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Pneumonia is caused by viruses, bacteria, or fungi that infect the lungs, which, if not diagnosed and treated in
time, can be fatal and lead to respiratory failure. More than 250,000 individuals in the United States, mainly
adults, are diagnosed with pneumonia each year, and 50,000 die from the disease. Chest Radiography (X-ray)
is widely used by radiologists to detect pneumonia. It is not uncommon to overlook pneumonia detection for
a well-trained radiologist, which triggers the need for improvement in the accuracy of the diagnosis. There-
fore, we propose using transfer learning, which can reduce the neural network’s training time and minimize
the generalization error to improve the accuracy of the diagnosis. We trained, fine-tuned the state-of-the-art
deep learning models such as InceptionResNet, MobileNetV2, Xception, DenseNet201, and ResNet152V2 to
classify pneumonia accurately. Later, we created a weighted average ensemble of these models and achieved
a test accuracy of 98.46%, precision of 98.38%, recall of 99.53%, and f1 score of 98.96%. These performance
metrics of accuracy, precision, and f1 score are at their highest levels ever reported in the literature, which can

be considered a benchmark for the accurate pneumonia classification.

1 INTRODUCTION

Pneumonia is an acute respiratory infection caused
by bacteria, fungi, or viruses with mild to life-
threatening conditions that, if not diagnosed, can
lead to respiratory failure (Pne, a), (Pne, b). More
than 250,000 individuals in the United States, mainly
adults, are diagnosed with pneumonia each year,
50,000 die from the disease (Pne, b). Pneumonia is
also the world’s largest infectious cause of child mor-
tality, accounting for 15% of all infant deaths under
five years of age (Pne, a). Standard tests for pneumo-
nia diagnosis include blood tests, chest X-rays, pulse
oximetry, sputum tests, arterial blood gas tests, bron-
choscopy, pleural fluid culture, and CT scans (Pne,
c). However, chest X-rays are a gold standard tool for
diagnosing pneumonia that can distinguish pneumo-
nia from other respiratory infections (Mandell et al.,
2007). It is not uncommon to overlook pneumonia
detection for a well-trained radiologist, which triggers
the need for improvement in the diagnosis’s accuracy.

Deep learning is now the state-of-the-art paradigm
of machine learning, leading to enhanced perfor-
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mance in various areas, including medical image clas-
sification, natural language processing, object detec-
tion, segmentation, and other tasks (Litjens et al.,
2017), (Shen et al., 2017), (Lundervold and Lunder-
vold, 2019). In particular, the deep Convolutional
Neural Nets (CNN), which almost halve the error
rate in the competition for Object Recognition - the
Imagenet Large Scale Visual Recognition Competi-
tion (ILSVRC), have been highly dominant in field of
computer vision (Krizhevsky et al., 2012). Follow-
ing CNN’s success with computer vision, the med-
ical image analysis community started to recognize
the potential of deep learning techniques to achieve
an expert level of performance in classification, seg-
mentation, and detection of medical images (Litjens
et al.,, 2017). This work’s significant contribution is
that we propose the weighted average ensemble-based
approach by fine-tuning the deep transfer learning
models (InceptionResNet, MobileNetV2, Xception,
DenseNet201, ResNet152V2) to improve the deep
learning classification model’s performance metrics.
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Figure 1: CNN Architecture.

2 RELATED WORK

The deep learning framework proposed by (Liang
and Zheng, 2020) incorporates transfer learning com-
bined with residual thought and dilated convolution
for the classification of pediatric pneumonia images,
achieved a test recall of 96.7%, and an fl score of
92.7%. To classify pneumonia from chest X-ray
images, (Chouhan et al., 2020) and (Hashmi et al.,
2020) used transfer learning and proposed an en-
semble model that combined the pre-trained models’
results, achieving 96.4% accuracy and 98.43% ac-
curacy respectively from the unseen dataset of the
Guangzhou Women and Children’s Medical Center.
(Stephen et al., 2019) trained a convolutional neural
network from scratch to detect the presence of pneu-
monia from a series of chest X-ray images resulting
in approximately 94% validation accuracy. (Rahman
et al., 2020) used transfer learning from DenseNet201
architecture, a pre-trained deep convolutional net-
work on the Imagenet dataset, and reported a 98% ac-
curacy of pneumonia classification. (Ayan and Unver,
2019) used Xception and Vggl6 as transfer learn-
ing models and compared the accuracy between them
only to report the accuracy of the Xception network
exceeds the Vggl6 network at 87% and 82%.

