
Cloud-based Private Querying of Databases by Means of Homomorphic
Encryption∗

Yassine Abbar1, Pascal Aubry2, Thierno Barry1, Sergiu Carpov4, Sayanta Mallick1, Mariem Krichen3,
Damien Ligier3, Sergey Shpak3 and Renaud Sirdey2

1Capgemini DEMS France - Research & Innovation, France
2CEA LIST, Université Paris-Saclay, France

3Wallix, France
4Inpher, Switzerland

p.aubry@cea.fr, {nsurname}@wallix.com, {name}@inpher.io

Keywords: Private Database Querying, Homomorphic Encryption, Privacy-by-Design.

Abstract: This paper deals with several use-cases for privately querying corpora of documents in both settings where
the corpus is public or private with respect to an honest-but-curious infrastructure executing the query. We
address these scenarios using Fully Homomorphic Encryption (FHE) hybridized with other techniques such
as Symmetric Searchable Encryption (SSE) and Private Information Retrieval (PIR) to achieve acceptable
system level performances. The paper also presents the prototypes developed to validate the approach and
reports on the performances obtained as well as their capacity to scale.

1 INTRODUCTION

This paper addresses issues related to database query
in concrete setups where a client wishes to privately
perform general queries remotely to a database stored
on a server. The database can be either stored in clear
form (in which case it is public to the server) or en-
crypted. As examples, a user may wish to query a
database which mirrors the open (say, medical) liter-
ature but without revealing his or her query contents
(public database case) or may want to retrieve a selec-
tion of private encrypted corporate documents whose
(encrypted) storage has been outsourced to a cloud
platform.

The goal of the work presented in this paper is
to investigate how emerging privacy enhancing tech-
nologies can help addressing real-world database re-
lated scenarios in need for stronger privacy properties.
As a sound set of cryptographic primitives for per-
forming general calculations directly over encrypted
data, we have mainly used Fully Homomorphic En-
cryption (FHE) as a yardstick to address the specific
use-cases presented in this paper. In order to do so, we
have used the open-source Cingulata compiler envi-

∗This Work Has Been Funded by the French FUI
Project ANBLIC.

ronment1 which allows to write general programs and
then execute them over either the BFV (Fan and Ver-
cauteren, 2012) or the TFHE (Chillotti et al., 2016)
homomorphic schemes. Yet, using FHE to practically
address database query scenarios does not come with-
out challenges in terms of performance, scaling and
system architecture impacts. These applications re-
quire to deal with a large amount of data. Treating
as much data on the ciphertext domain implies a lot
of process even for simple tasks. Moreover, database
query scenario involves often reactivity needs. Com-
bining these imperatives with the FHE execution is
also an important issue.

This paper is organized as follows. Sect. 2
presents the system architectures of our two concrete
use-cases, how FHE fits and impacts them as well as
the other cryptographic tools it had to be paired with
in order to be able to hope for practical performances.
Then, Sect. 3 didactically presents an example of al-
gorithm that had to be implemented over FHE and the
FHE-specific optimizations that had to be done on it.
Lastly, Sect. 4 presents experimental results.

1www.github.com/CEA-LIST/Cingulata

Abbar, Y., Aubry, P., Barry, T., Carpov, S., Mallick, S., Krichen, M., Ligier, D., Shpak, S. and Sirdey, R.
Cloud-based Private Querying of Databases by Means of Homomorphic Encryption.
DOI: 10.5220/0010378801230131
In Proceedings of the 6th International Conference on Internet of Things, Big Data and Security (IoTBDS 2021), pages 123-131
ISBN: 978-989-758-504-3
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

123

2 APPLICATION SCENARIOS
AND ARCHITECTURES

2.1 Private Text Search on Public
Medical Literature Databases
(PSPMD)

2.1.1 Use Case Objectives and Outcomes

We first consider a setup which requires to perform
private queries over an unencrypted database. This
use-case comes from a system under development by
the company of some of the paper authors and, as
such, can be considered a real-world scenario.

