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Abstract: This paper proposes an adaptive learning control and monitoring of oxygen for patients with breathing 
complexities and respiratory diseases. By recording the oxygen saturation levels in real-time, this system uses 
an adaptive learning controller (ALC) to vary the oxygen delivered to the patient and maintain it in an 
optimum range. In the presented approach, the PID controller gain is tuned with the learning technique to 
provide improved response time and a proactive approach to oxygen control for the patient. A case study is 
performed by monitoring the time varying health vitals across different age groups to gain a better 
understanding of the relationship between these parameters for COVID-19 patients. This information is then 
used to improve the standard of care supplied to patients and reducing the time to recovery. Results show that 
ALC controlled the oxygen saturation within the target range of 90% to 94% SpO2, 77% and 80.1% of the 
time in patients aged 40 to 50-year-old and 50 to 60-year-old, respectively. It also had faster time to recovery 
to target SpO2 range when the concentration dropped rapidly or when the patient became hypoxic as 
compared to manual control of the oxygen saturation by the healthcare staff.

1 INTRODUCTION 

The start of the year 2020 introduced the globe into 
an unprecedented time of biological turmoil, the likes 
of which has not been seen since the black plague. 
SARS-COV-2 is a strain of virus that once infects a 
patient, results in the disease known as COVID-19 
(WHO coronavirus-2019/technical, 2019). COVID-
19 was declared a global pandemic by the World 
Health Organization (WHO) on 11th March 2020 
(WHO coronavirus-2019/events, 2019). As of 
November 2020, approximately 54 million people 
have been infected by this virus in the world, out of 
which 1.3 million people have died 
(worldometers.info, 2019). Meanwhile, roughly 
350,000 people have been afflicted in Pakistan, 
amongst which approximately 7,000 have passed 
away from the SARS-COV-2 virus 
(worldometers/Pakistan, 2020).  

The reason why COVID-19 is considered so 
threatening is because currently there are no available 
vaccines that can provide protection against the strain 
of virus that causes this disease. It is also highly 
infectious and affects the lungs thereby causing 
Severe Acute Respiratory failure. Once a person is 
infected, they experience various symptoms amongst 
which the prominent ones are loss of taste sensation, 

high sustained fever, and difficulty in breathing. 
However, out of all of the aforementioned symptoms, 
the latter is the most problematic as it can lead to the 
patient experiencing acute hypoxemic respiratory 
failure or chronic respiratory failure. Due to the lack 
of antibody vaccines and such deadly symptoms, the 
National Institute of Health (NIH), World Health 
Organization (WHO) and Centre for Disease Control 
(CDC) have outlined supportive care guidelines 
where healthcare providers are required to observe 
the patient under isolation and provide necessary care 
to relieve the symptoms as much as possible through 
pain medication, rest and adequate food supplement.  

By monitoring a patient’s health vitals such as 
oxygen saturation (SpO2), body temperature, pulse 
rate and blood pressure, health care facilities may be 
able to determine the progress of a patient’s recovery. 
Body temperature is noted to observe the state of 
fever, while pulse rate and blood pressure are 
monitored to ensure that the patient is not having 
trouble breathing. Lastly, SpO2 is necessary to 
monitor to ensure that the patient does not become 
hypoxemic and that the lungs are functioning 
properly. Oxygen saturation (SpO2) mentions to the 
volume of oxygen that is in blood. The body needs an 
explicit amount of oxygen in blood to function 
appropriately. Oxygen consumption within the body 
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is Oxygen consumption = (Arterial Oxygen-Venous 
Oxygen) * Blood flow. The oxygen-haemoglobin 
dissociation is a function of the partial pressure of 
oxygen (PO2).  Haemoglobin will be 100% saturated 
with oxygen if PO2 =100 mmHg “Each gram of 
haemoglobin is capable of carrying 1.34 mL of 
oxygen. The solubility coefficient of oxygen in 
plasma is 0.003. This coefficient represents the 
volume of oxygen in mL that will dissolve in 100mL 
of plasma for each 1 mmHg increment in the 
PO2.” Oxygen Content = (0.003 × PO2) + (1.34 × 
Haemoglobin × Oxygen Saturation) (Kaufman, 
2020). 

