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Abstract: Iconclass is an iconographic classification system from the domain of cultural heritage which is used to an-
notate subjects represented in the visual arts. In this work, we investigate the feasibility of automatically
assigning Iconclass codes to visual artworks using a cross-modal retrieval set-up. We explore the text and
image branches of the cross-modal network. In addition, we describe a multi-modal architecture that can
jointly capitalize on multiple feature sources: textual features, coming from the titles for these artworks (in
multiple languages) and visual features, extracted from photographic reproductions of the artworks. We uti-
lize Iconclass definitions in English as matching labels. We evaluate our approach on a publicly available
dataset of artworks (containing English and Dutch titles). Our results demonstrate that, in isolation, textual
features strongly outperform visual features, although visual features can still offer a useful complement to
purely linguistic features. Moreover, we show the cross-lingual (Dutch-English) strategy to be on par with the
monolingual approach (English-English), which opens important perspectives for applications of this approach
beyond resource-rich languages.

1 INTRODUCTION

Iconclass (Vellekoop et al., 1973; Brandhorst, 2019)
is a well-known iconographic classification system
which is used to describe and retrieve content in art-
works. The ontology is adopted across various in-
stitutions in the GLAM sector (Galleries, Libraries,
Archives and Museums). Iconclass offers a hierar-
chy of unique codes, associated with keywords and
definitions, to encode the presence of objects, people,
events and ideas depicted in visual artworks, such as
paintings. Assigning Iconclass codes (or other class
labels coming from other iconographic thesauri) is a
complex interpretive task that is typically carried out
by highly-trained subject experts. Assigning an Icon-
class code to an artwork is an especially challenging
task because of the large number of available labels.
Hence, the annotation process is time-consuming and
requires the (expensive) intervention of skilled ex-
perts.

Recent advances in deep learning (LeCun et al.,
2015; Schmidhuber, 2015) increasingly find real-
world applications in the cultural heritage domain
(Fiorucci et al., 2020). Iconclass, for instance, was re-
cently used to improve the quality of neural machine
translation, specifically for artwork titles (Banar et al.,
2020). In spite of the growing availability of relevant

datasets, however, the automatic assignment of Icon-
class codes to artworks has yet not attracted the schol-
arly attention which this challenging task deserves. A
related study into the automatic classification of art-
works into (just) 10 Iconclass categories (Milani and
Fraternali, 2020) recently demonstrated the consider-
able difficulty of this task.

We aim to move beyond the state of the art in this
area through exploiting the latest advances in infor-
mation retrieval in order to reliably match artworks
with suitable interpretive metadata, such as Iconclass
codes. Importantly, we propose a multi-modal ap-
proach that is able to jointly capitalize on various
data sources, including (multilingual) textual infor-
mation as well as visual characteristics available for
these artworks. First, we describe the extraction of
the linguistic features from Dutch and English art-
work titles, as well as the visual feature extraction
from the artwork images. We start by investigating
the feasibility of cross-modal (image-to-text) match-
ing using the image and text branches of a recently
proposed architecture, called “Self-Attention Embed-
dings” (SAEM, (Wu et al., 2019a)). Subsequently, we
compare this matching strategy to a text-to-text map-
ping, only using the text branch of SAEM. In these
experiments, we additionally report on the feasibility
of cross-language matching. Finally, we propose a

622
Banar, N., Daelemans, W. and Kestemont, M.
Multi-modal Label Retrieval for the Visual Arts: The Case of Iconclass.
DOI: 10.5220/0010390606220629
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 1, pages 622-629
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



simple extension of the model that is able to simulta-
neously exploit multi-lingual metadata and visual fea-
tures to match Iconclass codes to a work of art.

The structure of this paper is as follows. We first
review the related work on cross-modal matching in
Section 2. Then, we describe the proposed methods in
more detail in Section 3. We further describe the rep-
resentative cultural heritage dataset used in our exper-
iments and discuss the experimental settings adopted
in Section 4. The quantitative results of this work, to-
gether with a more interpretive discussion, are offered
in Section 5. Finally, we summarize our contributions
in Section 6 and propose worthwhile directions for fu-
ture research.

2 RELATED WORK

In this section, we review related methods from the
recent literature on cross-modal matching. Generally,
the published approaches can be classified into 4 cat-
egories (Chen et al., 2020): 1) pairwise learning em-
beddings; 2) adversarial learning; 3) attribute learn-
ing; 4) interaction learning.

