
Combining Agile and DevOps to Improve
Students’ Tech and Non-tech Skills

Telcio Cardoso a, Rafael Chanin b, Alan R. Santos c and Afonso Sales d

School of Technology, Pontifical Catholic University of Rio Grande do Sul, Zip Code 90619-900, Porto Alegre, RS, Brazil

Keywords: Software Engineering Education, Computer Science Education, Computer Science Curricula, DevOps,
Scrum, Challenge Based Learning.

Abstract: The goal of this ongoing study is to understand how the development of soft skills is approached in the existing
computer science and software engineering curricula. Based on the findings and improvement opportunities,
we propose a high-level course structure to be used as a framework for those higher education organizations
who want to support the development of students technical and non-technical skills. With this proposal, we
believe computer science and software engineering students would be better prepared for the most recent IT
market requirements, fostering the development of the 21st century’s main competencies. In order to develop
the course structure presented in this study, we conducted a literature research, which showed the develop-
ment of students’ soft skills still requires improvement and more efficient approaches. Our solution proposal
combines DevOps, Scrum and Challenge Based Learning approaches into one single course, which uses Agile
DevOps culture and values, along with continuous feedback, to promote students’ soft skills development.

1 INTRODUCTION

According to the Computer Engineering Curricula
20161, industry leaders in general understand that
soft skills are essential for hiring in a computing-
related position (on Information Technology Curric-
ula, 2017). Additionally, a common sense in the in-
dustry indicates that soft skills and technical skills
have similar importance (on Information Technol-
ogy Curricula, 2017). The Computer Science Cur-
ricula 2013 (Joint Task Force on Computing Curric-
ula, Association for Computing Machinery (ACM)
and IEEE Computer Society, 2013) argues that stu-
dents will acquire some important soft skills and per-
sonal attributes through general college activities (e.g.
patience, time management, work ethic, and an ap-
preciation for diversity), and others through a spe-
cific curriculum. The ACM Cybersecurity Curricula
2017 (on Cybersecurity Education, 2018) emphasizes
the importance of developing technical skills and soft
skills in order to be ready to the transition from aca-

a https://orcid.org/0000-0002-6388-2448
b https://orcid.org/0000-0002-6293-7419
c https://orcid.org/0000-0001-8323-3472
d https://orcid.org/0000-0001-6962-3706
1ACM Education Curricula Recommendations:

https://www.acm.org/education/curricula-recommendations

demic environments to a career within a corpora-
tion, organization, academic institution or even an
entrepreneurial environment.The ACM Information
Technology Curricula 2017 (on Information Technol-
ogy Curricula, 2017) argues that the ability to con-
nect to co-workers in a convincing manner will be ex-
tremely important in the future. Still according to the
ACM Information Technology Curricula 2017 (on In-
formation Technology Curricula, 2017), college and
universities are well positioned to teach IT techni-
cal skills, however, they encounter challenges when
teaching non-technical and soft skills.

Considering the importance of soft skills for com-
puter science and software engineering students’ ca-
reer and personal development, we conducted a liter-
ature research in order to understand how soft skills
are taught in higher education courses. Based on our
study results, we proposed a course to complement
the current Computer Science 2013 curricula guide-
lines, providing a more prescriptive structure to eval-
uate and develop soft skills, using DevOps and Agile
practices as foundation to improve such skills.

1.1 Problem Statement

Hazzan (Hazzan and Har-Shai, 2014) argue that a
simple web search reveals that most of the issues

Cardoso, T., Chanin, R., Santos, A. and Sales, A.
Combining Agile and DevOps to Improve Students’ Tech and Non-tech Skills.
DOI: 10.5220/0010401302990306
In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021) - Volume 1, pages 299-306
ISBN: 978-989-758-502-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

299



associated with software development processes are
connected to people and that their origin is rooted in
cognitive, social and managerial aspects rather than
technical or technological aspects. In this sense, soft-
ware continuous delivery approaches, such as Scrum
and DevOps, are widely used in the software indus-
try, from startups to established companies. By being
not-siloed based, in order to be successful, teams that
use such approaches may require higher-levels of soft
skills from their team members.