Currently, health care providers monitor SpO2 
and control the supply of oxygen to critical care 
patients by manually adjusting the supply of oxygen 
from the cylinder or source. This is not only 
inefficient, but is also risky, prone to error and in 
cases of a high number of patients can lead to 
overloading of the staff and healthcare system. 
Therefore, to reduce the burden on the healthcare 
system and facilitate quicker recovery this 
methodology was proposed, which utilizes an 
adaptive learning controller that would monitor and 
change the oxygen saturation for patients hospitalised 
with COVID-19.  

Automated systems have been previously shown 
to have better outcomes on patients as compared to 
manually controlled systems. This was demonstrated 
by Alexander et. al. in their study (Alexandre, 2020). 
They proved that when a post-surgery patient’s 
anaesthesia is automatically controlled, they not only 
recover quicker but also have fewer post-surgery 
complications as compared to manual anaesthesia 
delivery control. In addition, the benefits of the use of 
automated systems to continuously monitor health 
vitals of recovering patients was discussed by 
(Appelboom et al, 2014) in their paper. They 
proposed and demonstrated that wearable technology 
can improve the quality of supportive care through 
continuous monitoring of vitals. These vitals can then 
be reported to health professionals who will have a 
more detailed history of their patient resulting in a 
well-defined and succinct care plan. Furthermore, 
Kaushal et al highlighted the benefits of using 
automated technology for healthcare in their study 
(Kaushal, 2002). They analysed the impact of 
information technology and automation on the full 
spectrum of healthcare delivery – from diagnosis to 
post-operative care and concluded that IT integration 
into healthcare systems not only reduce 
complications but also reduce the burden on the 
healthcare staff. Similarly, by James et al showed that 
through automation intervention, medical staff’s 
workload can be drastically reduced resulting in 
fewer errors and improved work-life balance (James, 

2013). 
In this paper we are taking the same approach as 

the previously mentioned research papers and are 
conducting a study regarding the efficacy of 
automated oxygen monitoring and saturation-control 
for COVID-19 patients. An adaptive learning control 
system will be utilized to monitor and control the vital 
signs i.e. SpO2 and pulse rate and temperature of 
COVID-19 patients requiring critical care. In such 
scenarios where patients’ condition is rapidly 
changing in response to the medical treatment or 
ventilation supportive care, it is risky as well as time 
consuming for hospital staff to continuously monitor 
their progress. Moreover, a rapid increase in COVID-
19 cases is also leading to overloading the systems 
and staff leading to a reduction in the quality of 
supportive care. An adaptive control model could 
make the monitoring of vital signs more efficient and 
accurate for staff, while also keeping in consideration 
the SOPs for COVID-19. This approach could 
ultimately improve the recovery time of patients 
thereby reducing the load on hospitals. 

2 METHODOLOGY 

The approach to the proposed methodology was 
twofold – develop a robust control system and 
integrate it with health vitals. This required that the 
adaptive learning controller not only have accurate 
and reliable control, but it must also be able to intake 
continuous variable oxygen data and appropriately 
adjust the output in real-time. Since the controller is 
responsible for adjusting a sensitive parameter that 
has a direct impact on the patient’s health, it must 
have the capability for minute adjustments while also 
being able to learn the oxygen variation to minimize 
errors. The following sections explain how the 
controller was developed and combined to monitor 
and adjust oxygen in real-time. 