Pairwise learning methods focus on designing a
cross-modal loss function to map image and text em-
beddings into one common space. The loss func-
tion is specifically designed so as to reduce the dis-
tance between positive pairs, while increasing the dis-
tance between negative ones. Zhang and Lu (2018)
proposed a Cross-Modal Projection Matching loss,
which uses the Kullback-Leibler divergence between
image-to-text matching probability and normalized
ground-truth probability. Jian et al. (2019) proposed
a similar method, adopting a softmax cross-entropy
loss and a bi-triplet loss.

Adversarial learning methods use Generative Ad-
versarial Nets (GANs, (Goodfellow et al., 2014)) for
cross-modal matching. GANs were seminally applied
in this context by Wang et al. (2017a). Their method
is based on mini-max strategy applied to the generator
and discriminator in GANs. Sarafianos et al. (2019)
have extended this framework to obtain modality-
invariant representations. Liu et al. (2019), finally,
proposed a deep adversarial graph attention convolu-
tion network which exploits textual and visual scene
graphs.

Attribute learning methods exploit high-level se-
mantic attributes instead of the basic image features
and text features. The Attribute-Guided Network (Ji
et al., 2019) utilizes zero-shot learning and hashing
retrieval for this purpose. With this approach, the at-
tribute vectors are mapped onto hash codes. The aim
of this mapping is to automatically obtain clusters,

across different modalities, in a common space.
Interaction learning methods, the fourth and last

category, aim to transfer information between the text
and image branches in a model, before mapping them
jointly into a common space. The Multitask learning
approach for Cross-Modal Image-Text Retrieval (Luo
et al., 2019) uses a relation-enhanced cross-modal
auto-encoder. The cross-modal auto-encoder corre-
lates the hidden representations of two uni-modal
auto-encoders, before mapping image and textual fea-
tures into a common latent space. Through stacked
cross-attention, Lee et al. (2018) build attended vec-
tors for each image region from the salient parts of the
sentence. Then, the similarity is calculated between
each of the attended vectors and the corresponding
image region; subsequently, the dimensionality of the
similarity matrix is reduced by spatial pooling. The
SAEM framework (Wu et al., 2019a) adopts a self-
attention mechanism (Vaswani et al., 2017) to process
image regions. In this work, we resort to the image
and text branches of SAEM, as it has achieved ex-
cellent results in cross-modal matching (Chen et al.,
2020). Moreover, a reference implementation of the
model is available online.1

3 METHODS

In this section, we describe the SAEM architecture in
more detail. The framework generally consists of two
branches (see Figure 1): we present the image branch
in Section 3.1 and the text branch in Section 3.2. In
Section 3.3, finally, we propose a simple extension of
the architecture that allows to consider multiple data
sources simultaneously in the matching task at hand.

3.1 Image Branch

This branch is responsible for extracting visual fea-
tures from an arbitrary image. It implements a
bottom-up-attention mechanism (Anderson et al.,
2018) to extract salient regions from the image and
a self-attention layer (Vaswani et al., 2017) to encode
these regions. It deserves emphasis that the bottom-
up-attention network is not fine-tuned in the training
process. The bottom-up-attention mechanism brings
specific advantages over the simple extraction of fea-
tures from the last pooling layer of a convolutional
neural network (CNN). Such CNN feature extractors
divide an image into equal-size spatial blocks and pre-
serve spatial information about the image in the pro-
cess. This process will ignore the semantic struc-
ture of the image but might devote too much of its
1https://github.com/yiling2018/saem
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Figure 1: The scheme of the SAEM framework. The upper branch processes visual information and the lower branch is
responsible for textual information.

representational capacity to image fragments contain-
ing redundant information. The bottom-up-attention
mechanism, however, will boost salient image regions
of the different sizes, which allows to emphasize the
semantic information in the image and avoid unnec-
essary computations.

The bottom-up-attention mechanism employs the
Faster R-CNN model (Ren et al., 2015) with a
ResNet-101 (He et al., 2016), pretrained on Visual
Genomes (Krishna et al., 2017). Faster R-CNN is a
mature object detection algorithm that involves a se-
ries of steps. First, the CNN extracts features from
an image to build a feature map. Next, an indepen-
dent Region Proposal Network uses the feature map
to identify regions-of-interest (RoI) proposals of dif-
ferent sizes. These regions are then resized into equal-
size vectors by the RoI pooling layer. The resized re-
gions are finally used to predict the offset values for
bounding boxes and to classify objects.

