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Abstract: Querying over encrypted data typically uses multi-layered (onion) encryption, which requires level adjustment
when processing queries. Previous studies, such as on CryptDB, emphasize the importance of inward encryp-
tion adjustment, from outer layers to inner layers, releasing information necessary for query execution. Even
though the idea of outward encryption adjustment, which is used to re-establish the outer layers after query
processing, is very natural and appeared already in the early papers on CryptDB as a topic for future work, no
prior studies have addressed it systematically. This paper extends previous work on intelligent, release-aware
encryption adjustment for document-based databases querying with the outward adjustment policy. We define
the resulting Release-Aware In-Out Encryption Adjustment principles and report on their empirical evaluation
using both local and cloud deployment of MongoDB. The evaluation utilizing datasets of different sizes shows
that the proposed method is efficient, scalable, and provides better data protection.

1 INTRODUCTION

To keep data protected, it is usually stored in an en-
crypted form, and it needs to be decrypted before
processing or querying. Decryption, however, could
make the data vulnerable to server-side attacks. To
mitigate the issue, querying over encrypted data has
been proposed, in which multi-layered (onion) en-
cryption is commonly used. Multiple layers pro-
tect information and, at the same time, may release
some partial information on the data depending on
the types of encryption used at different layers. Con-
sequently, a reasonable encryption adjustment policy
is needed, which given a query, leads to decryption
of some layers to reveal the information sufficient for
the query execution. Such a scheme was first pro-
posed for relational databases and SQL querying in
a well-known work on CryptDB (Popa et al., 2011)
and then was transferred further to other types of
databases and query languages/APIs, see e.g. (Abu-
rawi et al., 2018b) for graph databases, (Xu et al.,
2017),(Almarwani. et al., 2019),(Almarwani et al.,
2020a) for document databases, and (Shih and Chang,
2017),(Waage and Wiese, 2017),(Wiese et al., 2020)
for wide-column database. As it has been already no-
ticed in (Popa et al., 2011) a simple encryption adjust-
ment policy (SEA) may lead to an unnecessary revela-
tion of more information about the data than required

for the query execution. To alleviate the issue to
some extent, a new Join-aware encryption adjustment
(JAEA) schema for relational databases was proposed
in (Popa et al., 2011). Similarly, traversal-aware
schema (TAEA) for graph databases and release-
aware schema (RAEA) for document databases were
proposed in (Aburawi et al., 2018a) and (Almarwani
et al., 2020b), respectively. These schemata turned
out to be more secure than variants of SEA by releas-
ing less information when executing JOIN, traversal,
and conjunctive/disjunctive queries, respectively.

The main focus of the above-mentioned adjust-
ment technologies was in applying decryption to the
layers from outer to inner, releasing more informa-
tion about the data and making the data less secure.
Far less attention was paid to the question of what
to do after the query has been completed and data
protected by the inner layers remain less secure. In
the original paper on CryptDB (Popa et al., 2011),
a very natural approach was outlined – to re-encrypt
the data to the original levels of encryption and re-
store protection, but an elaboration of the details was
left to future work. The development of encryption
adjustment techniques has shown that the details are
important here, as adopting different policies would
likely affect both efficiency and security. To the best
of our knowledge, these type of questions has not
been addressed systematically by the previous stud-
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ies. In this paper, we address the questions of in-
ward and outward adjustment for querying encrypted
document databases and introduce Release-Aware In-
Out (RAIO) Encryption Adjustment. This is an ex-
tension of the RAEA policy we proposed early for in-
ward adjustment in (Almarwani et al., 2020b). We de-
velop RAIO for NoSQL document-based MongoDB
databases. NoSQL databases become very popular
in recent years to handle large amounts of unstruc-
tured data, and MongoDB is the most popular NoSQL
database according to the ranking in The contribu-
tions of this paper can be summarized as follows:

• We propose an outward adjustment procedure, an
additional phase after processing queries to re-
store the outer encryption layers that were ad-
justed before processing. Both phases constitute
a novel RAIO policy.

• We analyse the security and incurred overhead of
our new policy compared to the original policy.

• We report on the empirical evaluation of the scala-
bility of our policy in comparison with the original
policy.

