incorporation of this factor’s 
weight on the final optimization should be 
measured and taken under consideration.  
In order to achieve these objectives, suitable 

middleware frameworks need to be designed, 
deployed and operated across the continuum. The aim 
of this paper is to investigate what is the status in 
some of the key areas mentioned above, in order to 
highlight existing capabilities as well as according 
gaps and enablers. Section 2  includes the suitability 
of the FaaS model for the specific purpose as well as 
investigation of the current status in application 
design and adaptation (Perspective 1), Section 3 
investigates the usage of middleware and semantic 
technologies (Perspective 2), while Section 4 studies 
the space-time continuum capabilities (Perspective 3) 
Finally the paper proposes a high level architectural 
approach that would enhance the ability of FaaS 
frameworks to meet this diverse role in Section 5 and 
Section 6 concludes the paper. 

2 FaaS CHARACTERISTICS AND 
APPLICATION DESIGN  

2.1 Why FaaS? Key FaaS 
Characteristics of Interest 

One of the main benefits of the FaaS model is the fact 
that it is built around the most sophisticated variation 
of the pay-as-you-go concept, the pay-as-you-
execute model, thus only charging when the 
application code is actually executed (including 
billing factors such as function runtime and memory). 
What is more it alleviates from server environment 

maintenance. Break down into functions enables 
easier scalability and elasticity of the applications, 
thus better ability to exploit elastic resources and 
services, as well as software modularity and 
maintenance. Therefore it strengthens the benefits of 
a migration towards a cloud/edge service 
environment. This function-based break-down 
enables the easier distribution of tasks between 
centralized and edge resources available.  

This is further strengthened by the fact that 
application structure is fed in the underlying FaaS 
platform (such as Openwhisk) which handles many of 
the deployment, configuration and orchestration 
needs. FaaS has been among the highest growth 
public cloud service types while the need to optimize 
cost savings from cloud services is the top priority for 
cloud users in 2020 (Flexera, 2020).   

One of the main abilities of FaaS platforms is to 
include diverse components and behaviours and adapt 
them to event driven sequences and workflows, a 
feature known as polyglot ability. Its operators include 
notions such as Actions (application code that may 
include pure function code enforced on input message 
data, legacy non-FaaS components, arbitrary and 
diverse executables of any programming language in 
docker containers) and Rules (used to associate one 
event trigger with one or multiple actions, therefore 
enabling the definition of complex workflows). One 
key aspect is that the event sources can be anything i.e 
messages arriving on Message Queues, changes in 
databases, web interactions, service APIs etc. This 
enables bridging the FaaS model with other popular 
existing approaches such as microservices, REST 
services, legacy web applications or any arbitrary 
legacy component. 

Functions can typically range from small and 
lightweight to larger and more computationally 
demanding, therefore very suitable for the cloud/edge 
interplay scope and offloading trade-offs investigation, 
depending on available hardware on the edge, latency 
considerations etc. However careful consideration 
should be given to aspects such as the distribution of 
the load, auto-scaling mechanisms, operational tasks 
and function limitations (Kuhlenkamp et al, 2020). A 
thorough analysis of numerous open and closed source 
FaaS frameworks (Van Eyk et al, 2019) indicates the 
fact that in many cases there are misconceptions 
around characteristics, while costs may also differ from 
the initial considerations.  

Other benefits of a FaaS platform middleware 
include the abstraction of the underlying resources and 
infrastructure services used. Each platform may span 
across different providers, resource types etc in a 
manner that is agnostic to the end user. Locally in each 
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service resource used, the FaaS platform (through its 
distributed managers and agents) handles aspects such 
as function deployment, enabling seamless federation 
and distribution of the components through underlying 
container orchestrators. 

The need to offload computation exploiting 
various trade-offs and capabilities as well as 
transform monolithic applications in order to be 
decomposed in smaller components, executed 
separately and on the most suitable resources, is 
proposed by the FuncX framework (Chard et al, 
2020). Furthermore, approaches at an architectural 
level have started to emerge in order to scale and 
distribute FaaS platforms across different providers in 
multi-cloud or hybrid cloud scenarios (Vieira et al, 
2020) as close as possible to the client. 