Soft skills are a very important requirement in the
software development industry and such importance
is increased by new continuous delivery approaches
such as DevOps, but also on the collaboration among
different specialists and stakeholders (Kuusinen and
Albertsen, 2019).

Even understanding that soft skills are important,
and students will gain some of them over the com-
puter science course, there is not a clear guideline on
how to implement and develop such skills and neither
a clear course structure to evaluate and improve such
skills.

Soft skills are an important part of students’
development. However, they are generally neglected
in the computer science and software engineering
curricula in the majority of the higher education
institutions, which understand the importance of
such skills, however, lack of a more prescriptive
method to foster and measure the development of
such skills. Considering the importance of soft skills
to the students personal and professional live, the
main question this study aims to answer is:

Can we develop a new course to foster computer
science and software engineering. students’ soft
skills development, preparing them to the market, by
using industry emerging practices?

In order to further understand the usage of this
combination of Scrum and DevOps in the develop-
ment of students’ soft skills, we have performed a
literature research and presented a course structure
proposal to support the development of students’ soft
skills in higher education. The course teaches stu-
dents using an active learning framework: Challenge
Based Learning (Nichols et al., 2016). Our literature
research indicates that the development of soft skills
for higher education students of computer science and
software engineering courses is still an area to be im-
proved and lacks of more prescriptive course struc-
tures.

The remainder of this paper is organized as fol-
lows. Section 3 presents the research method applied
in this study, and in Section 4 we present relevant

findings from the selected studies. In Section 5, we
present the proposed course and its structure. Finally,
in Section 6 we conclude the paper with some final
thoughts and future work.

2 BACKGROUND

2.1 Challenge Based Learning

Teaching students can be done in multiple ways.
Traditionally, learning is mostly based on lectures,
a teacher-centered approach which usually provides
low levels of interaction. On the other hand, ac-
tive learning is an approach that proposes high lev-
els of interaction and stimulates students to perform
not only low-order cognitive tasks, such as reading
and writing, but also high-order ones, including de-
bating, analysing and decision making (Fetaji and Fe-
taji, 2009; Ahmad and Gestwicki, 2013; Gestwicki
and Ahmad, 2011).

There are several active learning methodologies
that have been used in an educational setting. Problem
Based Learning, Project Based Learning, Task Based
Learning and Challenge Based Learning are just a
few examples of these frameworks. “The founda-
tions of experiential learning can be found within the
history of most cultures, but were formally organized
and presented by David Kolb drawing heavily on the
works of John Dewey and Jean Piaget” (Santos et al.,
2015a). Challenge Based Learning (CBL) (Nichols
et al., 2016) is a learning framework based on solving
real world challenges.

The CBL process begins with the definition of a
big idea, which is a broad concept that can be ex-
plored in several ways. The big idea has to be engag-
ing and important to students. Once the big idea is
chosen and the essential question is created, the chal-
lenge is defined. From this point, students must come
up with the guiding questions and guiding activities
and resources, which will guide them to develop a
successful solution. The next step is analysis, which
will set the foundation for the definition of the solu-
tion. Once the solution is agreed upon, the implemen-
tation begins. Finally, evaluation is undertaken in or-
der to check out the whole process and verify if the
solution can be refined.

2.2 DevOps

Commonly in medium and large companies, soft-
ware development and IT operations teams are struc-
tured in silos and the collaboration between these

CSEDU 2021 - 13th International Conference on Computer Supported Education

300



teams use to occur when operational resources are re-
quired from software development teams in order to
release new applications or functionalities, or, when
new released applications somehow compromise the
integrity of environments managed by IT operations
teams. Therefore, we have software development
teams aiming to deliver software to end-users as fast
as possible, however, such need for speed and faster
deliveries, sometimes, may compromise the integrity
of IT operations environments and, IT operations
teams, in the opposite side, aiming to ensure integrity
and stability of production environments, what may
conflict with software development teams goals.

In order to handle these conflicting goals between
software development and IT operations teams, sus-
taining the value delivery pace required by the mar-
ket, new practices were required. At the 2008 Agile
conference in Toronto, Canada, Patrick Debois and
Andrew Schafer presented a session to share their ex-
perience and research on applying Agile principles to
IT infrastructure, what would be later give origin to
the term DevOps, coined by Debois.

