
Source Code based Approaches to Automate Marking in
Programming Assignments

Thilmi Kuruppu, Janani Tharmaseelan, Chamari Silva, Udara Srimath S. Samaratunge Arachchillage,
Kalpani Manathunga, Shyam Reyal, Nuwan Kodagoda and Thilini Jayalath

Faculty of Computing, Sri Lanka Institute of Information Technology (SLIIT), Malabe, Sri Lanka

Keywords: Automated Assessments, Whitebox, Machine Learning, Syntax Graph, Static Tools, Literature Review,
Programming.

Abstract: With the embarkment of this technological era, a significant demand over programming modules can be
observed among university students in larger volume. When figures grow exponentially, manual assessments
and evaluations would be a tedious and error-prone activity, thus marking automation has become fast
growing necessity. To fulfil this objective, in this review paper, authors present literature on automated
assessment of coding exercises, analyse the literature from four dimensions as Machine Learning approaches,
Source Graph Generation, Domain Specific Languages, and Static Code Analysis. These approaches are
reviewed on three main aspects: accuracy, efficiency, and user-experience. The paper finally describes a series
of recommendations for standardizing the evaluation and benchmarking of marking automation tools for
future researchers to obtain a strong empirical footing on the domain, thereby leading to further advancements
in the field.

1 INTRODUCTION

1.1 Background and Motivation

Programming assignments are an essential element in
computer programming modules taught at university.
With the growth of class sizes, evaluating
assignments become challenging (Higgins, Gray,
Symeonidis, & Tsintsifas, 2005) and researchers
explore novel methods to automate assessments.
Marking automation has advantages like speed,
consistency, reduced need for post-marking
moderation, better utilisation of human-hours, and
eliminate favouritism and bias from the marking
(Ala-Mutka, 2005). As an illustrative example, the
authors’ university has 10 programming modules in
the undergraduate programs, each with 2
assignments, with an average of 1000 students,
resulting in 20,000 programming assignments per
semester. An average time of 20 minutes was
estimated to mark each programming assignment
which results in 400,000 human hours spent on
marking each academic semester.

Figure 1: Hierarchy of marking automation approaches.

Automatic marking approaches can fall into two
broad categories – Blackbox testing and Whitebox
testing as shown in Figure 1.

Blackbox testing, as per its definition, focuses on
the program producing the expected output for a
given input. A number of Blackbox testing
approaches like Unit Testing exists and is used in a
number of commercial and non-commercial tools
(Rahman, Paudel, & Sharker, 2019) like REPL.it,
GradeScope, Moodle-Extension, Stacscheck by St
Andrews, etc. The major drawback of Blackbox
testing is that (a) programs should be developed with
an interface or API to provide inputs and obtain outputs
(via console, files, methods arguments and return
values, etc.) and (b) to produce an output, the program
should be syntactically correct, and run without errors
– both of which cannot be guaranteed with student

Kuruppu, T., Tharmaseelan, J., Silva, C., Arachchillage, U., Manathunga, K., Reyal, S., Kodagoda, N. and Jayalath, T.
Source Code based Approaches to Automate Marking in Programming Assignments.
DOI: 10.5220/0010400502910298
In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021) - Volume 1, pages 291-298
ISBN: 978-989-758-502-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

291

submissions. On the other hand, Whitebox Testing
assigns a mark by reading the submitted source code,
whether Blackbox testing is possible or not. It is usual
practice in universities to include a marking rubric that
has both a Blackbox and Whitebox component e.g. 50
marks for the program producing the correct outputs
for a given set of inputs, and 50 marks by reading the
source code – looking for correctness, neatness and
good coding practices, etc.

1.2 Contributions and Organisation

The main objective of carrying out this research work
is to study the holistic domain of marking automation
of programming assignments and provide a
panoramic view of the existing research approaches
in the domain. As illustrated in Fig.1, authors will
study only Whitebox testing approaches from four
different aspects, i.e., Machine Learning (ML)
approaches, source graph (SG)-based approaches,
programming languages (PLs) based approaches and
static code analysis (SCA) approaches. As
programming assignments, authors consider a piece
of any computer program provided as students’
answers. This paper does not address parts of the
assignment which have a different component in the
SDLC (e.g. design), where submissions may have
flowcharts, UML diagrams, test reports, coverage
reports, and integration reports etc.