2.1 Adaptive Learning Controller 
(ALC) 

To achieve the precise results, input must control the 
optimized values of gain of PID controller. Noise 
disturbances influence that are not modelled, make it 
complex to maintain the PID control gains by ൣ𝜃 =  𝐾ା 𝐾ା 𝐾ௗ ൧  at optimal values throughout. It 
may turn into a serious issue to sustain the quality of 
controller, to solve this issue, an adaptive learning 
PID controller has proposed that enhance the 
controller performance and improved accuracy due to 
its memory feature. In PID controller  𝜇  , 𝑦  and 𝑒 
denote the control input, output and error signal, 
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conventional control of PID can be express as 
follows: 

𝜇ାଵሺ𝑖ሻ =  𝜇ሺ𝑖ሻ  𝐾𝑒ሺ𝑖  1ሻ  𝐾ூ  𝑒ሺ𝑛ሻାଵ
ୀଵ  𝐾ሾ𝑒ሺ𝑖  1ሻ െ  𝑒ሺ𝑖ሻሿ, 𝑖 ∈ ሾ0, 𝑁 െ 1ሿ (1)

 
Figure 1: Adaptive learning controller. 

Where, 𝑒ሺ𝑖ሻ = 𝑦ௗሺ𝑖ሻ െ 𝑦ሺ𝑖ሻ,    𝑖 ∈  ሾ0,   𝑁 െ  1ሿ. (2)
Applying (1) in the initial trial, showed that the 
control input is similar as in the PID controller. In the 
second trial of actual system, responses were not 
according to the system output values, hence error 
was integrated with the second input of the system. 
This is the change analysed between output value 𝑦ௗሺ𝑖ሻ and actual system output in the initial trial, in 
this way (1). 

Proposed adaptive learning controller generated 
control input in this manner just after the second trial. 
So, the suggested learning control system can be 
expressed by, 𝜇ሺ𝑖ሻ =  𝜇ିଵሺ𝑖ሻ  𝐾𝑒ିଵሺ𝑖  1ሻ  𝐾ூ  𝑒ିଵሺ𝑛ሻାଵ

ୀଵ  𝐾ሾ𝑒ିଵሺ𝑖  1ሻ െ 𝑒ିଵሺ𝑖ሻሿ, 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ ሾ0, 𝑁 െ 1ሿ (3)

𝑒ିଵሺ𝑖ሻ =  𝑦ௗሺ𝑖ሻ െ 𝑦ିଵሺ𝑖ሻ (4)
This can be clearly seen in Figure 1. Having learning 
operation based on the previous states, it is expected 
to achieve the stable enhanced control results due to 
the learning based control technique.  

2.1.1 ALC using Recursive Least Square 
(RLS) Algorithm 

The  adaptation  mechanism  is  as  follows.  After the 

detection of some error between standard and 
measured SpO2, Controller response has decayed the 
transient period. PID controller parameter vector to 
be tuned in the controller is by ൣ𝜃 =  𝐾ା 𝐾ା 𝐾ௗ ൧in 
eq. (1). In eq. (4) where yk is the closed-loop response 
under the controller parameters yd is the actual time 
response of the controlled system. 

Based on the RLS algorithms, we tune the 
parameters 𝜃 which are the PID gain values so that 
the following performance index J is minimized  

= ሺ𝑦ௗሺ𝑖ሻ െ 𝑦ିଵሺ𝑖ሻሻଶே
ୀ  (5)

Where N is the number of time-response samples. 
RLS is an algorithm which recursively finds the 

optimal estimate (𝑘) of the controller parameter by 
using 𝜃(𝑘−1) 

2.2 Oxygen Control and Deliverance 

Oxygen saturation (SpO2) is monitored via an 
oximeter designed to take reading with a sampling 
rate of 500 Hz (reading taken every 2ms). The 
oximeter utilizes an IR LED and a photodiode that are 
difference between the actual concentration and the 
desired oxygen saturation levels. These decisions are 
based on the information shown in Table 1. Below a 
SpO2 of 85%, the patient is hypoxic and requires 
immediate attention from the healthcare staff. For this 
reason, the controller is tasked to sound an alarm, call 
emergency, and maximize the oxygen output to the 
patient to ensure that the lungs are getting enough 
oxygen. Between 85% and 90% oxygen saturation 
levels, the patient is considered to be on the cusp of 
critical attention which is why an attendant is required 
to be on-site while the controller maintains maximum 
oxygen output. Once the SpO2 levels have reached 
90% to 94%, then the oxygen is said to have been in 
a safe range where conservative oxygenation shall be 
employed. In this case, oxygen delivery shall be 
gradually reduced such that the SpO2 level is 
maintained at 94% or greater than 94% which is the 
target (Hansen, 2018). 