The current pipeline uses the resized regions pro-
cessed by the RoI pooling layer. Next on, these re-
gions are fed through a position-wise fully connected
layer to combine them into a single feature matrix.
Only at this stage, the self-attention layer is applied
to encode the relationships that exist between these
regions. This step is crucial, as the extracted regions
do not have a fixed order. The self-attention layer is

able to access all regions simultaneously, which en-
ables it to extract useful information from the regions,
despite their lack of a fixed order. Finally, the image
embedding is build by average pooling over the fea-
ture matrix, before it eventually gets L2-normalized.

3.2 Text Branch

The text branch of the model uses Bidirectional
Encoder Representations from Transformers (BERT,
(Devlin et al., 2019)) with the WordPiece tokenizer to
encode the textual information. Importantly, and anal-
ogously to the image branch, the BERT weights are
also not fine-tuned in the training process. The well-
known BERT architecture has been pretrained taking
into account bi-directional context. Thus, it provides
context-aware sentence embeddings, which is a ma-
jor advantage over context-insensitive (word) embed-
ding approaches, such a Word2Vec (Mikolov et al.,
2013) or Glove (Pennington et al., 2014). BERT has
been pretrained on two different tasks. In the first
task, BERT has been pretrained to predict randomly
masked input tokens in sentences. In the second task,
BERT was additionally pretrained on the task of next-
sentence prediction.

The embeddings obtained from BERT are pro-
cessed by one-dimensional convolutions (for uni-
grams, bi-grams and tri-grams), followed by max-
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pooling to capture the local context. Further, the fea-
tures are concatenated into a single vector and fed
through a fully connected layer to obtain the final text
embedding, which is L2-normalized in the end.

3.3 Multi-modal Branch

We propose a simple extension to the original SAEM
approach through which we are able to exploit infor-
mation coming from multiple sources. In our work,
we have available both textual and visual sources for
the matching task. We process the available textual in-
formation with the text branch and process the avail-
able visual information with image branch. Hence,
we obtain multi-modal embeddings, which we con-
catenate into a single vector. We resize the resulting
embedding by a fully connected layer, to re-obtain the
original size of the target embeddings.

4 EXPERIMENTAL SETTINGS

In this section, we describe the datasets and discuss
the experimental settings which we adopted.

4.1 Datasets and Preprocessing

4.1.1 Iconclass

Iconclass is an iconographic classification system
used by cultural heritage intuitions to describe and
retrieve content in the visual arts. An Iconclass
code (see Figure 2) is a unique identifier assigned to
an iconographic subject represented in an artwork.
Iconclass includes 28,000 hierarchically ordered
definitions (codes) and 14,000 keywords in multiple
languages. As matching targets, we use the English
definitions of the Iconclass codes in this work, as
they are well presented in Iconclass compared to, for
example, the Dutch definitions. Iconclass is divided
into 10 main categories that are represented with
a digit from 0 to 9: (0) abstract art; (1-5) general
topics; (6) history; (7) Bible; (8) literature; (9) clas-
sical mythology and ancient history. Furthermore,
an Iconclass code can be extended by the three
options presented in Table 1. We have used the
Iconclass Python package to obtain the Iconclass
definitions associated with each individual code.2

In our experiments, we have considered Iconclass
codes with a depth of 5 and obtained 10,418 codes
in this manner, which could be used as labels for the
present matching task. Hence, we do not exploit the

2https://labs.brill.com/ictestset/

hierarchical structure of Iconclass codes in this work.

4.1.2 Dataset

To work with a representative collection of material
from the domain of cultural heritage, we extracted
the dataset from the database of the Netherlands
Institute for Art History.3 The dataset consists of
26,725 objects and their corresponding (manually
assigned) Iconclass codes. Each object represents
a unique visual artwork and includes the following
metadata triplets: 1) Dutch-language artwork titles;
2) English-language artwork titles; 3) a photographic
reproduction of the artwork under scrutiny. We set
aside a random selection of 2,000 objects to be used
as the development set and included another 2,000
objects for the test set. We randomly selected one
Iconclass code per object in the development and test
sets, while the training set has 1.41± 1.40 Iconclass
codes per object. In our experiments, we use all
unique combinations of the triplets to train and test
the models (see Table 2).