• We provide an assessment of the performance of
our policy on MongoDB deployed locally and on
the cloud from three cloud service providers.

This paper is organized as follows. Section II gives a
brief overview of multi-layer encryption and the Mon-
goDB API. A Release-aware In-Out Encryption Ad-
justment is introduced in Section III. Our experiments
and results are reported in Section IV. Section V sum-
marizes relevant work. Our conclusions and future
work are drawn in the final section.

2 BACKGROUND

2.1 Multi-layered Encryption

Multi-layered, or onion encryption is a fundamental
concept used in the implementation of querying over
encrypted data since the influential paper on CryptDB
(Popa et al., 2011). The idea is simple and powerful.
Each data element is encrypted by several layers of
encryption of different types. Full data protection can
be achieved by using a random layer of encryption
(RND), which does not reveal any information about
encrypted data, not even equality. Deterministic layer
(DET) allows testing the equality between encrypted
values. More advanced functionality can be provided
by partially- or fully- homomorphic encryption (PHE,
or FHE), allowing to perform computations over en-
crypted data. Furthermore, order-preserving encryp-

tion (OPE) and searchable encryption allow cryp-
tographic numerical values to be compared and the
search carried out. Depending on what queries are
required, the data elements can be protected by dif-
ferent onions combining the layers of various types
of encryption. Executing a query over such protected
data may require encryption adjustment. For exam-
ple, if a query requires an equality check (e.g., salary
= 30.000) and the outer layer of encrypted salary val-
ues is RND and a layer immediately under it is DET,
then the outer layer has to be removed by decryption
before the query may proceed while still keeping data
protected at DET level. The query pre-processing,
the encryption adjustment, and post-processing of
encrypted results in CryptDB-like schemes are per-
formed by a proxy component placed between the
server and a client. Figure 1 outlines the correspond-
ing workflow. The proxy proceeds as follows: (i) it re-
ceives a query from an application/client and adjusts
data on the database (ii) rewrites the query by replac-
ing its explicit values/constants with their encrypted
versions and sends the resulting query to the database;
(iii) decrypts received results and sends them to the
user. The approach we propose in this paper is generic
and may work together with different types of encryp-
tion. However, for the validation and empirical evalu-
ation, we have implemented a research prototype us-
ing three types of encryption methods for built-in lay-
ers, including AC, DET, and OPE. Access Control
(AC)(Almarwani et al., 2020a) layer presents the val-
ues encrypted using Cipher-Policy Attributes-Based
Encryption (CP-ABE) (Bethencourt et al., 2007). AC
layer provides protection similar to RND (equal plain-
text values are very likely encrypted to different ci-
phertexts), and additionally, it enables the implemen-
tation of access policies that determine the users au-
thorized to access the data. AC, like RND, enables no
computational operations concerning the encrypted
value, while DET and OPE layers enable equality
and range computation, respectively. Each encryp-
tion type releases some information about encrypted
values, and the information inclusion induces a par-
tial order on the encryption types. For the encryption
types we use in this paper, this order is actually linear:
AC � DET � OPE � PLAIN, where PLAIN denotes
“no encryption”.

Figure 1: Workflow of Querying over Multi-layers Encryp-
tion data.
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2.2 MongoDB API

In this paper, we develop a new encryption adjustment
policy for querying encrypted document databases.
We present and evaluate the concept using MongoDB.
MongoDB data consist of collections, and each col-
lection includes a number of documents. Each doc-
ument is formed by fields and values. Unlike many
other types of databases, MongoDB doesn’t support
a particular query language. Instead, an Application
Program Interface (API) allows to manage MongoDB
documents programmatically. MongoDB API high-
level syntax is given below (Tutorial, 2017): To read

data from MongoDB, the find() function is used. If
the Find-Criteria is empty, all documents in the col-
lection will be retrieved and returned. In contrast, if
the Find-Criteria is defined, documents that only sat-
isfy certain criteria will be retrieved and returned. To
modify data the functions insert(), update(), delete()
are used.
Insert() function is to add a document to the collec-
tion; therefore, the Insert-Criteria no need operators
or conditions to do it.
Update() function is to update fields values in
Change-Criteria Parameter for fetched documents by
Update-Criteria.

Delete() function is to delete documents that match
the Delete-Criteria. Further details of the syntax and
semantics of the API can be found in (Tutorial, 2017).