The research paper is structured as follows: in
section II, authors provide a review of four identified
approaches i.e. ML, SG, PLs, and source code analysis.
These are critically evaluated on three main benchmark
criteria i.e. accuracy, efficiency, and user-experience
(UE). The section III provides a ‘meta-review’ based
on cross-literature-comparison to identify the strengths
and weaknesses in the current state-of-the-art, thereby
recognizing the suitability, scope, applicability,
limitations, and research gaps. A discussion of the
findings in sections II and III, providing the authors
interpretation, insights, and arguments is available in
the section IV. Finally, the section V provides
recommendations based on the findings and
discussion, for further advancement of the field.

2 LITERATURE REVIEW

2.1 Machine Learning (Ml)
Approaches

ML is one of the main approaches used to evaluate
the source code marking. Some existing ML
approaches follow the holistic approach. In the study

of (Srikant & Aggarwal, 2014), Linear Ridge
Regression and Support Vector Machine (SVM)
combined with different kernels based on rubric and
hand-graded predictions have been used as the
regression techniques. Also, (Srikant & Aggarwal
2014) uses random forests to determine the closeness
of the logic. The studies used one-class modelling as
the Prediction model. According to the results,
ridge regression showed better cross-validation and
error validation results than SVM regression.
It showed that more than 80% of the predicted grades
are within its corresponding expert rated grades.
Moreover, regression against expert-grades can
provide much better grading than the ubiquitous test-
case-pass based grading and rivals the grading
accuracy in marking.

Some studies provide personalized feedback for
the student submissions using ML, based on factors
like code quality and similarity (Zhou, et al., 2018) or
either fix the code minimally and present feedback for
a given solution against a marking rubric (Singh,
Gulwani, & Solar-Lezama, 2013). In (Zhou, et al.,
2018) similarity model distances were found by
transforming the features derived from the
assignment. (Singh, Gulwani, & Solar-Lezama,
2013) used a two-phase translation solution to
find minimal corrections. The effectiveness of the
tool was 64% of feedback for all incorrect attempts
within 10 seconds on average. The results were more
convincing in (Zhou, et al., 2018) approach that could
be viable for marking automation with its efficiency
and the accuracy rate.

A Rule-based system and linear regression
models had been used to predict the position of
compilation errors and assess uncompilable codes
(Takhar & Aggarwal, 2019). This was achieved using
n-gram based token prediction approach which is
called as Make Compliable (MC), Rule Relaxation
(RR). Then a ML model was developed by combining
MC and RR as RRMC. Performance measurements
were median for MC is 0.73, a higher value than for
RR (which was 0.69). RRMC approach resulted with
a mean of 0.71 correlations offering best results with
reduced time and effort. Another technique was
feature extraction using ML approaches to automate
marking student codes (Russell, et al., 2018). Linear
Support Vector Classification (Linear SVC),
Gaussian Naive Bayes and Multinomial Naive Bayes
have been used as three practical algorithms to
classify exam submissions and a holistic approach to
pick up the pattern from manually marked
submissions. Convolutional Neural Network (CNN)
and Recurrent Neural Network were used for feature
extraction (Russell, et al., 2018). It uses Linear SVC

CSEDU 2021 - 13th International Conference on Computer Supported Education

292

and Naïve Bayes as scoring functions, and it was
found that the Multinomial Naïve Bayes (MNB) over
Gaussian Naïve Bayes (GNB) where the most
accurate prediction gave a hit-rate of 73.39%. MNB
with weighted scoring had a prediction accuracy of
79.03%. Hence, Naive Bayes algorithm shows
promising results. In (Russell, et al., 2018) the best
results achieved using features learned via CNN and
classified with an ensemble tree algorithm.