Husssani (Hussaini, 2014) defines DevOps as
an acronym for Development (Dev) and Operations
(Ops) of information technology systems and applica-
tions. Swartout et al. (Swartout, 2012) argues that De-
vOps is a way of working that encourages the collab-
oration between Development and Operations teams
towards the same goal.

An important aspect to take into consideration re-
garding DevOps is the fact that the movement is not
restricted to just a few IT operations teams. As Davis
et al. (Davis and Daniels, 2016) argue, there is no one
definitive list of teams or roles which should be in-
volved or how and, any team within the organization
should be considered in order to be more effective,
which includes security, support, QA, legal, among
other roles.

3 RESEARCH METHOD

In order to understand how students’ soft skills are
developed by Computer Science and Software Engi-
neering courses in higher-education organizations, we
performed a literature research.

The search terms were defined based on the
main terms related to the subject of this research
and structured in terms of population and interven-
tion (Kitchenham, 2004). Based on these terms, the
final search string used in this study is presented in
Table 1.

We have evaluated papers, articles, journals and
magazines, written in English language, with more

Table 1: Search String.

Type String
Population software engineering OR computer

science
Intervention AND soft skills AND devops

than 3 pages and published between 2010 and 2020.
The search string has been used to find relevant infor-
mation at the ACM and IEEE online databases. Our
research resulted in 23 studies, from which 3 studies
have been considered relevant. Additionally, we have
complemented our initial research with a web search,
which resulted in 11 additional relevant studies which
have their contribution added to our study.

4 FINDINGS

The following paragraphs provide details of the most
relevant contribution from the studies we selected.

Hazzan et al. (Hazzan and Har-Shai, 2014) con-
ducted a study at the Israeli Computer Science de-
partment, the largest CS department in Israel. The
study describes the experience related to a 14 weeks
course and was designed for both CS and SE students,
first, to expose them to a variety of soft skills, and
second, to enable them to acquire these skills gradu-
ally by experiencing them and reflecting upon them.
The course structure was based on the CM/IEEE-CS
Computer Science Curricula 2013 recommendations.
The authors argue that over the course, the following
skills were mentioned by at least 25% of students as
being important for teamwork: listening skills, dif-
ferent aspects of teamwork, interpersonal communi-
cation, giving feedback, flexibility, time and pressure
management, knowledge transfer, and patience. The
study also provided some interesting insights regard-
ing the soft skills mentioned by the students as the
ones they would like to improve, such as Time Man-
agement, Presentation Skills, Creativity, among oth-
ers. The authors still argue that students repeatedly
expressed the idea that soft skills should be learned
by expressing and experiencing them.

Sedelmaier (Sedelmaier and Landes, 2014) con-
ducted a study to evaluate which soft skills are im-
portant for software engineers and proposed a body
of skills (SWEBOS). The authors argue that SWE-
BOS treats skills in a merely descriptive fashion. The
authors still argue that there is no guideline as how
to break down required competencies, be it tech-
nical or non-technical, into teaching goals that can
be addressed in university education for future soft-
ware engineers. The study concluded the top three
soft skills in software engineering are comprehension

Combining Agile and DevOps to Improve Students’ Tech and Non-tech Skills

301



of the complexity of software engineering processes,
awareness of problems and understanding of cause-
effect relationships, and team competence including
communication skills.

Ahmed (Ahmed et al., 2012) surveyed jobs ad-
vertised on the following online portals: workopo-
lis.ca (North America), eurojobs.com (Europe), mon-
sterindia.com (Asia), and seek.com.au (Australia).
The results presented the main soft skills required by
the software market in North America, Europe, Asia
and Australia in 2012. The main soft skills were inter-
personal skills, analytical and problem-solving, team
playing, organizational skills, fast learning, ability to
work independently, innovative, open and adaptable
to change.