3 ENCRYPTION ADJUSTMENT
POLICIES

To perform queries and updates on encrypted Mon-
goDB data, one should evaluate Conditions over such
data. According to MongoDB API BNF, Condi-
tions are boolean combinations of atomic Expres-
sions, which are build using comparison operators.
For a comparison operator op we denote by SLop the
minimal wrt to � encryption level (Support Level) of
the arguments of op sufficient for evaluation of op
on these arguments. We have SL= = DET , while
SL< = SL≤ = SL≥ = SL> = OPE. For a MongoDB
API query Q we denote by E(Q) the set of all atomic
expressions occurring in Q. For an atomic expression
(<Expression 1>) e we denote by op(e) the operator
occurring in e and by f ield(e) the field name occur-
ring in e.

For a query Q and a field name f occurring in Q
we define SQ( f ) = max{e∈E(Q)| f ield(e)= f}SLop(e).

Notice that the same field name f may occur in
different expressions, which may require a different
level of adjustment. Taking maximums (wrt to�) ad-
justment levels for all f as assumed in the definition
of SQ( f ) makes it possible to evaluate all expressions
in E(Q) and execute Q over encrypted data store. For
a MongoDB database instance I and a field f we de-
note by # fI the number of the documents in I contain-
ing the field f .

3.1 Simple Encryption Adjustment

Simple Encryption Adjustment policy (SEA) follows
very simple principles. According to SEA, before an
execution of a query Q the encryption levels of all val-
ues of all fields f occurring in Q have to be adjusted
to the encryption levels SQ( f ). The query Q itself has
to be rewritten into its “encrypted” version Q∗: all
plain values of all fields f in Q have to be replaced by
encrypted SQ( f ) values.

Such defined policy operates inwards - starting
with the maximum security level (or minimum wrt to
information release order �) it adjusts the encryption
to lower security (higher wrt �) levels for some data
elements fields.

SEA policy was first proposed for relational
databases in (Popa et al., 2011) and its variant for
document-based DBs was considered in (Almarwani
et al., 2020a). SEA can be extended naturally to the
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outward mode too: after SEA applied inwards, and a
query is executed, the encryption of all adjusted val-
ues has to be restored to the outer layer of maximal
security.

While SEA policy is easy to define and imple-
ment, it may incur large overhead for large databases
(too many data values have to be decrypted/re-
encrypted). It may reveal more information about
data elements than necessary for the query execution
(Popa et al., 2011). To alleviate such effects, (Almar-
wani et al., 2020b) proposed Release-Aware Encryp-
tion Adjustment (RAEA) policy, originally in inward
mode only.

3.2 Release-aware In-out Encryption
Adjustment

The Inward RAEA strategy releases less server-side
information than SEA by reducing the number of en-
cryption adjustments to the inner layer(s). This limits
the number of decryptions by 1) performing the ad-
justment not before but alongside the query execution
and 2) taking into account the number of occurrences
(’popularity’) of the various fields. We now describe
an Outward Adjustment extension of RAEA, which
we call the Release-Aware In-Out (RAIO) Encryption
Adjustment. The policy is defined for both Conjunc-
tive Conditions and more general Disjunctive Normal
Form (DNF) conditions for the MongoDB API calls.
These Condition classes in the MongoDB API can be
defined as follows:

RAIO encryption adjustment consists of two
parts. The first part, Inward adjustment, expands The
Inward RAEA policy from (Almarwani et al., 2020b)
to the wider class of conditions. The second part, Out-
ward adjustment, is a newly proposed policy to deal
with the re-establishing protection of the data whose
encryption layers have been adjusted for querying.
(A) Release-Aware (Inward) Encryption Adjust-
ment(RAEA)
Find Queries. First, we consider the Conjunc-
tive Conditions case. A Find query Q in Mon-
goDB API has a form db.collection.find(C(Q)),
where for conjunctive queries C(Q) = e or C(Q) =
$And{e1, . . . ,en} and e and ei are atomic expressions.
For C(Q)= $And{e1, . . . ,en} and 1≤ k≤ n we denote
$And{e1, . . . ,ek} by Ck(Q). For C(Q) and Ck(Q) we
denote by C∗(Q) and C∗k (Q) their encrypted variants
obtained by adjustments of constant values in all ei to
the encryption levels SQ( f ield(ei)). Corresponding

queries will be denoted by Q∗ and Q∗k , respectively.
For a find query Q and a database instance I we denote
by D(Q, I) the set of documents returned by execution
of Q on I.