Public search engines are used by medical profes-
sionals, insurers and pharmaceutical laboratories on
public bibliographic databases. These professionals
often seek information from open databases on the
internet using clear queries. However query data can
leak sensitive corporate information related to intel-
lectual property, R&D or marketing strategies. For
example, when employees of a pharmaceutical firm
seek documents on the drug toxicity of a specific
molecule for personalized medicine and targeted ther-
apies, it may leak the fact that the company is con-
sidering the development of a new drug based on
it. Of course, although our prototype system targets
corporate users and corporate privacy, its core tech-
nology can also be relevant to address personal pri-
vacy issues as, in this context, query data can also
be used for person identification, to feed some ad-
vanced monitoring algorithm or extract sensitive per-
sonal information related to medical condition, ethnic
origin or sexual orientations. As a result, this use-case
addresses the problem of information retrieval doc-
uments ranking by using encrypted user queries on
open data search environment. The use-case goal is
to allow the final user to encrypt sensitive query terms
before sending them to the public search server, then
the final user will obtain the ranking documents re-
sults with the minimum of information leakage. The
server side will rank the documents using the TF-
IDF (Term Frequency–Inverse Document Frequency)
ranking model. To achieve this goal, we have built a
prototype which show the use of privacy driven text
search environment using FHE (Fully homomorphic
encryption) and PIR (Private information retrieval).
The reason of FHE and PIR techniques combination
is to reduce FHE computations and transfer of FHE-
encrypted data which means that FHE is used to com-
pute the TF-IDF of the documents to find the most rel-
evant ones but returns only document id information.
Then, the PIR protocol is further used to fetch the en-

tire relevant documents from the server without re-
vealing which were fetched. The high level architec-
ture of the PMSPD use-case follows the client-server
model, each system entity has a predefined role. The
system goal is to minimize the user query information
leakage to the server and the FHE computation.

2.1.2 Client-side

The client application performs four main tasks:

• FHE public and secret keys generation.

• FHE query terms ids encryption using the FHE
public key.

• FHE documents scores decryption with their cor-
responding ids using the FHE secret key.

• Perform the subsequent PIR request to privately
fetch the most relevant documents from the public
database from the ids.

2.1.3 Server-side

The server-side contains two main services : an FHE
service and an indexing service which communicate
with two databases, a public documents database for
the latter and digested corpus database for the for-
mer. The public documents database contains the raw
open data sources (medical publications, biomedical
articles, medicals record, etc). The digested corpus
database contains the plaintext values needed for FHE
computation (e.g. tokenized data, with keywords re-
placed by hashes, etc. in order to FHE operations to
proceed). Then, the FHE service performs three main
tasks :

• Read data from the digested corpus.

• Compute similarity between encrypted user query
and the plaintext document digests using TF-IDF
ranking model and FHE.

• Execute PIR server to fetch documents from the
raw document database.

Lastly, the indexing service performs the following
three main tasks:

• Public documents database indexing.

• FHE-friendly documents data formatting.

• Corpus update: e.g., add or delete documents
from the database.

2.1.4 Security Model and Communication
between System Entities

The main system security requirement concerns the
end user query sensitive information privacy. Thus,

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

124

in the context of a public environment search, the
end user client application needs to hide the user
query sensitive terms before sending it to the server-
side. Then, The FHE service computes the documents
ranking, in the encrypted domain, according to the
documents (encrypted) score values. Finally, a PIR
protocol is used to privately fetch the entire docu-
ments from the database.

Figure 1: High level architecture of PMSPD use-case.

2.2 A Platform for Confidential Search
in End-to-End Encrypted Data

2.2.1 Use-case Objectives and Outcomes

We now consider a setup which requires to perform
private queries over an encrypted database. As for
the preceding one, this use-case comes from a cloud
platform under development by the company of some
(other) authors of the paper and, as such, can be con-
sidered a real-world scenario in which end-to-end-
encryption (E2EE) needs to be integrated as seam-
lessly as possible into applications to harden their se-
curity.

However, E2EE with “traditional” cryptography
faces a number of barriers, the most obvious being
that, without granting a decryption ability, any legit-
imate encrypted data exploitation is hopeless. As an
example, one of the usages that are impossible to hold
over encrypted data is key word Search.