In the study conducted by Carter (Carter, 2011),
employment ads for software engineer of 50 com-
panies were evaluated in order to identify the main
soft skills required by employers. The study also ap-
plied a survey at Point Loma Nazarene Mathemati-
cal, Information and Computer Science university de-
partments to understand the importance of soft skills
from student’s perspective. The study argues that
communication appears to be the number one de-
sired skill across the board, but employers explicitly
ask for employment-ready computer science and en-
gineering students to have other skills as well. The
authors also mention that dedicated soft skill courses
have proven to be extremely unpopular with both stu-
dents and professors alike. The students feel that
they are being presented with information that they
already know. The study also provided details about
a capstone course the university provides, which uses
Project-Based Learning to practice and develop the
soft skills required by the employers.

Matturro (Matturro et al., 2015) conducted a set
of surveys with software development team members
and team leaders from the Uruguay software industry
and concluded that leadership, communication skills,
customer orientation, interpersonal skills, and team-
work are the most valued for team leaders, while an-
alytic, problem-solving, commitment, responsibility,
eagerness to learn, motivation, and teamwork are the
most valued ones for team members.

Kerzazi (Kerzazi and Adams, 2016), performed
an empirical analysis of online job postings to deter-
mine and compare the main tasks of release and De-
vOps engineers, globally and across countries. Ac-
cording to authors, automation is the most important
activity across the three roles, as articulated in job
posting description data, and that the release engineer
role combines the top activities of the DevOps and
more traditional build engineer roles. The role of re-
lease engineer seems to combine the most important

activities of DevOps and more traditional build engi-
neers, either because of incorrect choice of role name
or roles taking up more responsibilities than would
be expected from them. Still according to the au-
thors, although not an explicit variable in our anal-
ysis, build/DevOps/release engineers are needed by
any kind of company, regardless of whether it is a
startup or an established one (based on the job ad de-
scription). For start-ups, the responsibilities are more
guided towards supporting development, followed by
build, continuous integration, and fast delivery (build-
ing an effective pipeline of releases).

Valentin (Valentin et al., 2015) proposed a
methodology to improve students’ soft skills by us-
ing Scrum in a systematic project development ex-
perience. The methodology was applied to research
groups from different areas. According to the au-
thors, the Scrum framework offers several opportuni-
ties for students exercise different skills by means of
well-structured events, roles, and artifacts. Writing,
oral presentation, leadership, transparency, organiza-
tion, and pace were the improvements most reported
by the involved people.

Bastarrica (Bastarrica et al., 2017) developed a
capstone course to support the development of crit-
ical soft skills to succeed in software development
project, introducing some agile practices into an ex-
isting course, however, lacked details regarding which
soft skills were evaluated and how to evaluate the im-
provements.

Andersson (Andersson and Logofatu, 2018) pro-
posed an approach to improve the Master students’
soft skills through a Mathematics Update course. An
interesting insight provided by this study is related to
the usage of discussion groups to align concepts about
soft skills among the students. Another interesting ap-
proach mentioned by the authors is the self-evaluation
survey, which allows the student to self-evaluate in or-
der to have a baseline and better understand how they
are improving over the course.

Thurner (Thurner et al., 2016) identified four rea-
sons why students struggle with their soft skills and
competencies during the first semesters and designed
a learning project that addresses technical as well as
non-technical competencies in an integrated way. One
of the insights provided by this study is related to the
practice of self-reflection as a way to improve self-
awareness on students regarding their soft skills.

In the study conducted by Brabov (Bobrov et al.,
2020), experiences regarding teaching DevOps in the
Industry and in the Academia were shared by the
authors. The authors argue that DevOps experi-
enced significant success in the industrial sector, but
still requires attention in higher education. The au-

CSEDU 2021 - 13th International Conference on Computer Supported Education

302



thors presented the knowledge structure used over
the course which was mainly focused on the Deploy-
ment Pipeline. The course used a PBL (Problem-
Based Learning) approach and the students worked in
groups to solve challenges they received. One of the
lessons learned in the study is related to the impor-
tance of soft skills in DevOps. The authors argue that
soft skills capabilities are a must for future software
engineers working expected to work in a DevOps-
oriented organization. The authors still argue that by
working in groups students get involved in a context
where problems may arise, allowing them to learn soft
skills to deal with such as problems.

Similar to PBL, there are different active learning
methodologies including Challenge-Based Learning
(CBL). Santos (Santos et al., 2015b) present a new
learning and software development framework that
combines Agile methodologies with CBL. CBL2 is
a learning framework developed by educators work-
ing with Apple Inc., which has been implemented
in a wide variety of educational and corporate set-
tings (Santos et al., 2015b).