Given a conjunctive query Q and a MongoDB
database instance I, RAEA adjustment and query ex-
ecution proceed as follows:

If C(Q) = e, then SAE policy is applied: all val-
ues of f ield(e) in I are adjusted to the encryption
level SQ( f ield(e)). The query Q is encrypted to Q∗

by adjusting the constant value in e to the same level
SQ( f ield(e)). Then Q∗ is executed.

If C(Q) = $And{e1, . . . ,en}, n ≥ 2
then popularity in I of all fields f occur-
ring in C(Q) is calculated by calling # fI =
db.collection.find($f$:{\$exist:true})
.count(); The original query condition C(Q) is
re-written by sorting atomic expressions accord-
ing to the popularity order, that is to C(Q≤) =
$And{e1, . . . ,en}, where # f ield(ei)I ≤ # f ield(ei+1)I ,
i = 1, . . . ,n−1. Then the following iterative steps are
executed. Let I0 = I.

• All values of f ield(e1) in the whole I0 are ad-
justed to the encryption level SQ( f ield(e1)) re-
sulting in a database state I1;

• The values of f ield(e2) occurring in the docu-
ments D(Q∗≤1

, I0) are adjusted to SQ( f ield(e2))
resulting in I2;

• · · ·
• The values of f ield(ei) occurring in the doc-

uments from D(Q∗≤i−1
, Ii−2) are adjusted to

SQ( f ield(ei)) resulting in Ii;

• · · ·
These steps are completed either

• by the execution of the last possible Q∗≤n
, that is

Q∗≤ on In−1 with the result being the required (en-
crypted) result of the execution of the whole query
Q on encrypted instance I; or

• by a query Q∗≤k
with k < i returning empty set of

documents.

In either case, n, respectively k are recorded
as stop points of the execution. This information
is needed for the procedure of outward adjustment
which should follow afterwards.

As the fields can be repeated in the query, we
assume that before an adjustment of any field to be
done, it is checked whether it is already been done,
and if so, it is skipped.

The presented policy may reduce the number
of adjustments/re-encryptions compared with SEA,
since adjustments of the fields’ values are starting
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with the least popular fields and are performed on
gradually narrowing sets of documents. Consider an
example. Let Q be the following query:

db.collection.find($AND:{Name:$eq Alice,
Salary:$gt 9000, Salary:$lt 40000,Age:$lt
50,Age:$gt 25,Department:$eq Computer})Q1

Assuming #SalaryI0 ≤ #AgeI0 ≤ #DepartmentI0 in an
instance I0 we have C(Q≤) =

$AND:{Salary:\$gt 9000, Salary:\$lt 40000,
Age:\$lt 50,Age:\$gt 25,Name:\$eq Alice,
Department:\$eq Computer})

• As f ield(e1) = Salary all values of Salary in the
whole I0 are adjusted to the encryption level OPE
resulting in I1.

• As f ield(e2) = Salary and the encryption level of
Salary values has already been adjusted we skip
its further adjustments.

• The values of Age = field(e3) occurring in the doc-
uments D(Q∗≤2

, I1), that is those matching e1∗ ∧
e2∗, are adjusted to the encryption level OPE re-
sulting in I3;

• Skip further adjustments of Age = field((e4) as it
has been already adjusted.

• The values of Name = field(e5) occurring in
the documents D(Q∗≤4

, I3), that is those matching
e1∗ ∧ e2∗ ∧ e3∗ ∧ e4∗, are adjusted to the encryp-
tion level DET resulting in I5;

• The values of Department = field(e6) occurring in
the documents D(Q∗≤5

, I4), that is those matching
e1∗∧e2∗∧e3∗∧e4∗∧e5∗, are adjusted to the en-
cryption level DET resulting in I6;

• Finally, assuming all previous partial queries did
not return empty set of the documents, we execute
Q≤ = Q∗≤6

on I6 and D(Q∗≤6
, I6) is the (encrypted)

result of the execution of the original Q on the
encrypted instance I0.