Table 1: Controller parameters ൣ𝜃 =  𝐾ା 𝐾ା 𝐾ௗ ൧  by 
adjustment of Oxygen regulator to attain the Saturated 
Levels. 

Oxygen Saturated Levels (Health line, 2019) 

SpO₂<85% 85% < SpO₂ ≤ 90% 90% < SpO₂ < 94% SpO₂= target 

Call 
emergency, 
sound alarm 
and Maximize 
oxygen output. 

Max. Parameters
Adjustment, 
attendant presence 
required. 

Min. parameters 
Adjustment 

Maintain 
parameters 
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2.3 Process Flow Diagram 

Figure 2 represents the overall integration of the 
adaptive learning controller with the oxygen 
deliverance and monitoring system. Upon receiving a 
reading from the input sensor (oximeter) from the 
patient, the controller calculates an error value E. This 
error is determined by comparing the patient’s SpO2 
levels with the standard required (minimum of 94% 
oxygen saturation) in a normal patient. Then, on the 
basis of this error value the adaptive learning 
controller provides the oxygen delivery by adjusting 
its controller gains. This leads to a change in the SpO2 
levels of the patient which are then used to calculate 
the error again and adjust the oxygen delivery until 
this iterative process results in an error of E=0. This 
signifies that the patient’s oxygen saturation is above 
94% and they are stable at which point the controller 
maintains its settings to provide a constant supply 
oxygen. 
 

 
Figure 2: Flow diagram of adaptive learning control and 
monitoring of Oxygen saturation. 

Adaptive Learning (ALC) controller is using the 
recursive least square (RLS) algorithm. RLS 
algorithm is used to update the PID gains in real time 
(as system operates) to force the actual system to 
behave like a desired reference model.  

It shows that the adaptive learning controller 
adjusts the PID parameters i.e. gains of PID controller 
Kp, Ki and Kd of oxygen regulator to attain the 
saturated Levels. The error generated is 

proportionally related to the variation of SpO2 from 
the target value. In case, SpO₂ < 85% or 85% < SpO₂ 
≤ 90% the amount of error generated is large which 
causes the Kp to increase thus increasing the 
regulating speed of the motor to provide a faster 
response. Additionally, Kd increases to its maximum 
value to reduce overshoot and maintain the speed of 
regulating motor. Lastly, Ki increases to reduce 
steady state error and control the overshoot to 
maintain the stability of valve control and 
correspondingly, oxygen levels. 

For oxygen saturation level 90% < SpO₂ < 94% 
minimum gain adjustments will be required and 
similarly when error is zero and SpO2 = target level 
then gains of PID controller will be sustained on their 
existing values. 

3 EXPERIMENTAL SETUP 

The designed circuit provides a new and improved 
respiration system which automatically regulates the 
fractional inspired oxygen to a patient.  

The system hardware consists of a 
Microcontroller (Arduino Uno), Pulse 
oximetry sensor (Pulse oximeter max 30100), LCD, 
servo motor, keyboard and other components (sound 
indication and LED indication). The hardware setup 
of oxygen control is illustrated in Figure 3. 