Kuusinen (Kuusinen and Albertsen, 2019) inves-
tigated how to organize the structure of multidisci-
plinary and complex architecture courses by design-
ing and executing a Continuous Delivery (CD) and a
DevOps oriented course. The authors argue that the
main motivation to perform the study was related to
inability of the educational system to adapt to the mar-
ket needs and match the available skills with all exist-
ing jobs. The authors proposed a study topics struc-
ture mainly focused on the technical aspects related
to CD and DevOps. After designing the structure, the
course ran over two weeks, with 15 students partici-
pating on it. The authors argue the students were par-
ticularly happy about learning both practical and aca-
demic skills. The biggest complaint was the workload
of 125 study hours over two calendar weeks. More-
over, content-wise the students wished that the prac-
tical and theoretical days would be mixed. Regarding
infrastructure and tools, overhead of keeping up with
the industrial state-of-the-art at universities is often
too high. Still regarding the toolset used, the authors
argue that in the continuous deployment era, universi-
ties need to explore feasible ways to keep up with the
technological development in a way that allows them
to concentrate on fundamentals and underpinning the-
ories that help the students in lifelong learning, but at
the same time also keep the employability of a newly
graduated in mind.

Buffardi (Buffardi et al., 2017) argue that educa-
tional programming assignments have limited scope

2Details and samples about CBL are also available at
http://www.challengebasedlearning.org

and rigid design and introduce a Tech Startup ap-
proach to teaching Agile software development in a
software engineering course leveraging collaboration
and entrepreneurship aspects. According to the au-
thors, such experience should help students to de-
velop soft skills, specially communication, once stu-
dents will be contact with non-technical stakeholders
as well as class colleagues.

Melegati (Melegati et al., 2019) study investigated
how software engineering students learned startup
development methodologies and the challenges and
benefits of such learning process. According to the
authors, such learning process allows the develop-
ment of several soft skills and the importance of busi-
ness concepts.

5 COURSE PROPOSAL

Based on the problem stated in Subsection 1.1 and the
lessons learned from the previous studies evaluated
in Section 4, we propose a course structure, which
uses DevOps, Scrum and Challenge Based Learning
(CBL) approaches to help with the development of
soft skills and technical skills, which are in demand
in the information technology market as presented in
Figure 1.

Figure 1: Course Structure Proposal.

The usage of DevOps as an integrative approach
is especially important in the computer science and
software engineering context, once it allows the joint
of several areas, such as Cloud Computing, Net-
works, Operational Systems, Database Management
and Software Development, among others. The us-
age of Scrum is proposed because, along with De-
vOps, it fosters the communication and collaboration
among team members, over extensive documentation
and processes. The usage of Challenge Based Learn-
ing is recommended based on the characteristics of
this framework, which provides a powerful learning
and problem-solving approach on real problems. The
purpose of the course structure described in the fol-

Combining Agile and DevOps to Improve Students’ Tech and Non-tech Skills

303



lowing section is to provide a high-level guideline to
be used by institutions who are willing to improve stu-
dents’ soft skills and technical skills.

5.1 Course Structure

The aim of our proposal is to provide a high-level
framework using the lessons learned from the stud-
ies previously evaluated and the industry emerging
practices. Before we provide details about the pro-
posed course structure, it is important to emphasize
that some characteristics of the structure proposed,
such as duration, could be adapted according to each
institution needs and the number of students attending
to the course. Table 2 provides a macro description of
the course structure.

Table 2: Course Structure.