Each time a new f is adjusted, the number of selected
documents is lower than that in the previous step, de-
spite the new f being no less/more popular in I. This
is because the increasing number of constraints ei in
C∗k (Q) with growing k, leads to the reduction of the
numbers of the documents in D(Q∗≤k−1

, Ik−2) that are
more likely to satisfy Q.
Disjunctive Normal Form (DNF) Case. For a DNF
query Q we have C(Q) = $Or{ci, . . .ck}, where ci =
$And{e1, . . . ,eni}. The processing of such a Q is done
by a separate processing of conjunctive queries with
conditions ci as explained above and taking the union
of the sets of the documents returned by these con-
junctive queries as the result. To ensure correctness
and efficiency, the information on already adjusted

fields is passed to the the processing of further con-
junctive sub-queries. In this case there are many op-
portunities for further optimizations and this is a sub-
ject of our ongoing work.
Write Query Processing. For the case of Update and
Delete queries, the proxy processes C(Q) using the
same steps as for a Read (Find) queries except there
is no need to receive and decrypt a result. For the
case of Insert queries, the proxy encrypts all inserted
values by layers to the maximum security level.
(B) Outward Encryption Adjustment(OEA)
Restoring the data values to the maximum security
level after executing queries reduces the amount
of information exposed to the database after query
processing. The main difficulty here is to find out
which values have been adjusted to the lower levels.
We propose here the Outward Encryption Adjustment
(OEA) policy, which works on pair with inward
RAEA and allows to determine which values need to
be restored to the maximum security level without
disclosing more than necessary information to the
database.
Find Queries. First, we consider the Conjunctive
Conditions case. We assume that a query Q has al-
ready been processed using above RAEA policy. If
C(Q∗)=e∗ then all values of f ield(e) in I are restored
to the maximum security level.
If Q∗≤s

= $And{e∗1, . . . ,e∗s}, where s is the stop point
of RAEA adjustment and s≥ 2, then Q∗≤s

is re-written
in reverse to sort atomic expressions descending to
the popularity order, that is to Q∗≥s

=$And{e∗s , . . . ,e∗1
}, where # f ield(e∗i })I ≥ "#" f ield(e∗i−1})I , i = s−
1, . . . ,1.
Then the following iterative steps are executed. Let
I0 = I.

• The values of f ield(es) occurring in the docu-
ments from D(Q∗≥s−1

, I0) are restored to the maxi-
mum security level resulting in Is−1;

• · · ·
• The values of f ield(ei) occurring in the docu-

ments from D(Q∗≥i−1
, Is−i) are restored to the max-

imum security level resulting in Ii−1;

• · · ·
• All values of f ield(e1) in the whole I0 are restored

to the maximum security level.

We illustrate the proposed outward adjustment
procedure by the following example.

Let C(Q≤) =

$AND:{Salary:\$gt 9000, Salary:\$lt 40000,
Age:\$lt 50,Age:\$gt 25,Name:\$eq Alice,
Department:\$eq Computer})

re-write C(Q≥) =
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$AND:{Department:$eq Computer,
Name:$eq Alice,Age:$gt 25,Age:$lt 50,
Salary:$lt 40000,Salary:\$gt 9000})

where #Department(e6) ≥ #Name(e5) ≥
#Age(e4)≥ #Age(e3)≥ #Salary(e2)≥ #Salary(e1).

• The values of Department = field(e6) occurring
in the documents D(Q∗≤5

, I0), which are match-
ing e5∗∧ e4∗∧ e3∗∧ e2∗∧ e1∗, are restored to the
maximum security level resulting in I6;

• The values of Name = field(e5) occurring in the
documents D(Q∗≤4

, I3), which are matching e4∗∧
e3∗ ∧ e2∗ ∧ e1∗, are restored to the maximum se-
curity level resulting in I5;

• Skip Age(e4) that is repeated field and not been
restored yet.

• The values of Age = field(e3) occurring in the doc-
uments D(Q∗≤2

, I1), which are matching e2∗∧e1∗,
are restored to the maximum security level result-
ing in I3;

• Skip Salary = field(e2) that is repeated field and
not been restored yet.