This paper’s significant contribution is using a
weighted average ensemble method by fine-tuning the
state-of-the-art pre-trained neural networks trained on
the Imagenet dataset to achieve the best classification
performance metrics ever published in the literature.

3 METHODS AND MATERIALS

Convolutional Neural Networks are a type of deep
learning models designed for processing data in the
form of multiple arrays, e.g., a color image has three
channels (RGB), each channel consists of 2D arrays

containing pixel intensities (LeCun et al., 2015). The
architecture of typical Convolutional Neural Network
is shown in Figure 1.

The first few stages in the architecture are a series
of convolution layers and pooling layers. The image
is fed as an input to the convolution layer to extract
meaningful features (feature maps). A non-linearity
is applied to the feature maps, followed by a pooling
layer that merges similar features into one by com-
puting either the maximum or average value for each
patch on the feature map, which typically reduces the
representation’s dimensions. The output from the last
stage of the convolution layer, non-linearity, and pool-
ing layer is subjected to fully-connected layers, fol-
lowed by a softmax to output the predictions.

3.1 Transfer Learning

Machine learning algorithms assume that training and
test data will come from the same distribution and fea-
ture space (Pan and Yang, 2009). It may not hold good
in real-world applications, particularly in the field of
medical imaging, where obtaining a huge amount of
training data is itself a major bottleneck due to high
annotation costs and the protection of patients’ pri-
vacy. Transfer Learning, which is a technique that
improves the learning in a new domain through the
transfer of knowledge from a related domain (Weiss
et al., 2016), (Torrey and Shavlik, 2010), bypasses
the assumption that the training data must be inde-
pendent and identically distributed (i.i.d) with the test
data (Tan et al., 2018).

3.2 Pre-trained Image Classification
Models

Pre-trained models are the models trained on large
benchmark datasets, where the models have already
learned to extract a wide variety of features, can be
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Figure 2: Xception Architecture.

used as a starting point to learn on a new task in a
related domain. It is a common practice in the field
of computer vision to use transfer learning via pre-
trained models. In the following sub-sections, we will
briefly introduce the pre-trained models used in this
study.

3.2.1 Xception

Xception is one of the state-of-the-art deep learn-
ing model architectures, based on depthwise separa-
ble convolution layers developed by Chollet (Chol-
let, 2017) from Google Inc, which is also known as
the extreme version of Inception. The depthwise sep-
arable convolution consists of a depthwise convolu-
tion - a spacial convolution performed independently
across every input channel, followed by a pointwise
convolution - a 1 x 1 convolution that changes the in-
put dimensions. But the extreme form of the incep-
tion module consists of a pointwise convolution fol-
lowed by a depthwise convolution, and another dif-
ference among them is the presence/ absence of the
non-linearity layer. Usually, depthwise separable con-
volutions are implemented without non-linearities be-
tween a depthwise convolution and pointwise convo-
lution. In the extreme version of the inception mod-
ule, depthwise convolution and pointwise convolution
are followed by a ReLU non-linearity.

The Xception architecture is shown in Figure 2,
which is divided into three major phases: Entry flow,
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Middle Flow, and Exit flow. There are 36 convolu-
tion layers in the architecture that are structured into
14 modules. Except for the first and last modules,
all other modules have linear residual connections
around them. In other words, Xception architecture
is a linear stack of depthwise separable convolutions
with residual connections, when trained on ImageNet
dataset (Russakovsky et al., 2015), Chollet (Chollet,
2017) reported a top-1 accuracy of 79.0% and top-5
accuracy of 94.5%.