2.2 Static Code Analysis (SCA) Tools

Striewe & Goedicke (2014) suggested the two
approaches regarding the analysis of source code as
Abstract Syntax Tree (AST) and Abstract Syntax
Graph (ASG). Furthermore, recursive methods can
identify using ASG, based on the inter-dependency
arcs in between operation declaration and its
invocation (Striewe & Goedicke, 2014), (Striewe M.
, 2014). In (Blumenstein, Green, Nguyen, &
Muthukkumarasamy, 2004), the famous code
analysis algorithms known as Abstract Interpretation
for execution path analysis has been introduced. It
produces higher accuracy, but results indicated lower
efficiency ratio. The authors have suggested how the
previous approach can be combined with the classic
analysis algorithm and elevate the level of
performance. Automated Static Analysis Tool
(ASAT) had been considered by couple of tools
proposed by different studies. Gallier (2015)
discussed regarding the logical inference introduced
with the tool called SMT solver. As illustrated in
Rautenberg (2010), horn clauses and logic
programming tools would be precursor to achieve the
most optimum solution by combining abstract
interpretation and the logical inference techniques
(Ala-Mutka, 2005), (Cousot, Cousot, & Mauborgne,
2013), (Vert, Krikun, & Glukhikh, 2013).

Another study (Vert, Krikun, & Glukhikh, 2013)
enumerated the most dominating SCA tools such as
Coverty SAVE Platform, Astree, PC-Lint/Flex Lint,
and Aegies. In addition, study of (Digitek-labs, 2011)
would be beneficial due to its unique feature analysis
considering the dimensions of accuracy and
performance. In the study of (Buyrukoglu, Batmaz, &
Lock, 2016), authors performed a comparative
analysis of SCA tools to check the coding
conventions of Java which explicitly discussed the
single versus multi files analysis and their prevailing
strengthens and weaknesses. Moreover, (Vetr`o,
2014) suggested that the learning approach would be
significant in detecting the raised false positives in the
codebase and successfully removing them using the

approach of Bayesian inference-based learning model
with training a neural network.

2.3 Programming Language based
Approaches

(Blumenstein, Green, Nguyen, &
Muthukkumarasamy, 2004), (Souza, Felizardo, &
Barbosa, 2016) provide an extensive list of
assessment tools used to evaluate programming
assignments and they had presented series of
classification schemas like assessment types (manual,
automatic or semi-automatic), approach (instructor-
centred, student-centred or hybrid), specialization
(tools for contests or for quizzes or for testing) and a
comprehensive analysis of tools (considering the type
of verification, language compatibility,
interoperability with IDEs and LMS, etc.) that assist
evaluation of programming assignments. Another
segmentation is that dynamic analysis of codes
assessing functionality, efficiency, and testing skills
of student’s vs. static checks to analyze and provide
feedback for style, programming errors, software
metrics, and even design (Ala-Mutka, 2005).

In (Blumenstein, Green, Nguyen, &
Muthukkumarasamy, 2004), authors introduced a
system to assess the student programming
assignments which are written using Java and C. To
extend the functionalities of the current system,
authors have introduced a Java framework where new
marker modules could be added manually. The
system GAME caters a better UE by providing a
simple GUI and the evaluation summery. Authors
have increased the flexibility through java
framework. It concluded that system could produce
high accuracy results due to evaluation process of
having specific rubric for assignments. A separate
interpretation of the system will be accessible to the
students to execute in future developments and
collect the feedback.

CourseMarker (Higgins, Gray, Symeonidis, &
Tsintsifas, 2005) can be used to mark command-line
driven Java and C++ programming assignments with
correct configurations. The evaluation happens using
several stages and internal tools as typographical tool
(to check layouts), dynamic tool (solutions compared
against test data), feature tool (check specific
syntaxes such as “if-then-else” blocks), flowchart
tool, object-oriented tool and logic tool (to check
logic circuits) marks at least as well as humans do,
provides on-demand, impartial feedback, and as a
bonus saves hundreds of marking hours for the
academic staff. Another study (Buyrukoglu, Batmaz,
& Lock, 2016) employs semi-automatic code

Source Code based Approaches to Automate Marking in Programming Assignments

293

assessing, considering the program structures like
sequence and iteration. Novice’s code is compared
with the manually marked sample and using code
similarity the rest of the scripts are assessed. Human
markers may also provide feedback. The process
includes a segmentation stage, codifying process,
grouping, and marking.