• All values of Salary = field(e1) in the whole I0 are
restored to the maximum security level.

The case of outward adjustment for Disjunctive
Normal Form (DNF) conditions is dealt with simi-
larly to the case of inward adjustment: each of the
conjunctive components is processed separately.
Write Queries. Here, the Insert query does not need
any action in OEA while the Delete query follows the
same steps as for a Find query. Whereas, for Update
query, if at least one of the field in the change-criteria
is present in the Update-criteria, updated documents
must be processed to restore values to the maximum
security level because these documents do not meet
the update-criteria. Then, the steps for Find query us-
ing update-criteria are followed for non-updated doc-
uments.
(C) Case Study of SEA VS.RAIO
This section presents a case study and compares the
SEA and RAIO applied to the same small database
instance. Figure 3 presents a sample of the document
database with nine documents, each containing up to
four fields with a total of 29 values, as shown in Fig-
ure 2 in the left part. The data is encrypted with
one onion by using three algorithms(CP-ABE(AC),
AES(DET), Order-preserving Encrypted(OPE)), as
shown in Figure 2 in the right part. Q3 is an exam-
ple of the query which is executed over encrypted data
using inward and outward encryption adjustments fol-
lowing two policies, SEA, and RAIO. Therefore, it is
noticed that all values (i.e. 29) in E(Q) are adjusted
in IEA and are restored in OEA for SEA, as shown

Figure 2: Case study sample data.

Figure 3: Inward Encryption Adjustment.

Figure 4: Outward Encryption Adjustment.

in bold red in Figure 3, 4 in the right part. In con-
trast, selected values (i.e. 16) are adjusted in IEA and
are restored in OEA for the RAIO case’s, as shown in
bold red in Figures 3, 4 in the left part. Therefore for
this case RAIO provides better than SEA protection
of the data, as fewer values are exposed at the lower
protection levels.

$db.collection.find({$or:$and:{Name:$eq
"Anthony",Salary:$gt 9000}], $and:
{Department:$eq"Quality Assurance",
$ID:$eq:"02CADED4"}]}); Q3

4 EVALUATION

The evaluation of RAIO policy was carried out us-
ing a workflow from Figure 1 extended by Data
Owner entity. The scheme contains four entities: Data
Owner, User, Proxy, and Database. The data owner
encrypts and uploads data to the database, while the
proxy is responsible for handling queries over en-
crypted data between the database and the user.
Experiments Setup. Three layers of data en-
cryption were used, CP-ABE(Bethencourt et al.,
2007), AES(Halevi and Rogaway, 2003), and
OPE(Boldyreva et al., 2011), with code derived from,
respectively, (Wang, ),(Kamble, ), and (Savvides, ).
This implementation was based on Java 8 and Net-
Beans 8.2 . The experiments were conducted using a
desktop PC running Windows 10 with an Intel Core
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Table 1: Test Queries.
Q Criteria Fields Query Fields Change

Find Conj. First-name,Salary -

Find DNF First-name,Salary,Department,City -

Update Conj. First-name,Salary Salary,City

Update DNF First-name,Salary, Department,City Salary,City,Department

Delete Conj. First-name,Salary -

Delete DNF First-name,Salary,Department,City -

1.8 GHz processor and 8.00 GB of RAM. A doc-
ument can include First-Name, Last-Name, Credit-
Card-Number, Salary, Department, Country, and City
fields. Document data was generated using the API
Mocking tool. For all experiments, user, data owner,
and proxy were run in the local environment. In con-
trast, MongoDB was run either as Local, on the Mon-
goDB community, or in the Cloud, using three differ-
ent cloud providers, Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud Platform (GCP).
Experiments Design. The main objective of the ex-