Phase Description Duration
Sprint 1 CBL: Macro Challenge - En-

gage/Investigate
8 hours

Sprint 1 CBL: Student Reflection 30 minutes
Sprint 1 Peer Feedback Session (Pro-

fessor)
30 minutes

Sprint 1 Peer Feedback Session (Col-
league)

30 minutes

Sprint 2 CBL: Macro Challenge - Act
- DevOps Fundamentals

8 hours

Sprint 2 CBL: Student Reflection 30 minutes
Sprint 2 Peer Feedback Session (Pro-

fessor)
30 minutes

Sprint 2 Peer Feedback Session (Col-
league)

30 minutes

Sprint 3 CBL: Macro Challenge - Act
- Building Deploy Environ-
ments

8 hours

Sprint 3 CBL: Student Reflection 30 minutes
Sprint 3 Peer Feedback Session (Pro-

fessor)
30 minutes

Sprint 3 Peer Feedback Session (Col-
league)

30 minutes

Sprint 4 CBL: Macro Challenge – Act
- Building the CI/CD Pipeline

8 hours

Sprint 4 CBL: Student Reflection 30 minutes
Sprint 4 Peer Feedback Session (Pro-

fessor)
30 minutes

Sprint 4 Peer Feedback Session (Col-
league)

30 minutes

Sprint 5 CBL: Macro Challenge - Act
- Adding Test Automation to
the Pipeline

8 hours

Sprint 5 CBL: Student Reflection 30 minutes
Sprint 5 Peer Feedback Session (Pro-

fessor)
30 minutes

Sprint 5 Peer Feedback Session (Col-
league)

30 minutes

At the beginning of the course, students should be
grouped in teams and each team should define a real-
world problem to be solved with a software based so-
lution. In order to ensure that different areas of com-
puter science or software engineering will be explored
over the course, some requisites should be defined by
the professors at the beginning of the course. In ev-
ery sprint, the students will be given an introductory
class about a specific DevOps subject and, following
the CBL framework, will work together to plan and
deliver what has been planned. Elements of the De-
vOps subject discussed at the beginning of each sprint
are expected to be implemented by each team, as part
of the software solution to be delivered at the end of
the sprint.

At the end of each sprint, the students should per-
form a CBL reflection, individually, in order to reflect
about their own learnings and improvement oppor-
tunities, regarding the soft skills they have practiced
over the sprint.

Hattie (Hattie and Timperley, 2007) argue that
feedback can be a great approach to support students’
learning and achievements. In order to provide feed-
back to each one of the students regarding their soft
skills and improvement opportunities, professors are
encouraged to schedule a 30 minutes meeting after the
end of each sprint with each student. For several rea-
sons, face-to-face feedbacks are recommended. Such
approach could be challenging to the professors based
on the number of students. However, we encourage
the engagement of more than one professor in the
course, in order to ensure the feedbacks will be pro-
vided with enough details to allow improvements on
each individual’s soft skills. As this course is a joint
of several areas, the participation of other professors
in the soft skills evaluation process is highly recom-
mended.

Sadler (Sadler, 2010) argues that peer assessment
is also the most natural way to provide tacit and ex-
plicit knowledge transfer. Based on Sadler’s findings,
we also consider having a peer assessment approach,
where, at the end of each sprint, each student should
be assessed by their peers, which includes professors
and other students, on the soft skills agreed to be eval-
uated over the course.

Regarding the soft skills to be developed, Table 3
provides a list of important soft skills we identified in
the previous studies evaluated as well as their charac-
teristics.

Additionally, Table 4 describes the main rituals
which could be used to evaluate the students and each
one of the skills to be developed.

It is important to emphasize that the skills se-
lected to be evaluated in our course proposal could

CSEDU 2021 - 13th International Conference on Computer Supported Education

304



Table 3: Soft skills evaluation.

Soft Skill Description
Team work Cooperative, gets along with oth-

ers, agreeable, supportive, help-
ful, collaborative

Communication Oral speaking capability, written,
presenting, listening, clear and
structured speech

Problem Solv-
ing

Ability to frame a problem and de-
fine a structured course of action

Decision Mak-
ing

Ability to take decisions in a
timely matter, rationally, using the
available information

Table 4: Rituals.

Soft Skill Ritual
Team work Sprint Planning, Backlog Groom-

ing, Tasks Execution, CBL En-
gage/Investigate/Act

Communication
(verbal)

Daily Scrum, Sprint Retrospec-
tive, Sprint Planning, Backlog
Grooming, CBL Reflection

Communication
(written)

User Stories, Behavior Driven De-
velopment Specifications, Knowl-
edge Transfer, CBL Reflection

Problem Solv-
ing

Tasks Execution, Re-
searching Solutions, CBL
Engage/Investigate/Act

Decision Mak-
ing

Sprint Planning, Backlog
Grooming, Tasks Execution,
Researching Solutions, CBL
Engage/Investigate/Act

be adapted according to the institutions and industry
needs.