Other approaches such as A3-E (Baresi et al, 
2019) enable applications to execute parts of their 
logic on different infrastructures, with the goal of 
minimizing latency and battery consumption and 
maximizing availability. Cross-site orchestration has 
been investigated in the context of the AWS Lambda 
service in GlobalFlow (Zheng et al, 2019). Other 
frameworks based on e.g. WebAssembly (Hall et al, 
2019) have emerged, in an effort to reduce container 
performance overheads in environments with need 
for low-latency response or hardware platforms with 
limited resources, however their tool support is not 
near the maturity of platforms such as Openwhisk. 
Identified Gap. While FaaS frameworks portray a 
number of promising characteristics in terms of 
execution on demand, improved cost, ease of 
placement and inherent/direct parallelization 
achieved, along with a long list of open source tooling 
and approaches maturing, they come also with a 
number of shortcomings that should be addressed.  
Tooling availability related to deployment and 
function reuse, remains a major difficulty, in current 
FaaS systems (Leitner et al, 2019). Furthermore, 
abstractions and programming models for building 
non-trivial FaaS applications are limited. Currently 
frameworks imply the need for full porting of the 
application to the FaaS model, thus the redesign of 
their execution model around short-lived functions, 
leading to potential need for extensive application 
rebuilding.  Another challenge is the handling of state 
in the FaaS model. The latter primarily targets at 
stateless functions that do minimal I/O and 
communication. Frameworks such as CloudBurst 
(Shreekanti et al, 2020) have tried to extend the scope 
to a broader range of applications and algorithms, 
while incorporating key-value stores for state sharing 
between functions. However new challenges emerge 
when functions operate at a distributed and 

federated cloud-edge environment, including data 
consistency, locality and performance. 

2.2 Application Design and Adaptation 
to the FaaS Model 

Visual environments have emerged in recent years as a 
user friendly and abstract mean of development that 
can speed up application development. Typically these 
environments are based on flow programming and 
offer palettes of readymade nodes or operators that 
incorporate the major functionalities needed. Function 
code is applied on the input message, transforming its 
contents based on the function logic and passing it to 
the next node in line. Furthermore, they encompass 
means of extension for these nodes as well as external 
repositories. Environments such as open-source Node-
RED for IoT event driven applications and KNIME 
(mixture of open and proprietary models) for data 
science flows have emerged, indicating that the need 
for easier development is very relevant. Therefore they 
can be extended and adapted to eventually deploy the 
developed flows in a FaaS environment. 

In terms of major open source FaaS platforms, 
these typically do not come with a UI for workflow 
definition (Van Eyk et al, 2019), with the exception 
of Apache Airflow that also includes the 
incorporation of operators to include typical cloud 
services or processes. One drawback of Airflow is 
that these operators are typically provider specific and 
thus cannot be reused, while amplifying the vendor 
lock-in. Also, they do not include advanced and 
abstracted cloud design patterns. Fission workflows 
are mainly programmatically defined. Proprietary 
solutions also exist with an extensive list of 
accompanying services such as the IBM Cloud 
(formerly Bluemix) environment (and Blueworks) as 
well as Google Composer.  

In the cloud design patterns domain, Big Vendors 
have promoted Pattern-Based development through 
new programming and deployment paradigms in 
order to build value added services. This development 
methodology has the goal of providing complex 
services and resources by interaction of simpler ones 
and can be used to define proper orchestration actions 
(Amato et al, 2017). Typical cloud design patterns 
may include template structures and workflows such 
as AI training and optimization (Giampa et al, 2020), 
map/reduce types of structures, MPI based, data 
ingestion, preprocessing, encryption, privacy and 
transformation flows, load balancer structures, 
preconfigured messaging structures (e.g. 
publish/subscribe), data caching mechanisms,  auto-
scaling and throttling functionalities, continuous 
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deployment patterns etc. Some of these patterns may 
exist in implementation, even directly in the FaaS 
model or enabling transformations to this through 
suitable converter frameworks (Carvalho et al, 2019), 
however they are in need of parameterization and/or 
wrapping around the core design framework for 
achieving maximum abstraction.  
Identified Gap. While helpful in the sense of each 
domain’s usability, current design environments lack 
the ability to aid an application in exploiting cloud 
benefits through ready-made supporting structures 
that enhance functional and non-functional aspects. 
Furthermore, they lack a unified and vertical 
approach to enable application definition, 
enhancement with features and creation of cloud 
deployment specification in an integrated manner. 
Either deployment specification or workflow 
specification are supported but not combined and do 
not include design patterns and functionality 
automatically incorporated and configured in the 
application graph. Many of the proposed 
operators/environments are provider/platform 
specific and increase vendor lock-in. 
Proposed Enablers for FaaS Application Design 
Linked to FaaS Frameworks. Cloud design and 
programming patterns offered as FaaS reusable 
components may significantly aid application 
adaptation or extension in order to embed this 
functionality alongside its current implementation. 
Furthermore, visual environments for workflow 
creation can significantly aid developers in their 
transition and application adaptation. Thus 
incorporation of such patterns in arbitrary flows and 
instantiation of them with the specific software 
artefacts/functions needed may be performed. 
Furthermore, a vertical approach in these tools is 
needed in the sense of the ability to produce directly 
the application deployment specification to a FaaS 
framework from the application design. 