Fully Homomorphic Encryption provides an an-
swer to this problem by enabling the possibility to
store data, on Cloud or “on Premise”, in an encrypted
form and, yet, to exploit them for legitimate purposes
without any decryption taking place. As such, the Key
word Search on Encrypted Data capability is meant
to be a high added value feature for an E2EE plat-
form.Retrieving the most relevant documents from a
corpus given a user query is a common operation for
search engines. A search engine ranks the documents
regarding the importance of the keywords from the
user query to documents contents and returns results
to the client. Currently, search engines require access

to the corpus and to the keywords in the query for this
operation. However, it poses a security risk if a client
wants to perform a keyword search on confidential or
sensitive data. To address this problem we propose to
use FHE to allow a server to rank documents in the
case of an encrypted query over an encrypted corpus.

2.2.2 High-level Architecture

A server that wants to rank documents where both the
query and the corpus are encrypted using FHE, needs
to:

1. Calculate the importance of terms from the query
to every document in its database. In this pa-
per, this is done by means of the term frequency-
inverse document frequency (TFIDF) statistic to
estimate the importance of a term in a document.

2. Sort the documents by the statistic calculated in
the first step in the order of decreasing impor-
tance.

As a result, the server returns the n first (most
relevant) documents to the client. Depending, on
performance and security trade-off of the setup, we
can optimize the process for example by means of
a SSE-based preprocessing step which could consist
in first retrieving the documents which contain the
query terms and pass them (and only them) to the
FHE server for ranking. There are several options to
associate SSE and FHE, which we now discuss.

Also note that (Shen et al., 2018) uses a similar
approach to perform searching and ranking in an en-
crypted corpus; however, the proposed solution does
not allow to sort the retrieved documents ranks at
server side. Using FHE allows us to overcome this
limitation.

Mainly, there are three possible architectures to
model this use-case.

First Model. First, if no SSE is used, then the TF-
IDF computation has to be performed for all database
records and the whole database has to be sorted based
on ranking. When SSE is put into the picture then
there are two options depending on whether or not
the indices of the records matching the SSE request
are disclosed to the FHE server or only their number.

Second Model. If these indices are disclosed, then
the FHE server can compute the TF-IDF only for a
(presumably small) subset of the database records and
then perform the sorting only on that subset. This
is the most favorable case in terms of decreasing the
FHE computation footprint, but it induces some infor-
mation leakage – for example, it reveals if two queries

Cloud-based Private Querying of Databases by Means of Homomorphic Encryption

125

concern the same (encrypted) records at the SSE step.
The main drawback of this model is that we leak a
very important information while the main advantage
is that the FHE Server could directly select the docu-
ments for which it will compute TF-IDF.

Third Model. If the indices are not disclosed but
only their number is, then the FHE server will have
to compute the TF-IDF for all of the database records
but sorting will be performed only for the documents
which have their indices in the SSE response (al-
though the server is not able to identify them). De-
pending on the size of the SSE response, this model
could be more or less interesting. We will detail this
in section IV.

2.2.3 Communication between System Entities

To isolate different parts of the system we chose the
model where the SSE server and the FHE server do
not communicate (that is the second model above).
The communications between the client and the
servers are shown in Figure 2.

Figure 2: Communications during the query phase consid-
ering a system with FHE and SSE Servers.

2.2.4 Security Model

The principal requirement to the system in the context
of data security is the confidentiality of the document
contents stored server-side as well as the client rank-
ing requests.

FHE Server. We use an IND-CPA secure FHE
scheme for the use-case and we assume the honest-
but-curious security model for the server. Therefore,
encryption operations performed on the data does not
leak any information about cleartext values. As the
FHE server calculates TF-IDF, it knows the number
of documents in the corpus.