4.2 Training and Inference Details

The SAEM framework is mainly implemented in Py-
Torch (Paszke et al., 2019) but it is dependent on a vi-
sual feature extractor implemented in Caffe (Jia et al.,
2014). Instead of the cased English BERT, we use the
uncased multi-lingual version of BERT to maximally
benefit from our multi-lingual metadata. Through-
out our work, we have maximally adhered to the de-
fault parametrization of the SAEM framework, with
the obvious exception of our own extensions to the
model. The models were trained by minimizing a
combination of a bi-directional triplet loss (Wu et al.,
2019b) and a bi-directional angular loss (Wang et al.,
2017b), with hard negative mining using the Adam
optimizer (Kingma and Ba, 2014) and a batch size
of 64 sentences. The initial learning rate was set to
0.0001 but it was decayed by a factor of 0.1 after ev-
ery 10 epochs. The models were trained for 30 epochs
on a single GeForce GTX 1080 Ti with 11 GB RAM.
The evaluation is conducted using the standard met-
ric Recall@K (for K=1, 5, 10), which represents the
portion of relevant items found in the top-K retrieved
labels. Below, we report the performance of the mod-
els for (image, text or multi-modal) query versus the
Iconclass definitions. For each experiment, we se-
lect the best performing model which had the opti-

3https://rkd.nl/en/explore/images
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Table 1: Extension of Iconclass codes: (1) a letter or digit increases specificity; (2) bracketed text adds the name of a specific
entity; (3) bracketed text with a plus-sign introduces an additional ‘shade of meaning’.

N Extension Definition Keywords
1 73E8 Joseph’s death and coronation Joseph (St.), death

73E81 Joseph on his deathbed; Christ and Mary present Mary (Virgin), deathbed
2 22C4 colours, pigments, and paints colour, paint, pigment

22C4(GOLD) colours, pigments, and paints: gold gold
3 31D111 infant, baby the ages of man baby

31D111(+89) infant, baby the ages of man (+ nude human be-
ing)

Akt, baby, nackt, nu, nude,
nudo

(a) 71H611 (b) 11I424 (c) 73A624

Figure 2: Examples of images assigned Iconclass codes (Posthumus, 2020) with the following definitions: (a) ‘David com-
municating with God; David praying (in general)’; (b) ‘angel (possibly with book) symbol of St. Matthew’; (c) ‘Mary
saluting Elisabeth, who kneels before her’.

mal (summed) performance of the metrics presented
above on the validation set.

5 RESULTS AND DISCUSSION

In this section, we present and discuss our experimen-
tal results. We present our results in three different
sections. First, we discuss the cross-modal (image-
text) matching and compare it to one-modal (text-text)
matching in Section 5.1. Secondly, we present the
results for the cross-lingual matching in Section 5.2.
The results for the multi-modal approach follow in
Section 5.3.

5.1 Cross-modal Matching

As shown in Table 2, model (a) for cross-modal
matching demonstrates low results in comparison to
the models (b, c) utilizing textual features for match-
ing. Therefore, we conclude that the cross-modal
matching does not deliver satisfactory results in the
current setting. However, we should emphasize that
this alone does not prove that cross-modal matching
would not be feasible for this task. The bottom-up-
attention mechanism used to extract the visual fea-
tures is pretrained on the Visual Genomes dataset
which obviously belongs to an entirely another do-
main. In computer vision, it is a well-known prob-
lem of domain mismatch. The common remedy to
overcome this issue is transfer learning (Ribani and
Marengoni, 2019), namely, fine-tuning weights of a
neural network. However, the current framework is
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Table 2: Results of the experiments with different matching sources.

Source Metrics
Image EN Title NL Title Recall@1 Recall@5 Recall@10 Average

a X 13.10 19.60 23.20 18.63
b X 62.80 77.30 80.75 73.62
c X 66.45 77.05 80.55 74.68
d X X 67.85 79.20 82.30 76.45
e X X 66.60 78.80 81.80 75.73
f X X 68.95 80.30 82.90 77.38
g X X X 70.05 80.35 83.10 77.83

Table 3: Example of Iconclass code matching from the best performing model (g). The ground-truth label is highlighted in
bold. The title of the artwork is ‘Venus mourning the dead Adonis’ (‘Venus beweent de dode Adonis’).