 

 
Figure 3: Circuit diagram and measured signal with sound 
and LED indication. Alarm is triggered when SpO₂ < 85%. 
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Pulse oximetry sensor measures the oxygen 
saturation of a patient's blood. This device consists of 
a red and an infrared light source, photo detectors, and 
a probe to transmit light through a translucent, 
pulsating arterial bed, typically a fingertip or 
earlobe that uses 5V/3.3V serial communication. The 
dissolved oxygen measurement is triggered by 
receiving a measurement via the RX port of the 
Arduino while the motor control is provided by the 
TX port. The sensor echoes the command and 
appends the measured oxygen concentration. If the 
measured oxygen concentration is below a certain 
threshold i.e. SpO₂ < 94% a valve is opened which 
will supply additional oxygen to the patient through a 
connected oxygen supply.  

4 RESULT AND ANALYSIS 

In the presented approach, a comparison between 
automatic and manual control was used to 
demonstrate the efficacy of adaptive learning 
controller for oxygen concentration in COVID-19 
patients. It was observed that the automatic mode via 
ALC control was the better option as it allowed the 
patients, for all age groups, to recover in less amount 
of time. The automatic mode also took a conservative 
oxygenation approach where only enough oxygen 
was provided to bring the patient back to 92% - 96% 
SpO2. This approach has been proven to be a better 
option towards the needs of patients suffering from 
Acute Respiratory Failure as it does not overload the 
lungs or blood saturation of the patients. In contrast, 
a liberal approach that is often taken by manual 
adjustment of oxygenation, where a high pressure of 
oxygen is provided when it is unnecessary, can result 
in detrimental effects on the health of the patient and 
in some cases even lead to an increase in mortality 
rate (Shenoy, 2020). 

This study comprised of observing and surveying 
different age group of high-risk 20 patients, 
particularly ages 40-60, suffering from COVID-19 in 
2020. As a result, the percentage of time spent within 
the target SpO2 range was observed for the 
aforementioned age groups.  

The data (Figure 4) indicates that the automated 
oxygenation methodology is a better approach than 
manual control for a specifically prescribed interval. 
In this study, the target range for oxygen saturation 
was defined as 90% to 94% SpO2. The graphs show 
that for both age groups of 40-50 and 50-60, ALC 
controller performed significantly better by 
maintaining the saturation level within the target 
range 77% and 80.1% of the time. Meanwhile, the 
manual    methodology  was   only  able  to  keep   the  

 
(a) Patient age group from 40 to 50 years. 

 
(b) Patient age group from 50 to 60 years. 

Figure 4: Fraction of time with Oxygen saturation levels of 
(a) 40 to 50 and (b) 50 to 60 COVID-19 Patients. It provides 
a detailed comparison of the percentage of time spent by 
patients in various oxygen saturation ranges when their 
oxygenation was controlled manually or via ALC method. 
It can be observed that for patients aged 40-50, the 
automatic mode opted for a more liberal oxygenation 
approach to bring the patient’s SpO2 levels within target.  
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patients within target saturation 49.5% and 59.6% of 
the time for ago groups 40-50 and 50-60 respectively. 
Additionally, it can also be seen that for patients 
within 40-50 age groups, the manual control by staff 
took a more liberal oxygenation approach despite its 
potential drawbacks. There can be several reasons 
that can range from the severity of the oxygen 
required by the patient to the fact that the staff is busy 
and overloaded which is why they prefer to set at high 
pressures to ensure that the patient does not become 
hypoxic in their absence. On the other hand, 
automatic controller spent more fraction of time 
above target range for 50-60 age groups thus 
indicating a more liberal approach as compared to 
manual control. Older patients often struggle with 
breathing and other respiratory limitations that can be 
further exacerbated through COVID-19. In this case, 
the learning behavior of the ALC controller is 
emphasized as it is using a proactive approach to 
maintain high oxygenation to prevent patients from 
becoming hypoxic. It is also important to note that the 
percent of time spent by patients at the saturation 
level of hypoxia (SpO2 < 85%) or approaching 
hypoxia (85% < SpO2 ≤ 90%) was significantly 
lower for automatic control as compared to manual 
control by staff. 