SSE Server. As the data, which is stored server-
side, and the client queries are encrypted, the contents
of the documents and the ranking request terms are
not exposed to an unauthorized party. However, we
should consider the potential data leakage due to the
analysis of the terms usage in insert and rank queries.
The system should guarantee the data forward pri-
vacy. This security characteristic means that indexing
a new document against the server does not leak the
information on terms that the document contains. We
cannot require the backward privacy, i.e. the security
characteristic that means that deleting a document re-
moves the information on the keywords that the doc-
ument contained. To our knowledge, there is no effi-
cient SSE scheme that allows to fulfill the backward-
privacy requirement. Nevertheless, the SSE server
should delete the documents when required by the
client.

3 IMPLEMENTING TF-IDF OVER
FHE

In this section, we focus, as an example, on the im-
plementation of a TF-IDF ranking following an en-
crypted query over a clear database by means of a
levelled-FHE. Note that although the database is not
encrypted, the result is necessarily encrypted. Note
also that the FHE formalism can easily handle mixed
clear/encrypted data calculations (the results always
being encrypted). Thus, this section intends to illus-
trate the kind of programming mindset and techniques
that have to be used to implement a given algorithm
towards an (as) efficient (as possible) execution in
the encrypted domain. Unitary performance results
a given throughout the section using the BFV scheme
to illustrate our purpose. Overall performance results,
using several FHE cryptosystems, are given in Sect.
4.

So let us consider the following usual formula for
the computation of the score of a document d ∈ D
(Salton and Buckley, 1988),

score(q,d) = coord(q,d) .∑
t∈q

tf(t,d) .idf2 (t)

where q ⊆ T is the subset of terms from the fixed
vocabulary T in the query. As, in the present case,
the database is public, pre-computations can be done
in the clear-domain to minimize the footprint of en-
crypted domain calculations. In particular, this ap-
plies to the product of the term frequency tf(t,d) and
the square of the inverse document frequency idf(t)2.
The term frequency is the number of occurrences of

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

126

a term t
∫

T in a document d ∈ D. The inverse docu-
ment frequency is computed as follows:

idf(t) = log
(
|D|

1+nt

)
where nt the number of documents containing the
term t. Let α be the matrix of tf.idf2. As the FHE for-
malism allows only to manipulate integers, we define
α(t,d) as dtf(t,d) .idf(t)2c (to increase precision, it
is possible to apply a scaling factor before rounding).
Additionally, χ is the matrix which indicates the pres-
ence of a term in a document, i.e.,

χ(t,d) =
{

1 if tf(t,d)> 0
0 else

As a result, the score expression can be rewritten
in much more “FHE-friendly” form as,

score(q,d) = ∑
t∈q

χ(t,d) . ∑
t ∈q

α(t,d)

The last step consists in reformulating the above equa-
tion as

score(q,d) = ∑
t∈T

x(q)t χ(t,d) . ∑
t∈T

x(q)t α(t,d)

where x(q)t is set to 1 iff q ∈ T and 0 otherwise. As
such, the x(q)t are the |T | encrypted variables repre-
senting the query2 which then interact with the clear-
text data χ(t,d) and α(t,d) to produce an encrypted
score(q,d).

3.1 Pseudocode

Algorithm 1 describes how to compute the scores and
return the results sorted by score. First, we com-
pute the score using the pre-calculated matrix α. For
each document, we then calculate the product of 2
sums, acc and coord, where acc is the sum of the
relevant α’s and coord is the sum of the relevant χ’s
for each term in the query. Note that the outter loop
is obviously parallel. When all the scores are com-
puted, we sort the documents by score by means of
the FHE-optimized algorithm described in (Chatter-
jee and Sengupta, 2015).

2Implicitly, this reformulation assumes that the number
of terms is relatively small since |T | encrypted bits have to
be sent from the client to the server. Other approaches are
possible for encoding the query when this is not the case,
which results in a larger computational burden on the server
(and which also require revealing the number of terms in
the query, while this is not necessarily an issue).