5.2 Course Evaluation

In order to evaluate the effectiveness of the course
structure proposed, questionnaires should be applied
at the beginning and after the conclusion of the
course. The comparison between both question-
naires’ responses, along with feedbacks provided by
peers and professors over the course, will provide
means to evaluate the progress and development of
the students at the end of the course, as well, should
provide valuable insights to promote improvements to
the course structure.

6 CONCLUSION AND FUTURE
WORKS

This study proposed a framework that takes advan-
tage of cultural aspects from emerging software de-
velopment and active learning practices such as De-
vOps, Scrum and CBL to support the development
of Software Engineering and Computer Science stu-
dents in higher education courses. The development
of this framework was motivated by the need of a
more prescriptive guideline to develop such skills and
due to the market needs (Ahmed et al., 2012; Carter,
2011). The usage of Challenge Based Learning ele-
ments as part of this framework was also motivated
by some of the studies we analyzed (Thurner et al.,
2016; Santos et al., 2015b) . This study is still a work
in progress, therefore, a more extensive research on
the literature could bring additional insights to com-
plement our proposal. As a future work, we aim to ap-
ply the solution proposed on an experimental course
in order to validate the outcomes and propose changes
based on the lessons learned.

REFERENCES

Ahmad, K. and Gestwicki, P. (2013). Studio-based learn-
ing and app inventor for android in an introductory
cs course for non-majors. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Ed-
ucation, SIGCSE ’13, pages 287–292, New York, NY,
USA. ACM.

Ahmed, F., Capretz, L. F., and Campbell, P. (2012). Eval-
uating the demand for soft skills in software develop-
ment. IT Professional, 14(1):44–49.

Andersson, C. and Logofatu, D. (2018). Using cultural het-
erogeneity to improve soft skills in engineering and
computer science education. In 2018 IEEE Global En-
gineering Education Conference (EDUCON), pages
191–195.

Bastarrica, M. C., Perovich, D., and Samary, M. M. (2017).
What can students get from a software engineering
capstone course? In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering: Software
Engineering Education and Training Track (ICSE-
SEET), pages 137–145.

Bobrov, E., Bucchiarone, A., Capozucca, A., Guelfi, N.,
Mazzara, M., and Masyagin, S. (2020). Teaching de-
vops in academia and industry: reflections and vision.
In Software Engineering Aspects of Continuous De-
velopment and New Paradigms of Software Produc-
tion and Deployment, pages 1–14. Springer Interna-
tional Publishing.

Buffardi, K., Robb, C., and Rahn, D. (2017). Learning ag-
ile with tech startup software engineering projects. In
Proceedings of the 2017 ACM Conference on Innova-
tion and Technology in Computer Science Education,

Combining Agile and DevOps to Improve Students’ Tech and Non-tech Skills

305



ITiCSE ’17, page 28–33, New York, NY, USA. Asso-
ciation for Computing Machinery.

Carter, L. (2011). Ideas for adding soft skills education to
service learning and capstone courses for computer
science students. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Educa-
tion, SIGCSE ’11, page 517–522, New York, NY,
USA. Association for Computing Machinery.

Davis, J. and Daniels, R. (2016). Effective DevOps: Build-
ing a Culture of Collaboration, Affinity, and Tooling
at Scale. O’Reilly Media.

Fetaji, M. and Fetaji, B. (2009). Analyses of mobile learn-
ing software solution in education using the task based
learning approach. In Information Technology Inter-
faces, 2009. ITI ’09. Proc. of the ITI 2009 31st Int.
Conf. on, pages 373–378.

Gestwicki, P. and Ahmad, K. (2011). App Inventor for An-
droid with Studio-based Learning. Journal of Com-
puting Sciences in Colleges, 27(1):55–63.

Hattie, J. and Timperley, H. (2007). The power of feedback.
Review of Educational Research, 77(1):81–112.