Automated assessments using a Domain Specific
Language (DSL) called Output semantic-similarity
Language (OSSL) had been proposed in (Fonte &
Cruz, 2013). A Flexible Dynamic Analyzer
architecture with the components like OSSL and its
grammar to specify output specification are
extensively discussed. The approach supports for
partial marking of code scripts and for
interoperability with any automated grading system
that support for Learning Objects. Immediate
evaluation is possible by running the program over a
set of predefined tests and comparing each result (the
actual output produced by the submitted code) against
an expected output specification. Yet, authors had not
conducted a proper evaluation of the approach or the
DSL, which may limit the paper as a conceptual
model.

2.4 Source Graph based Approaches

Graph is a mathematical model that shows
connections between elements where it describes
rules over sets of nodes and edges of a graph. A
program written in a PL can be transformed into a
syntax tree by a parser. When additional information
such as bindings are included in the representation,
the syntax tree is extended into a syntax graph
(Rensink & Zambon, 2009). One study gives a review
of tools useful in automated grading and tutoring in
the context of object-oriented programming with Java
(Striewe & Goedicke, 2014). Authors emphasize on
the necessity of tools being able to process multiple
source files. According to authors, in pre-processing
steps, extending syntax trees to syntax graphs with
additional information helps achieving more flexible
and exercise specific configurations. When such
automated tools are more general, more effort is
necessary to perform specialized tasks. Since learning
scenarios may require very specialized and even
exercise specific checks which are not among the
standard checks offered by program analysis tools,
these authors suggest that integration of several tools
can be more productive.

In (Striewe M. , 2014), the suitability of three data
structures: Strings, Trees and Graphs has been
evaluated. As mentioned, trees are limited because
they only allow one parent per node hence, they could

not represent different kinds of relations like “is
defined in” and “is called by” between elements. To
check for recursive methods, it is necessary to have
this information. Graph-based representations can be
used to store this information, because they allow an
arbitrary number of connections between nodes.
Therefore, authors concluded that the attributed
graphs are an appropriate representation of any kind
of code analysis. Study used TGraphs to handle
attribute graphs where it designed for efficient
handling and analysing of large graphs. Queries on
this graph format are expressed using a query
language named GReQL. The GReQL for queries on
TGraphs can be extended by user defined functions.
In (Striewe M. , 2014) two solutions have been used
to analyse the syntax graphs: a graph transformation
tool and a graph query engine. As concluded, both
techniques can create pre-defined generic sets of rules
that are independent of specific exercises.

3 THE META-REVIEW

3.1 Machine Learning based
Approaches

Grades for the programming assignments can be
evaluated in many ways, among those, ML is
outweighing the other approaches (Korkmaz &
Correia, 2019). The reason behind this is the ability
of “learning” of the model. It can analyse the new
codes and learn, hence marking structure is up to date
and more accurate. Here, the focus is on the accuracy,
efficiency and configurability of different ML
algorithms found in the literature. Linear ridge
regression, random forests and kernel based SVM,
Naive Bayes (Multinomial Naive Bayes and Gaussian
Naive Bayes), SVM can be identified as most popular
and effective algorithms used in the literature. When
comparing, linear ridge regression largely shows
better cross-validation and error validation results
than random forests and kernel-based SVM (Srikant,
& Aggarwal, 2014). Moreover, regression can
provide much better grading than the test-case-pass
based grading. When the uncompilable codes to be
corrected up to some level where if the exams give
more priority to algorithms and logic, not for the
program syntaxes. In that case linear ridge regression
models were best. However, results also shows that
models built using both, semantic features and test-
cases shows better results. Moreover, developing of
problem independent grading techniques which may
be facilitated by efficient one-class modelling
techniques is shown as a necessity. On the other hand,

CSEDU 2021 - 13th International Conference on Computer Supported Education

294

the proposed algorithms need to train to use for more
diverse problems which is a need in the future.