Algorithm 1: Algorithm for retrieving document ranking by
score.
Require: num terms – number of terms in the dictio-

nary
Require: num docs – number of documents in the

database
Require: α [term id] [doc id] – t f .id f 2 calculated

for the document identified by doc id and the term
identified by term id

Require: χ [term id] [doc id] – 1 if term with
term id is in the document with doc id, 0 else

Require: query [term id] – 1 if term in the query, 0
else (secret)

Require: num results – number of results
Ensure: Res – Vector of results of the length

num results
for i in 1 : num docs do

coord = 0 and acc = 0
for j in 1 : num terms do

acc = acc+query [j] .α [j] [i]
coord = coord +query [j] .χ [j] [i]

end for
score [i] = acc.coord

end for
Res =SORTBYSCORE(score)
return Res

3.2 Multiplicative Depth
Characterization

Algorithm 1 has been implemented using the Cin-
gulata toolchain. Cingulata is a compiler toolchain
and RTE for running C++ programs over encrypted
data by means of fully homomorphic encryption tech-
niques (https://github.com/CEA-LIST/Cingulata). In
the present case, we have configured Cingulata
in order to use the Fan-Vercauteren(Fan and Ver-
cauteren, 2012) schemes as the FHE backend. Under
this scheme, the execution performances are highly
multiplicative-depth dependant. The multiplicative
depth is the maximal number of sequential homomor-
phic multiplications which have to be performed on
fresh ciphertexts such that once decrypted we retrieve
the result of these multiplications.

With respect to this, the algorithm for retrieving
document ranking by score can be split in two parts:
score computation and sort algorithm. The score
computation is a product of coord and acc. The mul-
tiplicative depth of multiplication depends on the bit
width of the entries size int . According to (Buescher
et al., 2016), the multiplicative depth of multipli-
cation is minimized with the Wallace tree compo-
sition(Wallace, 1964). The multiplication can thus
be performed with a depth of dlog2 (size int)e+ 1.

Cloud-based Private Querying of Databases by Means of Homomorphic Encryption

127

Table 1: Execution of Algorithm 1 in function of num docs
and num terms.

terms # docs mult. depth exec. time (s)
4 4 4 0.18
4 20 5 0.79
10 10 16 74.02
10 20 17 251.86
20 20 17 315.46
30 30 17 688.66
50 50 18 2175.77
50 100 20 None
60 60 18 3090.57
70 70 20 6299.17
80 80 20 None

100 20 17 617.06
100 50 18 2732.67
150 20 17 800.92
150 50 18 3241.01
200 50 18 3794.28
300 50 18 5042.98
400 50 18 None
500 50 18 None

As described in (Chatterjee and Sengupta, 2015),
the multiplicative depth of sort algorithm is equal to
dlog2 (size int +1)e+ dlog2 (num docs−1)e+1.

Thus, the overall algorithm multiplicative depth is

dlog2 (size int)e+ dlog2 (size int +1)e
+dlog2 (num docs−1)e+2

3.3 Unitary Benchmarks

We produced different benchmarks in order to eval-
uate the performances of FHE executions of Algo-
rithm 1. For this purpose, we generated randomly the
term frequency matrices T F for different values of
num docs and num terms (note that FHE execution
timings are by necessity data-independant, so work-
ing on dummy or real data does not change the ob-
served performances). For the different tests, the size
of integer size int is 8. As FHE execution is per-
formed on arithmetic or boolean circuits, it is intrinsi-
cally parallelizable. Thus, we can use multiprocessor
architectures to accelerate the execution time (some-
thing Cingulata nicely does for free). The following
benchmarks have been achieved on a 16-core Intel
Xeon Bronze 3106s calculation server, all cores be-
ing activated.

In Table 1, #terms and #docs are the number
of terms and the number of documents respectively.
Also, mult.depth represents the multiplicative depth
of the application and exec.time denotes the execution
times in seconds. Except for low values of num docs,
the multiplicative depth follows the equation in sub-
section 3.2. Above 64 documents, the multiplicative
depth becomes 20 instead the 19 expected. This is due

to the way Cingulata generates the Boolean circuit.
Indeed, Cingulata is not using the Wallace decompo-
sition but instead several optimization to reduce mul-
tiplicative depth after a first Boolean circuit is gener-
ated. With lines 3, 4 and 5 of Table 1, we see that the
execution time increases faster with higher number
of documents than with higher number of terms. We
were not able to execute tests with a number of docu-
ments above 70 as the memory of the workstation sat-
urated before the FHE execution was complete. We
also increased the number of terms in order to find the
maximal num terms possible with num docs = 50.