3 RESOURCE SEMANTIC 
ENRICHMENT AND USAGE IN 
RUNTIME DEPLOYMENT  

Currently, a significantly high number of available 
cloud services exist in the market. This makes the task 
of matchmaking between user demands and service 
capabilities difficult. Approaches have been 
developed in order to cater for differences in 
semantics for the service composition process (Di 
Martino et al, 2017). However what is needed is a 
tighter link between semantics and platform self-

configuration processes in order to fully exploit 
semantic descriptions usage during runtime. In some 
specialized cases, such transformations are performed 
for exploiting special purpose cloud services e.g. 
cloud-based FPGA’s (Chen et al, 2019).  In terms of 
fully integrated runtime usage and management 
through semantics, the AffectUs framework 
(Kousiouris et al, 2019) has used a combination of 
ontologies, semantic inference, REST services and 
flow based programming adapters in order to 
integrate the use of ontologies in a functional manner 
in the life-cycle of a supply chain management 
application.     

Extensive cloud service description frameworks 
have been proposed in recent years (Ghazouani et al, 
2020), covering a wide variety of common cloud 
service characteristics (type, deployment model, 
evaluation, functionality and operations, accessibility 
and authorization features, QoS capabilities, legal 
issues, pricing, resource control).  
Identified Gap. Very interesting works exist in the 
field of cloud service descriptions, thus exploitable in 
the context of the Linked Data paradigm. What is yet 
to be accomplished is a fully integrated use of 
ontologies and semantics, not only for a preselection 
or interface composition process but also to enable 
functionally more automation of configuration.  
Proposed Enablers for Usage of Semantics in 
Deployment Configuration and Automation. First of 
all, relevant ontologies need to be enriched or 
integrated in order to capture specific aspects of an 
application configuration, linked to the way this 
application is configured, deployed and managed. 
Afterwards, instantiated tuples (examples in Table 1) 
would enable inference on the way the application 
should be configured or whether it can exploit 
specific resource characteristics. This can also be 
extended at the function or cloud template pattern 
level and can be easily supported during runtime (e.g. 
multiple image versions with different characteristics 
for a given software artefact).  

However, this needs to be coupled by a 
middleware layer that will bridge service/resource 
descriptions with software artefact descriptions, 
inferring whether capabilities of the former can be 
exploited through the needs/characteristics of the 
latter. Purposes for such inference can include usage 
during deployment and/or application adaptation, in 
order to enhance both functionally and non 
functionally the automated and seamless application 
adaptation to diverse environments. Moreover, a 
semantically enriched controlling logic can improve 
its agility. One could retrieve the specific resource 
type in which currently the application component is 
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running and infer whether changing a specific 
parameter would be expected to make a difference. 
Other aspects such as locality constraints, e.g. 
imposed by legal (Barnitzke et al, 2011), ethical or 
other requirements, can be expressed. Finally, 
through modelled information like endpoints and 
their relation to QoS features (monitoring or 
controlling parameter endpoints), automated 
incorporation of controller logic can be inserted in the 
designed workflows and parameterized on the fly. 

Table 1: Example Ontology Relations Usable for 
Deployment Optimization. 