3.2 Static Code Analysis Tools

Number of SCA tools exponentially grow with the
advancement of the technology and those support for
different PLs in different scale, and this paper mainly
focuses on their contributions over evaluating
programming assignments. To analyse the source
code there are two approaches that can be used as
AST and ASG and the ASG is an enriched version of
the tree, but it comprises additional arcs (Striewe &
Goedicke, 2014). Compared to the AST, the ASG
contains a couple of advantages as it can easily detect
irrelevant pieces of code, for instance, unused
methods can be identified using the method
declaration nodes and ASG is capable of easily
identifying recursive methods based on the cyclic
dependency arcs in-between method declaration and
method call nodes (Novak & Krajnc, 2010).
Consequently, most SCA tools tend to use ASG as its
main analytical technique. Some studies suggest
generating ASG from AST to increase the accuracy
as a valuable pre-processing step before evaluating
the source code in programming assignments
(Striewe & Goedicke, 2014), (Striewe M. , 2014),
(Gallier, 2015), (Rautenberg, 2010), (Cousot, Cousot,
& Mauborgne, 2013), (Vert, Krikun, & Glukhikh,
2013).

Furthermore, when analysing large volumes of
programming assignments, efficiency and accuracy
are the most significant factors to be considered. But
when increasing the accuracy, the performance factor
would compensate, hence achieving an optimum
performance for the highest precision is the key
concern here. To increase the accuracy, “Abstract
interpretation” is a well-known code analysis
algorithm (Cousot P. , 1996) which analyses every
execution path without violating the reliability of the
analysis. It analyses paths separately to achieve
maximum accuracy, but it degrades the performance
factor in a significant ratio. As a solution the joint
path analysis could be used, which assumes joining
variable values at flow conjunction point. However,
that leads to lower accuracy, but it gains satisfactory
performance level. Another possible approach to
increase the precision while using the joint path
analysis is combining the classic analysis algorithm
(Glukhikh, Itsykson, & Tsesko, 2012). Nevertheless,
this dependency analysis partially compensates on
reducing the level of accuracy because of joining
paths during the analysis. To further optimize the
situation dependency analysis implemented using
logical inference methods and tools such as first and
higher-order logic (Gallier, 2015), SMT solvers, and
Horn clauses and logic programming tools would be
instrumental. Considering the literature Patric Cousot
suggested a mathematical model of integrating
abstract interpretation with a logical inference as the

Table 1: Emerged Static Code Analysis Tools.

Tool Capability Language support Related work

Coverity
SAVE

1. Provide accuracy 80% - 90%
2. Detects 7 errors per 1000 LOC
3.Understand Patterns and Programming idioms (Design Patterns
intelligence)
4.Seamless integration with any build system

C/C++, Java and C#
(Vert, Krikun, &
Glukhikh, 2013)

Astree

1. Capable of identifying run-time errors
2. capable of analyzing medium-scale industry-based projects.
3. Analyze 100,000 (LOC)
4. The tool can detect dead-code and uses abstract semantic
domains
5. Perform their main analysis procedure from top to bottom

C language
(Cousot, Cousot,
& Mauborgne,
2013)

FlexeLint/
PC Lint

1. This performs data flow/control flow analysis
2. It performs the interprocedurally analysis
3. Tool enhances user experience by user-defined semantic
checking of functional arguments

C/C++ programs
(FlexLint for UNIX,
Mac OS, Solaris
platforms) PC-Lint
for Windows

(Vert, Krikun, &
Glukhikh, 2013)

Aegis

1. Simple dependency analysis to increase the accuracy.
2. Can be used as for defect detection and for decision of other
program engineering tasks
3. Used to analyze many open-source projects

C90 and C++ 98
source code

(Digitek-labs,
2011),

Checkstyle
1.Find naming convention errors
2.Identify whitespaces, line, length specific errors, wrong use of
brackets

Java code
(Ashfaq, Khan,
& Farooq, 2019)

Source Code based Approaches to Automate Marking in Programming Assignments

295

most optimized solution (Ala-Mutka, 2005), (Cousot,
Cousot, & Mauborgne, 2013), (Vert, Krikun, &
Glukhikh, 2013). Currently there are lots of elegant
tools available, depicted in Table 1 as a result of
research and development activities which gains high
accuracy and performance levels.