3.4 Optimizing Performance

In (Aubry et al., 2020) and in (Carpov et al., 2017),
the authors propose several heuristics to automati-
cally reduce the multiplicative depth of Boolean cir-
cuits toward improving FHE execution performances.
These methods define several local rewriting opera-
tors which preserve the semantics of the Boolean cir-
cuit. We applied these heuristics to lower the mul-
tiplicative depth of our benchmark circuits, as we
wanted to measure the performance gains using these
heuristics. We managed to reduce the multiplicative
depth by 1 or 2 which lead to an average speed-up of
1.15 for the present benchmark.

Note that in these unitary tests we consider only
queries with a single term to decrease the multiplica-
tive depth and lower the computational time of appli-
cations. Indeed, less operations are required to rank
the documents by score if the number of terms in the
query is one. Let id term be the index of the term in
the query. coord is equal to 1 if α(id term,d) 6= 0
and 0 else. Hence, only α(id term,d) is required
to perform the score of the document. Moreover, as
idf(id term) is the same for all the documents, this
metric does not influenced the rank of the documents.
Hence, only t f is required to compute α(id term,d).
As the score computation only consists in retrieving
the α(id term,d) for each document d ∈ D, we con-
sider only the multiplicative depth of the sort algo-
rithm. Then, the minimal multiplicative depth of the
sorting algorithm is :

dlog2 (size int +1)e+ dlog2 (num docs−1)e+1

The maximal execution time was below 40s for
all the tests. So if we restrict ourselves to single-
term queries, then the response time can be reason-
able. Note that this restriction might be interesting in
practice as it is possible that several services cohabit
in a given system e.g. fast one term queries and slower
multi-term ones.

The main issues we encountered was compilation
one. Whereas we had reasonable execution times, the

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

128

compilation time was very long. In practice, this is
not a real issue, as we need to compile the code only
once and this compilation phase is done offline.

4 PERFORMANCE
EVALUATIONS

High-level abstractions and tools are provided in or-
der to facilitate the implementation and the execution
of privacy-preserving applications.

4.1 Private Search on Public Medical
Literature Database

Table 2 provides the execution timings obtained with
Cingulata using TFHE as the backend cryptosystem
for various small numbers of documents and vocabu-
lary terms. At present, we did not yet integrated the
PIR (Private Information Retrieval) step in our pro-
totype. This will be done by means of well know
PIR libraries such as XPIR (Melchor et al., 2016) or
SealPIR (Angel et al., 2017) to fetch the top ranked
documents privately. In Table 2 the time (s) represents
user time for computing the score and performing the
subsequent sort in Cingulata. The #gates columns
provides the total number of AND and XOR gates.
With TFHE, the time per gate is a constant which de-
pends only on the processor.

Table 2: TFHE execution timings (in secs) for various num-
bers of documents and terms in the context for the private
search on public data use-case.

#doc #terms #gates time (s)
7 10 3201 47
8 15 4948 109

10 17 7299 149
13 23 13125 229
12 18 10043 211
17 31 22994 645
23 35 39292 572
22 25 31616 501
16 33 21796 350
21 31 33617 556
26 55 57339 1043
50 100 214060 3591
20 100 58792 850

Figure 3 shows the number of total gates for a
dictionary of 100 terms varying the number of doc-
uments in the corpus and Figure 4 shows the number
of total gates for a corpus of 20 documents varying the
size of terms in the dictionary. In order to get coarse
estimates with respect to how these figures will scale,
we assume that there is a linear relation between the

Figure 3: (number of gates varying the size of documents
corpus with a dictionary of 100 terms.

Figure 4: Number of gate varying the size of dictionary
terms with 20 documents corpus.

number of gates and the numbers of documents and
terms. There is also a linear relation between the
number of gates and the execution timing because (in
TFHE) the execution time of unitary gates (AND or
XOR) is constant.