Hazzan, O. and Har-Shai, G. (2014). Teaching and learning
computer science soft skills using soft skills: the stu-
dents’ perspective. In Proceedings of the 45th ACM
technical symposium on Computer science education,
pages 567–572.

Hussaini, S. W. (2014). Strengthening harmonization of de-
velopment (dev) and operations (ops) silos in it envi-
ronment through systems approach. In 17th Interna-
tional IEEE Conference on Intelligent Transportation
Systems (ITSC), pages 178–183.

Joint Task Force on Computing Curricula, Association
for Computing Machinery (ACM) and IEEE Com-
puter Society (2013). Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate De-
gree Programs in Computer Science. Association for
Computing Machinery, New York, NY, USA.

Kerzazi, N. and Adams, B. (2016). Who needs release and
devops engineers, and why? In 2016 IEEE/ACM In-
ternational Workshop on Continuous Software Evolu-
tion and Delivery (CSED), pages 77–83.

Kitchenham, B. (2004). Procedures for performing system-
atic reviews. Keele, UK, Keele Univ., 33.

Kuusinen, K. and Albertsen, S. (2019). Industry-academy
collaboration in teaching devops and continuous de-
livery to software engineering students: Towards im-
proved industrial relevance in higher education. In
2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Educa-
tion and Training (ICSE-SEET), pages 23–27.

Matturro, G., Raschetti, F., and Fontán, C. (2015). Soft
skills in software development teams: A survey of the
points of view of team leaders and team members. In
2015 IEEE/ACM 8th International Workshop on Co-
operative and Human Aspects of Software Engineer-
ing, pages 101–104.

Melegati, J., Chanin, R., Wang, X., Sales, A., and Priklad-
nicki, R. (2019). Perceived benefits and challenges
of learning startup methodologies for software engi-
neering students. In Proceedings of the 50th ACM

Technical Symposium on Computer Science Educa-
tion, SIGCSE ’19, page 204–210, New York, NY,
USA. Association for Computing Machinery.

Nichols, M., Cator, K., and Torres, M. (2016). Challenge
Based Learning Guide. Digital Promise, Redwood
City, CA, USA.

on Cybersecurity Education, J. T. F. (2018). Cybersecu-
rity Curricula 2017: Curriculum Guidelines for Post-
Secondary Degree Programs in Cybersecurity. As-
sociation for Computing Machinery, New York, NY,
USA.

on Information Technology Curricula, T. G. (2017). In-
formation Technology Curricula 2017: Curriculum
Guidelines for Baccalaureate Degree Programs in In-
formation Technology. Association for Computing
Machinery, New York, NY, USA.

Sadler, D. R. (2010). Beyond feedback: Developing stu-
dent capability in complex appraisal. Assessment &
Evaluation in Higher Education, 35:535–550.

Santos, A., Sales, A., Fernandes, P., and Nichols, M.
(2015a). Combining Challenge-Based Learning and
Scrum Framework for Mobile Application Develop-
ment. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Ed-
ucation (ITiCSE’15), pages 189–194, Vilnius, Lithua-
nia.

Santos, A. R., Sales, A., Fernandes, P., and Nichols, M.
(2015b). Combining challenge-based learning and
scrum framework for mobile application develop-
ment. In Proceedings of the 2015 ACM conference
on innovation and technology in computer science ed-
ucation, pages 189–194.

Sedelmaier, Y. and Landes, D. (2014). Software engineer-
ing body of skills (swebos). In 2014 IEEE Global En-
gineering Education Conference (EDUCON), pages
395–401.

Swartout, P. (2012). Continuous Delivery and DevOps: A
Quickstart Guide. Packt Publishing.

Thurner, V., Schlierkamp, K., Böttcher, A., and Zehetmeier,
D. (2016). Integrated development of technical and
base competencies: Fostering reflection skills in soft-
ware engineers to be. In 2016 IEEE Global Engineer-
ing Education Conference (EDUCON), pages 340–
348.

Valentin, E., Carvalho, J. R. H., and Barreto, R. (2015).
Rapid improvement of students’ soft-skills based on
an agile-process approach. In 2015 IEEE Frontiers in
Education Conference (FIE), pages 1–9.

CSEDU 2021 - 13th International Conference on Computer Supported Education

306