Subject 
(example 
instance) 

Predicate Object Class 
(example instance) 

cliOption  (-
threads) setsParameter Parameter 

(numberOfThreads)
Resource 
(aws.medium) isA ResourceType (VM) 

ResourceType 
(VM) hasParameter Parameter 

(numberOfCores)
Parameter 
(numberOfCores) isUsedBy Parameter 

(numberOfThreads)
Endpoint 
(/setThreads) 

managesPara
meter 

Parameter (e.g. 
numberOfThreads)

Endpoint 
(/setThreads) isA HTTPEndpoint 

Parameter 
(numberOfThread
s) 

Affects QoSMetric (e.g. 
ResponseTime) 

applicationCompo
nent 

hasSpecificLo
calityConstrai
nts 

ProviderDC (if 
specific location and 
provider is needed)

applicationVersio
n (myImage) isA ContainerImage 

ContainerImage(
myImage) 

isOptimizedF
or 

ResourceType 
(GPUEnabledVM)

CloudPattern 
(MessageMQTT) 

isOptimizedF
or 

ResourceType 
(EdgeResource)

ResourceType 
(EdgeResourceA) 

hasMeasured
Performance 

QoSMetric (Bench 
results) 

 
One aspect that needs to be stressed is that this 

mechanism needs to be linked with respective 
annotation capabilities of typical orchestrator systems 
(e.g. Docker Compose, Kubernetes). Annotating the 
abilities of nodes (feasible in current orchestrators 
through e.g. node naming) will bridge the gap 
between selection and enforcement of a given 
deployment scheme. 

4 SPACE-TIME CONTINUUM 
EVALUATION/ OPTIMIZATION  

Even though the FaaS model promises reductions of 
cost compared to IaaS and PaaS offerings, its billing 

mechanisms typically include function invocation 
numbers as well as execution time.  However, in this 
context costs are less predictable, especially because 
they are tied to function performance (as well as the 
provider’s environment). Reports (Bortolini et al, 
2019) have observed significant differences (up to 
8.5× in performance and 67 × in cost between 
providers, 16.8× in performance and 67.2× in cost 
between programming languages). The problem of 
the assessment of black box Cloud services 
performance is especially intense in FaaS 
environments (Pellegrini et al, 2019). Cloud Service 
Providers usually restrict the maximum size of code, 
memory and runtime of Cloud Functions. The 
aforementioned work introduces a baseline FaaS 
benchmarking tool, which allows users to evaluate 
the performance of Cloud Functions. Challenges as 
well as requirements for a future FaaS measurement 
framework include taking into account notions of 
cost, realistic workloads, more (open-source) 
platforms, and cloud integration.  

Baseline approaches such as FunctionBench (Kim 
et al, 2019), including workloads such as ML, 
network and micro-level benchmarks are a step 
forward. Comparisons have been performed to better 
understand the cost vs performance trade‐off between 
FaaS and IaaS such that cloud users can decide which 
approach is suitable for them. Reports (Malla et al, 
2020) on comparisons between Google cloud's FaaS 
(Cloud Functions) and its IaaS (Compute Engine) in 
terms of cost and performance have indicated that 
FaaS can be 14% to 40% less expensive than IaaS for 
the same level of performance. However, 
performance of FaaS exhibits higher variation. 

In terms of deployment optimization and 
placement, numerous approaches are available (Cao 
et al, 2019), even from the initial Cloud era, focusing 
on multi-cloud service placement (Ferrer et al, 2012) 
or more recently for cloud-to-edge specific issues 
(Meixner et al, 2019). In many cases the size of the 
problem due to its NP hard nature is impossible to 
calculate optimally without breaking another 
constraint (e.g. time to reach the deployment 
decision), given the range of possibilities to take 
under consideration.  
Identified Gap. There needs to be a closer link and 
tight collaboration between multiple functionalities 
and primarily resource capacity 
measurement/evaluation (through e.g. benchmarks 
that take under consideration other parameters such 
as function based execution, time to completion, 
memory used etc.) and deployment optimization.  
Proposed Enablers for Enhanced Deployment 
Optimization Across the Continuum. Through the 
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inclusion of periodic benchmarking/ evaluation 
details for each resource type (integrated also with the 
semantic descriptions of Section III), as well as 
relevant factors included in the optimization model, 
the space-time continuum approach (Foster, 2019) 
may be implemented. Furthermore, the integration of 
the semantic querying as an initial filter of resources 
(and based on the discussion in Section 3), can 
significantly reduce the search space of an 
optimization algorithm and therefore potentially 
enable the application of globally optimal algorithms 
such as branch-and-bound. The overall process of the 
previous sections can be summarized in the sequence 
presented in Figure 1. 

5 GENERALIZED 
ARCHITECTURAL BLOCKS 

The functionalities presented in the previous sections 
are included in the form of generalized architectural 
building blocks in Figure 2, responsible for 
implementing the sequence of Figure 1. This 
architecture does not assume that there is any special 
connection or federation between the entities (e.g. 
Cloud or Edge providers), only a middle managing 
entity like a broker/platform manager that creates and 
operates resources on the cloud/edge. 