4.1.1 PSPMD Use-case Scaling Estimation

Thus, by preforming a bi-linear regression (based on
the data of Table 2 between the number of documents,
number of terms and number of gates we can estimate
the number of gates for larger corpus sizes and, since
the time/gates is a constant, also obtain estimates for
the associated execution timings. Thus, we can ob-
tain an approximate scaling formula between number
of documents, the number of terms and the execution
timing:

seq time = t gate.(a2.docs+a1.terms+a0) (1)

with a2 = 1681,008 , a1 = 509,4045 , a0 =
−18014,7.

Lastly, we also assume that linear multicore
speedups are achievable (from past experience with

Cloud-based Private Querying of Databases by Means of Homomorphic Encryption

129

Table 3: Estimation of TFHE sequential execution timings
(in mins) for various numbers of documents and terms high
sizes in the context of PSPMD use-case using the estimation
equation(1). For the last column, 100 cores are assumed.

doc # terms # gates time (s) // time (s)
100 500 404788 6071 75

1000 1000 2172397 32585 407
10000 1000 17301465 259521 3244
10000 10000 21886105 328291 4103

100000 10000 173176784 2597651 32470

other kinds of FHE calculations) according to the fol-
lowing formula

parallel time =
seq time

0.8.nb o f core
(2)

which domain validity ranges up to around 200 cores
(which corresponds to the largest multicore machines
with a unified shared memory).

Hence, given the empirical equation 2 between
parallel execution timing and sequential execution
timing in TFHE mode and the equation 1, we obtain
scaling estimation equation 3 of the score and sort al-
gorithm using multi-core processor machines:

parallel time =
t gate.(a2.docs+a1.terms+a0)

0.8.nb o f core
(3)

Thus, with an expected latency for query response
of around 3 mins and 100 CPU cores on a single com-
puter node, we will approximately cover an corpus of
240 documents and 500 terms. With a 2000 docu-
ments corpus and 500 terms we almost reach 10 min
of latency in the same conditions. In terms of com-
munications, the client sends an encrypted query of
size 1 Mo and receives the 10 most relevant ranked
documents (encrypted) ids which account for 160
Ko. Both figures and scaling estimation shows the
scalability limitation in FHE encrypted computations
for documents searching without parallelism exploita-
tion.

4.2 Confidential Search in End-to-End
Encryption Platform

4.2.1 Execution Time Gain using SSE

The main purpose of using SSE is to reduce the FHE
computation time as discussed in Sect. 2.2.2. The
FHE server receives a request from the client with
encrypted terms and encrypted documents indices
(found during the SSE phase). Then, although the
TF-IDF computation has to be performed for all doc-
uments in the database3, the FHE server only stores

3As the FHE server cannot “trigger” the TF-IDF com-
putation conditionally, it performs it for all documents in

(and sorts) as many TF-IDF results as there are docu-
ment indices in the SSE response.

Thus, using the SSE server induces an execution
time gain that tightly depends on the number of the
returned document indices. Figure 5 highlights the
FHE computation time in seconds considering differ-
ent lengths of the SSE response. We do not take into
consideration the time needed by the SSE server to fil-
ter documents. In this case, we considered an instance
with 8-bit integers, 10 documents in the corpus, 8
terms in the dictionary and a query with 3 terms.

Figure 5: FHE execution time considering different lengths
of the SSE response.

Figure 5 shows a quadratic dependency of the ex-
ecution time on the number of terms returned by the
SSE.

We tried to improve the ranking time by perform-
ing the documents ranking using a modified parallel
merge sort. We tried to achieve the performance gain
by splitting the SSE response into batches, sorting
them in parallel and getting only k first elements out
of the response of the length h, n > k. However, FHE
does not allow to extract only k first elements during
the merge phase, making it computationally expen-
sive and cancelling out the performance gain. As

a result sorting the whole response with Cingu-
lata’s standard sorting function is more efficient.