Problem in most code analysis tools is that those
generate false warnings. It causes a significant drop
in the precision level of the outcome. The literature
attempted to fulfil the gap in removing static analysis
warnings on software quality metrics. A neural
network has been trained and the Bayesian inference-
based learning model (Vetr`o, 2014) used on top of
the extracted byte code, and AST used as the
underlying analysis technique which improves the
prediction of false positive in SCA.

3.3 Programming Language based
Approaches

Literature can be found with classifying student-led
or teacher-led tools considering efficiency and
extensibility has been addressed by LMS or IDE
extension whereas usability has achieved using
automated feedback or verification techniques
(Souza, Felizardo, & Barbosa, 2016). GAME
(Blumenstein, Green, Nguyen, &
Muthukkumarasamy, 2004) tool offers a good UE
with a simple GUI and a summary of the evaluation.
Authors have increased the flexibility of the system
by introducing a Java framework to extend the
functionalities. Since the student answers are
evaluating over a marking schema, accuracy of the
results is high. CourseMaker (Higgins, Gray,
Symeonidis, & Tsintsifas, 2005) can mark at least as
well as humans do, though they have not given any
statistics on the fact. The tool is reliable as it uses
Java’s exception handling mechanisms and provide
impartial feedback on demand while saving time.
Extensibility has been considered by customizing the
exercises or by customizing the marking server,
enabling integration of additional features. In
(Buyrukoglu, Batmaz, & Lock, 2016), humans need
to mark only 32 from a sample of 153 (27%) which
indicates a reduction of human effort. This system
provides feedback to students. But the complete
process of marking highly depends on the question
preparation and teachers need to pay attention to
detail at that stage. DSL based approach (Fonte &
Cruz, 2013) had not carried out a proper evaluation
study. Hence, accuracy of the tool or efficiency had
not been addressed. Yet, authors claim that their
approach is user-friendly and interoperable with any
other system that support to Learning Objects.

3.4 Source Graph based Approaches

In (Striewe & Goedicke, 2014), a review on tools
useful in automated grading and tutoring is
conducted. In reviewing the tools, authors have given
attention on graphs on how to increase the
configurability of the tools when the syntax graphs
are used. Authors have not given an attention
specifically on syntax graphs on the context that how
the syntax graphs affect on the accuracy or efficiency
of a tool. But authors have made a general comment
on how integration of different tools could increase
efficiency. Syntax graphs are an appropriate
representation for the code analysis (Striewe M. ,
2014). It makes the solutions more accurate and
flexible. Authors mention that the attributed graphs
make it efficient to handle large graphs. Also, authors
have used a query language on the graphs, which
provides the configurability on for the user defined
functions. In another study, graph transformation had
been used for source code analysis (Rahman, Paudel,
& Sharker, 2019) which concluded that the graph
transformations improve the accuracy and flexibility
of the solution.

4 DISCUSSION

The existing literature review discussed four major
approaches: ML, SG-based, PL-based, and SCA. The
outcomes were critically evaluated based on the
dimensions: accuracy, efficiency, and user
experience. SG-based approach highlighted that,
syntax graphs provide significant improvement in
accuracy and flexibility. It further emphasized usage
of ASG over AST as a valuable pre-processing step.

PL based approaches suggested some tools that
enhance the user experience, flexibility, and
extensibility factors and few cases on how marking
accuracy is more reliable when compared marking by
a human-counterpart. Similarly, there are some tools
discussed under SCA, how it reached the accuracy
considering the metrices like LOC and types of
errors. Moreover, SCA show strengths and
weaknesses in algorithms to reach highest precision
while keeping the optimum performance. It proposed
a mathematical model that integrates abstract
interpretation with a logical inference as the most
optimized solution. Authors highlight the most
popular algorithms that researchers used in the ML
approaches. Linear ridge regression model could be
predominant due to the unique capability of logic-
based evaluation over syntactical evaluation in
programming assignments. In the literature of ML, it

CSEDU 2021 - 13th International Conference on Computer Supported Education

296

is proposed that the algorithms should be trained for
diverse problems to fulfil the future expectations.