Figure 4 also indicates that the patient remains 
within the target range of oxygen saturation for a 
longer duration when the oxygen is controlled using 
the adaptive controller as compared to manual 
control. This is beneficial for the patient because now 
they are receiving the optimal level of oxygen for a 
longer duration resulting in less pressure on their 
lungs therefore reducing the load. 

Figure 5 is a time response graph. The graph 
shows that the automatic controller brings the patient 
back to the target oxygen saturation in a shorter 
amount of time as compared to the manual control. 
This shows that if the oxygen varies, then it is quickly 
returned to the required amount resulting in less effect 
on the lungs. Less load on the lungs and quicker 
response time can lead to faster patient recovery. 

 

 
Figure 5: Time response of adaptive learning controller and 
manual control by staff. 

ΔT= T(O2) – T(O1), where T(O2) is the time at 
which the oxygen returned to target range and T(O1) 
is the time at which oxygen levels dropped/rose from 
the target range. Automatic Control should have 
lower delta T while manual should have higher 
indicating that the automatic control, continuously 
adjusts the oxygen levels resulting in faster response. 

The step response of adaptive learning controller 
tuning shown in Figure 6 show that the system will 
reach the stability quickly than the system under the 
conventional PID controller and the peak overshoot is 
decrease,  where the system takes short time to reach 
the steady state and that the system got good response 
as shown in  Figure 6. 

 

 
Figure 6: Step responses of Adaptive Learning PID 
controller Vs simple PID controller. 

Table 2: The comparison of different techniques and with 
respect to accuracy and complexity of the techniques 
applied with other controllers. 

References (Zhang, 
2015) 

(Iobbi, 
2006) 

(Dong, 
2012) 

Proposed 

Technique Smart 
phone 
and 
browser 
server  

controlle
d with a 
valve 

Fuzzy 
Contro
l with 
PID 

Learning 
PID 
controller 

Accuracy High High High  High 
Complexity High High High  Low 

5 CONCLUSIONS 

The proposed system is designed to provide a 
proactive supportive care to COVID-19 patients 
instead of reactive care. The key difference between 
the two types of care is the fact the former is 
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predictive of the variation in oxygen saturation level 
of the patient and therefore can make decisions before 
or instantaneously to prevent any further detriment of 
the patient’s condition. This study focused on the age 
groups between 40-50 and 50-60 as they are most 
susceptible to chronic respiratory or acute hypoxic 
respiratory failure caused by SARS-COV-2. An 
adaptive learning controller was used to monitor and 
control the oxygenation of these patients and the 
response to recovery was recorded and compared 
with manual control of oxygenation by healthcare 
staff. 

It can be seen from Figure 4 that patients’ SpO2 
levels were maintained within the target range for 
77% and 80.1% whereas for manual control the time 
spent by patients within target range was a mere 49.55 
and 50.6% for 40-50 year olds and 50-60 year olds 
respectively. This is a clear indicator that the 
automated control methodology not only maintains 
the concentration more consistently, but it also 
provides fine adjustments (shown in Figure 5) to 
counter any variations that it has experienced in the 
past through its predictive algorithm. Figure 6 also 
shows that the controller achieves steady state 
without a high over-shoot which is beneficial for the 
patient as in the case of rapid health deterioration, it 
is imperative that the controller be able to meet the 
accurate demand of the patient as quickly as possible. 
Finally, the PID approach is not only accurate but it 
is also easy to implement as compared to other 
approaches thus making it cost effective and easy to 
implement in case of emergencies as in the case of the 
current pandemic. 

The results demonstrated that the automatic 
control methodology had two major advantages that 
are considered key to faster patient recover. The first 
advantage is that it was able to prevent patients 
becoming hypoxic by quickly adjusting oxygenation 
and predicting their oxygen saturation variation based 
on their SpO2 variation history. Secondly, the 
automatic controller was able to maintain the patients 
in the target range for a greater amount of time thus 
ensuring that their oxygen concentration levels 
remain consistent for greater durations of time. These 
two combined benefits can be attributed to faster 
recovery of patients as it leads to less stress on their 
lungs. 
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