periments conducted is to test the RAIO’s efficiency
as compared to SAE. We have carried out two types of
experiments using different storage providers and dif-
ferent sizes of datasets. Conjunctive and Disjunctive
Normal Form (DNF) queries were chosen for experi-
ments with Find, Update and Delete operations. The
experimental query’s specifics are shown in the table
1. Each query ran 30 times, and the user, proxy, and
database entities were evaluated for their average exe-
cution times. User time is calculated between issuing
the query and the retrieval of results or executing data
changes to update and delete queries. The proxy time,
on the other hand, is the sum of the IEA and OEA
time, plus the database communication time, which is
the time needed for data to be retrieved, changed, or
removed, and the result’s decryption time. The first
experiment measured the scalability of the proposed
approach to query processing, and it involved increas-
ing the number of database documents (1,000, 5,000,
and 10,000 documents). In the second experiment the
performance of RAIO was also tested for MongoDB
deployed in the cloud. The second experiment calcu-
lated the proposed approach’s execution time for three
cloud providers supporting MongoDB and compared
it to the local MongoDB’s execution time.
Results. In Table 2, the mean execution time for
various stages of processing for both RAIO and SEA
(Experiment 1) is shown. According to these results
RAIO policy consistently outperforms SEA. While
IEA and OEA times appear to grow linearly in the
size of the databases for both policies, in all cases
the time taken for these stages by RAIO is consid-
erably less than by SAE. The difference is even more
dramatic for Network-Delay stage. For simple pol-
icy the growth of Network-Delay time is superlinear,
while for RAIO it is still close to be linear, and for

Figure 5: Experiment 1 Result.

databases of size 10000 Network-Delay time is ˜ 2-3
times less for RAIO. There is no significant differ-
ence in Result times, as this is for decryption of the
results of the query, and the number of result values is
the same, no matter under which policy a query is ex-
ecuted. We notice that Network-Delays(ND) have a
considerable effect on total proxy time and user time
due to the need for round-trip connections for adjust-
ment between the DB and proxy. Table 3 displays
the average times obtained for Experiment 2. Fig-
ure 6 displays the details of the average execution
time for local MongoDB vs. cloud providers. Exper-
iment 2 revealed, as predicted that the ND time has a
significant effect on execution time due to the round-
trip connection. Due to Internet speeds or the perfor-
mance of the service services, an increase in time on
the cloud could also have been incurred.
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Table 2: Comparison of Simple and Release-Aware In-Out Encryption Adjustment on Local MongoDB Community.

Q Criteria
RAIO (ms) SEA (ms)

User Proxy User Proxy
IEA Result OEA ND IEA Result OEA ND

T
ho

us
an

d

Find Conj. 2784 165 2.13 56 5398.13 4145 321 2.66 200 7398.13
DNF 4086.40 482.40 2.74 209.67 7471.60 6987.50 694.20 2.12 474.01 9914.90

Update Conj. 825.87 201.27 0.67 177.40 266.6 1236.74 436.75 1.74 321.90 4365.10
DNF 2901.33 403.93 3.67 227 7671.6 4648.95 631.88 3.05 432.10 9748.70

Delete Conj. 961.73 262.13 0 149.80 1612.67 1745.21 410.75 0 394.30 2745.97
DNF 2734.20 842.67 0 223.20 4455.33 4745.10 696.75 0 531.30 6745.12

Fi
ve

-T
ho

us
an

d Find Conj. 4784 277 2.45 156 6398.13 8364 662 2.01 419 14826.27
DNF 6074.70 671.20 2.15 409.67 8471.60 14031 1411.40 2.33 982.02 19874.80

Update Conj. 1025.15 422.75 1.14 274.70 4745.80 2529.48 907.49 1.45 737.80 8827.20
DNF 4784.12 611.75 3.79 474 9745.10 9320.90 1275.75 3.80 864.20 19573.40

Delete Conj. 1171.79 474.24 0 214.10 3745.12 3502.42 877.49 0 809.60 5588.94
DNF 4741.80 674.75 0 497.80 6954.78 9557.20 1464.49 0 1094.60 13531.24

Te
n-

T
ho

us
an

d Find Conj. 5412 474 2.95 278 7745.12 16760 1398 2.14 892 29695.53
DNF 7748.90 874.90 2.89 614.78 10963.20 28076 2920.8 2.24 1976.05 39794.60

Update Conj. 1230.75 674.75 1.80 441.20 6741.90 5068.96 1837.98 1.97 1529.60 177752.4
DNF 6741.32 811.44 3.33 601 11964.20 18706.80 2596.50 3.10 1815.40 39180.80

Delete Conj. 3174.91 647.03 0 432.50 5745.12 7038.84 1766.98 0 1503.60 11275.88
DNF 6397.7 874.91 0 641.90 8012.98 19126.40 2995.98 0 2200.20 27085.48

Figure 6: Experiment 2 Result.