Across these four identified approaches, it was
observed that some critical aspects had not been
considered in the evaluations. Most works (except a
very few (Singh, Gulwani, & Solar-Lezama, 2013))
have not compared their novel approaches against the
obvious baseline condition – what if the same sample
was marked by a human? Also, many had not
considered inconsistencies of accuracy and
unbiasedness in comparison with human marking.
Previous studies could not be cross compared since
authors had measured different aspects, e.g. some
report on the efficiency of the solution (Striewe &
Goedicke, 2014), (Novak & Krajnc, 2010) some
(rarely) on the user-friendliness and configurability of
the tools proposed (Ala-Mutka, 2005), (Striewe &
Goedicke, 2014), (Novak & Krajnc, 2010), (Ashfaq,
Khan, & Farooq, 2019) and some on the accuracy
(Srikant & Aggarwal, 2014), (Takhar & Aggarwal,
2019), (Novak & Krajnc, 2010). Therefore, it is not
evident enough to conclude whether a solution is
accurate yet inefficient, or accurate and efficient yet
difficult to configure etc. Given the maturity of the
domain and the plethora of marking automation
techniques proposed, a strong empirical footing on
each approach, measured using generic comparable
metrics is overdue.

 Lack of generic “test-samples” for evaluating the
efficiency, accuracy and user-friendliness of each
approach is identified a significant challenge.
Currently, each method is evaluated with different
marking samples made up by the authors, which
therefore cannot be cross compared. Another major
limitation in most work (except a few (Srikant &
Aggarwal, 2014), (Takhar & Aggarwal, 2019)) is that
they cannot be seamlessly integrated to existing
educational platforms such as Moodle. Teachers need
to install these tools, while configuring runtime
environments and handling dependencies. Further,
this process may include obtaining the submissions
from the LMS platform, marking them using the tool,
and uploading the marks back to the LMS. Hence,
interoperability and portability of tools is a non-trivial
consideration. Though some studies provide feedback
(Zhou et al., 2018), (Singh, Gulwani, & Solar-
Lezama, 2013) many have not addressed providing
feedback for student improvement. This is essential
and becomes more challenging for human markers
when addressing larger classes.

5 RECOMMENDATIONS

After scrutinizing the literature, authors would like to
contribute with some recommendations for marking
automation. A set of generic “marking-samples” to
evaluate each proposed marking automation
mechanism seems critical. This will provide a strong
empirical footing on the accuracy of each method. As
a baseline condition, these could be marked by a
human for comparison. For further accuracy, a
crowdsourcing approach could be used to obtain the
human-given mark for the “marking samples”.
Secondly, these marking samples need to be
applicable across domains, such as assignments
written in procedural, functional and object-oriented,
as well as covering student-submissions that include
meta-files (e.g. XML, properties, and other
configuration files). Third, it is recommended to
standardize a “recipe” of activities and measurements
for evaluating the UE of each tool for both teacher
and student. It is obvious that a tool which has utility
has more tendency to be used if it is user friendly.
Student feedback is key; hence novel marking
automation tools need to provide feedback with
marks within the same tool, or suite of tools which
work together. Automatic tools emphasize the need
for careful pedagogical design of assessment settings
and these solutions need to be interoperable and
portable.

6 CONCLUSION

This paper addresses how literature had studied
marking automation domain. Strategies had been
analysed on four specific approaches to propose a
series of recommendations to be adhered for future
research in this domain.

ACKNOWLEDGEMENTS

Authors would like to extend their gratitude to Sri
Lanka Institute of Information Technology for
extending support to carry out this research work.

REFERENCES

Ala-Mutka, K. M. (2005). A survey of automated
assessment approaches for programming assignments.
Computer science education, 83-102.

Source Code based Approaches to Automate Marking in Programming Assignments

297

Ashfaq, Q., Khan, R., & Farooq, S. (2019). A Comparative
Analysis of Static Code Analysis Tools that check Java
Code Adherence to Java Coding Standards. 2nd
International Conference on Communication,
Computing and Digital systems (C-CODE). 98-103.

Blumenstein, M., Green, S., Nguyen, A., &
Muthukkumarasamy, V. (2004). Game: A generic
automated marking environment for programming
assessment. International Conference on Information
Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004, 212-216.