N code definition
1 92C42 love-affairs of Venus
2 92C49 offspring, companion(s), train etc. of Venus
3 92C46 suffering, misfortune of Venus
4 92C41 early life, prime youth of Venus
5 92C48 attributes of Venus
6 92C47 specific aspects, allegorical aspects of Venus [...]
7 92C44 aggressive, unfriendly activities [...] of Venus
8 24C19 Venus (planet)
9 92K22 Dione, mother of Venus
10 24C34 Venus representing copper

not suitable for fine-tuning as it is spread among Py-
Torch and Caffe. These parts should be merged in
order to achieve this goal.

5.2 Cross-lingual Matching

From Table 2, we can see that the model (c) trained
on the Dutch titles performs on par with the corre-
sponding model (b) trained on the English titles. The
model (c) outperforms the corresponding model (b)
in Recall@1 by a large margin. However, the model
(b) is moderately better in Recall@5 and Recall@10.
This result demonstrates that BERT provides high
quality multi-lingual embeddings for our task. Hence,
there is no need to translate metadata to English to
achieve strong results in the task of Iconclass codes
matching. We conclude that the textual features are
language-independent and extremely useful in our
task.

5.3 Multi-modal Matching

From Table 2, we can observe that all models in the
multi-modal scenario (d, e, f, g) outperform all mod-
els in the cross-modal (a) and one-modal (b, c) sce-
narios. Surprisingly, the visual features in the mod-
els (d, e) help to improve performance compared to
the corresponding models (b, c). This result may be

explained by the hypothesis that the visual features
might overall have a lower quality, but that the infor-
mation which they offer is orthogonal to the textual
features, and thus a worthwhile addition to the model.
The best performer in the scenario with 2 sources is
the model (f) where the featured are extracted from
both the Dutch and English titles. And finally, the
best performing model overall is the model (g) that
exploits all available information. Hence, we con-
clude that the multi-modal approaches (d, e, f, g) out-
perform cross-modal and one-modal methods and the
increased amount of sources improves the quality of
matching.

As can be seen from Table 3, Iconclass codes
matching remains a challenging task due to the hier-
archical structure and a high number of similar labels
(codes). Not only, the number of similar labels grows
significantly with the depth of Iconclass labels, but
allowing a greater depth will also increase the num-
ber of very similar labels. In the example, the first
seven labels have the same upper code (92C4) and are
highly similar which makes the matching extremely
difficult. In order to learn such subtle shades of mean-
ing, the models would probably need even more prop-
erly annotated data, which is challenging in the cul-
tural heritage domain.
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6 CONCLUSION AND FUTURE
WORK

In this paper, we investigated different strategies for
matching (metadata about) art objects with suitable
Iconclass codes. We additionally proposed a sim-
ple method that utilizes multiple sources, through a
linear mapping of the source embeddings. We uti-
lized textual and visual features extracted from En-
glish and Dutch titles and artwork images, respec-
tively. The experiments demonstrate that the cross-
modal (image-text) matching using the visual fea-
tures are not promising compared to the uni-modal
(text-text) matching using purely textual features. We
show that the cross-lingual matching using the Dutch-
language artwork titles works as good as the match-
ing that uses the English-language artwork titles. This
finding will be meaningful to practitioners in the field,
because it suggests that GLAM institutions around the
world, including thus operating in a more resource-
scarce context to use their metadata in local languages
to match Iconclass codes without translating them
first to English. And finally, the proposed method that
uses all available information is the best performer. In
this case, the visual features help to boost the perfor-
mance.

The current pipeline has several disadvantages.
First, the model uses the BERT and the bottom-
up-attention to extract features without actual fine-
tuning. It may explain low results for cross-modal
matching due to the unsuitable feature representa-
tion. Secondly, some parts of the pipeline are imple-
mented in different frameworks which makes model-
wide fine-tuning difficult. Thirdly, the current dataset
is comparatively small as we had only 22,725 objects
in the training set for 10,418 possible labels. A larger
dataset certainly would be useful. In future work, we
would like to reimplement the entire pipeline in Py-
Torch in order to fine-tune the full model. In addi-
tion, exploiting the hierarchical structure of Iconclass
codes remains an important desideratum.
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