Table 3: Comparison of Release-Aware In-Out Encryption
Adjustment on Local MongoDB Community vs. Clouds
Providers.

D
B Q Criteria

RAIO (ms)

User Proxy
IEA Result OEA ND

L
oc

al

Find Conj. 2784 165 2.133 56 5398.13
DNF 4086.4 482.4 2.73 209.67 7471.60

Update Conj. 825.87 201.27 0.67 177.40 2662.60
DNF 2901.33 403.93 3.67 227 7671.60

Delete Conj. 961.73 262.13 0 149.80 1612.67
DNF 2737.20 482.67 0 223.20 4455.33

A
zu

re

Find Conj. 10864.53 183.27 2.87 65.53 15530.87
DNF 15255.13 483.33 3.73 215.73 35430.13

Update Conj. 13316.87 244.40 1.72 139.27 28419.07
DNF 10673 417.20 3.27 214.80 20666.80

Delete Conj. 17301.07 275.60 0 151.40 71060.87
DNF 44357.93 481 0 238.47 82342.33

A
W

S

Find Conj. 8592.13 184.73 2.73 60.47 16031.73
DNF 17975.73 497.53 3.47 216.80 38353.53

Update Conj. 16405.10 261.13 1.07 185 26065.53
DNF 10988.13 458.40 3.20 256 20707.80

Delete Conj. 40155.2 261.87 0 141.60 70170.13
DNF 55.30.20 480.13 0 220.33 80167.20

G
C

P

Find Conj. 10223.87 185.33 2.87 63.20 16467.03
DNF 20400.73 459.20 3.53 214 45010.67

Update Conj. 10125.33 208.47 1.13 145.07 16231.52
DNF 14469.20 408.47 3.33 245.07 26311.47

Delete Conj. 55906.07 296.60 0 153.73 81041.53
DNF 47901 484.33 0 224.20 86517.07

5 RELATED WORK

CryptDB (Popa et al., 2011) was the first to suggest
multi-layer encryption, encrypting each data element

into one or more onions, with onion layers represent-
ing increasingly stronger encryption. CryptDB is a
secure system for relational databases related to SQL
queries over encrypted data, and it uses SEA. Crypt-
MDB (Xu et al., 2017) is an efficient encryption sys-
tem on MongoDB that uses a single additional crypto-
graphic asymmetric encryption system encrypt data,
thus performing only one additional operation, with
no need for adjustment of techniques. SDDB (Almar-
wani et al., 2020a), CryptGraphDB (Aburawi et al.,
2018b), and PPE schemes on WCSs (Waage and
Wiese, 2017) apply the concept of CryptDB transfer
to document databases (MongoDB), graph databases
(Neo4j database), and Wide-column databases (Cas-
sandra) respectively to execute queries on encrypted
data through SEA. In (Shih and Chang, 2017) and
(Wiese et al., 2020), CryptDB is moved to a wide
column store; Crypt-NoSQL uses multiple proxies to
distribute overhead; and CloudDBGuard removes the
proxy functions to the client-side. (Aburawi et al.,
2018a) proposes a traversal-aware encryption adjust-
ment synchronized with query execution, thus im-
proving security for the Simple technique on a Graph
database.
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6 CONCLUSION

This work introduced a Release-Aware In-Out en-
cryption adjustment, expanding on previous work
on Release-Aware Encryption Adjustment to improve
performance by dynamically adjusting selective fields
during query processing. Compared to SEA, RAIO
reduces overhead in decryption costs and provides
more security by exposing less information to the
database servers. The proposal also supports back-
ward adjustment to provide protection post query pro-
cessing. RAIO can also be extended to outsourced
databases such as cloud database providers. Our
proposal overhead is most significantly affected by
exchange communication between the database and
proxy caused by MongoDB’s lack of support for
UDF. Future work includes extending the proposed
policy to the larger classes of queries and further opti-
mization, including reduction of communication cost
and execution time. We intend to refine our policy’s
query behavior; we expect to use recent advances in
cryptographic algorithms and find the best trade-off
between protection and efficiency to integrate them
into our future work policy.
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