Buyrukoglu, S., Batmaz, F., & Lock, R. (2016). Increasing
the similarity of programming code structures to
accelerate the marking process in a new semi-
automated assessment approach. 11th International
Conference on Computer Science & Education
(ICCSE),371-376.

Cousot, P. (1996). Abstract interpretation. ACM Computing
Surveys (CSUR), 324-328.

Cousot, P., Cousot, R., & Mauborgne, L. (2013). Theories,
solvers and static analysis by abstract interpretation.
Journal of the ACM (JACM), 1-56.

Digitek-labs. (2011). Static analysis framework. Retrieved
from digiteklabs: http://www.digiteklabs.ru/en/aegis/
platform/

Fonte, D., & Cruz, D. D. (2013). A flexible dynamic system
for automatic grading of programming exercises. 2nd
Symposium on Languages, Applications and
Technologies, 129-144.

Gallier, J. H. (2015). Logic for computer science:
foundations of automatic theorem proving. Courier
Dover Publications.

Glukhikh, M. I., Itsykson, V. M., & Tsesko, V. A. (2012).
Using dependencies to improve precision of code
analysis. Automatic Control and Computer Sciences,
338-344.

Higgins, C. A., Gray, G., Symeonidis, P., & Tsintsifas, A.
(2005). Automated assessment and experiences of
teaching programming. Journal on Educational
Resources in Computing (JERIC).

Korkmaz, C., & Correia, A. P. (2019). A review of research
on machine learning in educational technology.
Educational Media International, 250-267.

Novak, J., & Krajnc, A. (2010). Taxonomy of static code
analysis tools. 33rd International Convention MIPRO,
418-422.

Rahman, M. M., Paudel, R., & Sharker, M. H. (2019).
Effects of Infusing Interactive and Collaborative
Learning to Teach an Introductory Programming
Course. Frontiers in Education Conference (FIE),
IEEE.

Rautenberg, W. (2010). A concise introduction to
mathematical logic. Springer.

Rensink, A., & Zambon, E. (2009). A type graph model for
Java programs. Formal Techniques for Distributed
Systems, 237-242.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J.,
Ozdemir, O., & McConley, M. (2018). Automated
vulnerability detection in source code using deep
representation learning. 17th IEEE International

Conference on Machine Learning and Applications
(ICMLA), 757-762.

Singh, R., Gulwani, S., & Solar-Lezama, A. (2013).
Automated feedback generation for introductory
programming assignments. Proceedings of the 34th
ACM SIGPLAN conference on Programming language
design and implementation, 15-26.

Souza, D. M., Felizardo, K. R., & Barbosa, E. F. (2016). A
systematic literature review of assessment tools for
programming assignments. 29th International
Conference on Software Engineering Education and
Training (CSEET), 147-156.

Srikant, S., & Aggarwal, V. (2014). A system to grade
computer programming skills using machine learning.
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
1887-1896.

Striewe, M. (2014). Automated analysis of software
artefacts-a use case in e-assessment (Doctoral
dissertation).

Striewe, M., & Goedicke, M. (2014). A review of static
analysis approaches for programming exercises. In
International Computer Assisted Assessment
Conference, 100-113.

Takhar, R., & Aggarwal, V. (2019). Grading uncompilable
programs. Proceedings of the AAAI Conference on
Artificial Intelligence, 9389-9396.

Vert, T., Krikun, T., & Glukhikh, M. (2013). Detection of
incorrect pointer dereferences for C/C++ programs
using static code analysis and logical inference. Tools
& Methods of Program Analysis, 78-82.

Vetr`o, A. (2014). Empirical assessment of the impact of
using automatic static analysis on code quality (Ph.D.
dissertation).

Wang, T., Su, X., Wang, Y., & Ma, P. (2007). Semantic
similarity-based grading of student programs.
Information and Software Technology, 99-107.

Zhou, W., Pan, Y., Zhou, Y., & Sun, G. (2018). The
framework of a new online judge system for
programming education. Proceedings of ACM Turing
Celebration Conference-China, 9-14.

CSEDU 2021 - 13th International Conference on Computer Supported Education

298