4.2.2 Execution Times

In order to deploy our documents ranking system, we
need to setup the cryptographic tools related to the
FHE and SSE deployment. This phase allows the
client to have the cryptographic keys for the FHE
system and for the SSE system in order for her to
be able to send encrypted data related to the docu-
ments corpus to the server(s). We give in this section
some execution time graphics necessary for the setup
and the query phases. Note that NBDOC refers to
the number of documents in the corpus, NBTERM

the database, though some results are “not used” (or, rather,
have no effect in the clear domain but the FHE server cannot
by-construction distinguish when this is the case.

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

130

refers to the number of word in the dictionary and
finally NBREQ refers to the number of words in a
request. Figure 6 shows the execution time of both
phases where we vary the number of documents from
10 to 50 and where we consider NBTERM=10 and
NBREQ=2. Figure 7 shows the execution time of
both phases where we vary the number of terms in
the dictionary from 10 to 35 and where we consider
NBDOC=10 and NBREQ=2.

Figure 6: Execution time varying the number of documents.

Figure 7: Execution time varying the number of the query
terms.

Additionally, Figure 6 shows that for a database
of 50 documents, the setup and the query will take al-
most 17 minutes to be processed (sequentially). Fig-
ure 7 shows that for a dictionary of 35 terms, it takes
more than 5 minutes to sequentially process a two
terms query in a database of 10 documents. In this
case the sizes of the requests sent to the FHE server
and its responses are of the order of 90 kB and 20
kB respectively. Both figures show the limits of FHE
computation for word searching in an encrypted cor-
pus when it comes to scalability, unless heavy paral-
lelism is used. These results also shows that running
encrypted queries over encrypted data is more chal-
lenging than running encrypted queries overs clear
data.

5 CONCLUSION

In this paper, we have studied real-life scenarios of
performing encrypted queries over clear or encrypted
data. Indeed, we have investigated the impact of inte-
grating FHE in the system architectures of these use-
cases as well as optimized the involved algorithms to-
wards FHE-friendlyness and FHE execution perfor-
mances. Although we obtained acceptable perfor-
mances on small database sizes, our experimental re-
sults still suggest that scaling our observed sequen-
tial execution timings to larger database sizes remains
a challenge. Still, parallelism and hardware accel-
eration of FHE operators on FPGA offer short and
medium terms perspectives to achieve better scaling.

REFERENCES

Angel, S., Chen, H., Laine, K., and Setty, S. (2017). Pir
with compressed queries and amortized query pro-
cessing. In International Conference on Security and
Privacy in Communication Systems. The University of
Texas at Austin New York University and Microsoft
Research.

Aubry, P., Carpov, S., and Sirdey, R. (2020). Faster homo-
morphic encryption is not enough: improved heuristic
for multiplicative depth minimization of boolean cir-
cuits. In CT-RSA, pages 345–363.

Buescher, N., Holzer, A., Weber, A., and Katzenbeisser, S.
(2016). Compiling low depth circuits for practical se-
cure computation. In ESORICS, pages 80–98.

Carpov, S., Aubry, P., and Sirdey, R. (2017). A multi-
start heuristic for multiplicative depth minimization of
boolean circuits. In IWOCA, pages 275–286.

Chatterjee, A. and Sengupta, I. (2015). Searching and sort-
ing of fully homomorphic encrypted data on cloud.
IACR Cryptology ePrint Archive, 2015:981.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M.
(2016). Faster fully homomorphic encryption: Boot-
strapping in less than 0.1 seconds. In ASIACRYPT,
pages 3–33.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144.

Melchor, C. A., Barrier, J., Fousse, L., and Killijian, M.-O.
(2016). XPIR: Private information retrieval for every-
one. POPETS, 2016(2):155–174.

Salton, G. and Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Information pro-
cessing & management, 24(5):513–523.

Shen, P., Chen, C., and Zhu, X. (2018). Privacy-preserving
relevance ranking scheme and its application in multi-
keyword searchable encryption. In SecureComm, page
128.

Wallace, C. S. (1964). A suggestion for a fast multiplier.
IEEE Transactions on electronic Computers, 1:14–17.

Cloud-based Private Querying of Databases by Means of Homomorphic Encryption

131