 
Figure 1: From application design to deployable FaaS.  

The entry point is the Application Design Layer, 
that includes aspects such as management of the 
application code basis, visual flow programming 
environments enriched with ready-made software 
pattern flows, FaaS operators, followed by suitable 
parameterization and code insertion where needed. A 
necessary step in this case is also the semantic 
description of the application parts, whether these are 
existing legacy components and executables or newly 
created functions. This step aids in the creation of 

semantic triples in an according knowledge base, 
following the respective Ontological definitions.  The 
same step of semantic description population needs to 
be undertaken also at the resource side, so that the 
inference engine can exploit and combine the two 
sources of semantics. 

Next, the main management layer (Continuum 
Deployment Layer) is responsible for receiving the 
application graphs extracted from the design 
environments and convert them to the action 
sequence specification needed by the main FaaS 
platform (e.g. Openwhisk). The optimization process 
is only performed after a relevant query towards the 
Inference Engine, that can apply functional or non 
functional constraints and return the subset of 
resources that address the requirements. These should 
then be mapped on the application graph and 
evaluated in terms of performance, cost or other goal 
for which information is available (e.g. energy 
efficiency). Benchmarking or historical monitoring 
information for resources can be acquired from the 
Performance Measurement block, that aims to capture 
this either through monitoring of executions or from 
periodic performance evaluation tests.   

From this optimization process (applied in the 
Global Continuum Placement Optimizer), the final 
resulting deployment graph may be acquired and 
forwarded for deployment to the mainstream FaaS 
platform, properly annotated via the mechanisms 
described in Section 3 in order to dictate the 
deployment scheme. However this mainstream FaaS 
platform needs to be managed by the Global FaaS 
layer, in the sense that the latter will have the 
responsibility to create according resource instances 
(e.g. Openwhisk nodes) in each of the Cloud/Edge 
federation resources. It is necessary to stress that this 
resource creation does not assume any special 
agreement or link between the different entities. 
The Continuum Deployment layer can act like any 
typical customer of the latter. A final step is the 
incorporation of supporting structures to functionally 
link these distributed resources (virtual networking 
layers and/or in-memory data services for data 
locality and state preservation for functions). 

At the provider-local level, once the application is 
deployed, the elasticity controllers (embedded in the 
application graph) can check the detailed function 
execution logs or application endpoints (obtained 
from the semantic descriptions) for performance 
information and upon detection of an under or over 
performing application part they can toggle local 
resources given by the local CSP (e.g. through API 
calls). If despite these efforts this application part 
does  not  suitably  adapt  to the  desired  QoS  levels, 
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Figure 2: Generalized Architectural Building Blocks.

then the problem can be redirected to the global 
optimization plane for a new deployment 
optimization. 

6 CONCLUSIONS 

As a conclusion, FaaS presents a set of characteristics 
(e.g. granular execution, flexible deployment 
structures, supporting platform tools) that enable its 
usage across diverse devices as well as distributed 
environments. However in order for this upcoming 
computing model to reach its full potential in the 
Cloud/Edge interplay scenario, a number of additions 
need to be performed to enable easier application 
creation, adaptation, and seamless management 
across diverse locations.   

The work in this paper proposed additions from 
application design to deployment and operation. 
Initially the application design and implementation 
process, supported by implementation templates that 
cover typical cloud oriented functionalities directly in 
the FaaS model, as well as visual flow programming 
environments, will aid in abstracting FaaS migration 
processes or application functionality extensions. To 
this end, the polyglot ability of FaaS frameworks is a 
major strength.  

Following, extensions in terms of semantic 
descriptions and their incorporation during the 
runtime selection and configuration is another key 
enabler that aids in automatically adapting to the 
diverse environments and optimizing application 
setup. Optimization of deployment selection can 

significantly benefit from applying such semantic 
descriptions as well as runtime evaluation of 
Cloud/Edge resources. The overall analysis has led to 
a generalized architectural approach that can aid in 
addressing functional and non-functional 
requirements of complex applications deployed over 
dynamic and volatile environments in an abstract 
manner. The proposed architecture does not imply 
any specific relation or exposure between providers 
and is regulated by a brokering entity that has the goal 
of managing the middleware layer. 
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