3.2.2 MobileNetV2

(Sandler et al., 2018) have introduced a neural net-
work architecture designed specifically for mobile
and resource-intensive environments. They intro-
duced a unique layer module known as the inverted
residual with a linear bottleneck, which takes a low di-
mensional compressed representation as an input that
is then expanded to a high dimension and later fil-
tered with a lightweight depth-wise convolution. The
MobileNet-V2 architecture is shown in Figure 3 that
contains an initial fully convolutional layer followed
by residual bottleneck layers.

There are two types of blocks in the network, as
shown in Figure 4: one is the residual block of stride
1, and another is a block with stride 2 for downsiz-
ing the input from the previous layer. Each block has
three layers: The first layer is a 1 x 1 Convolution
with ReLu6 activation, the second layer is a depth-



An Ensemble-based Approach by Fine-Tuning the Deep Transfer Learning Models to Classify Pneumonia from Chest X-Ray Images

[CInput Image:*224 x224x3 |

1 x Conv2D: stride 2
OQutput size : 112 x 112 x 32
v

1 x Bottleneck: Stride 1
Output Size: 112 x 112 x 16
v

2 x Bottleneck: Stride 2
Output Size: 56 x 56 x 24
7

3 x Bottleneck: Stride 2
Output Size:‘28 x 28 x32

4 x Bottleneck: Stride 2
Output Size:*14 x 14 x 64

3 x Bottleneck: Stride 1
Output Size: 14 x 14 x 96
v

3 x Bottleneck: Stride 2
Output Size: 7 x 7 x 160

1 x Bottleneck: Stride 1
Output Size: 7 x 7 x 320

v
1 x Conv2D: stride 1
Qutput size : 7 x 7 x 1280
v

Global Average Pooling
Output: 1280
7

Softmax
Output: 1000

Figure 3: MobileNet-V2 Architecture.

wise convolution, which is responsible for perform-
ing lightweight filtering by applying a single convolu-
tional filter per input channel, and the third layer is a
1 x 1 Convolution, which is also referred to as a point-
wise convolution that creates new features through
computing linear combinations of the input channels.

Stride=1 Block i
Stride=2 Block

| Input
¥

| Conv 1x1, ReLub |
¥

| Input |
¥
| Conv1x1, ReLub |

Depth-wise 2—
Convolution 3 x 3, Depth-wise
Relu6 Convolution 3 x 3,
2 Stride=2, ReLu6
¥

| Conv1x1, Linear |

| Conv 1x1, Linear |

| Add |

Figure 4: MobileNet-V2 Bottleneck Stride Blocks.

With this architecture, (Sandler et al., 2018)
trained a neural network model on the ImageNet
dataset (Russakovsky et al., 2015) and compared the
performance with other similar mobile models: Shuf-
fleNet and NasNet-A, and reported a top-1 accuracy
of 74.7% with ShuffleNet at 73.7% and NasNet-A at
74.0%.

3.2.3 InceptionResNetV2

(Szegedy et al., 2016a) studied the combination of
Inception architecture (Szegedy et al., 2016b) and
Residual connections (He et al., 2016a), and proposed
an architecture that is based on the Inception family of
architectures by replacing the inception module with
a hybrid Inception-ResNet module as shown in Fig-
ure 6, which are three variants: 1. Inception-ResNet-
A for 35 x 35 grid, 2. Inception-ResNet-B for 17 x
17 grid, and 3. Inception-ResNet-C for 8 x 8 grid.
(Szegedy et al., 2016a) argued that training with resid-
ual connections significantly accelerated the training
of Inception networks. The large scale schema struc-
ture and the detailed structure of its components are
shown in Figure 5.

Input Image
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v
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Output: 35 x 35 x 256
¥

5 x Inception-resnet-A
Output: 35 x 35 x 256
v
Reduction-A

Output: 17 x 17 x 896
2

10 x Inception-resnet-B
Output: 17 x 17 x 896
v

Reduction-B
Output: 8 x 8 x 1792
¥

5 x Inception-resnet-C
Output: 8 x 8 x 1792
v
Average Pooling
Output: 1792
¥
Dropout (keep 0.8)
Output: 1792

v
Softmax
Output: 1000

Figure 5: InceptionResNetV2 - Large scale schema struc-
ture.

The input image of size 299 x 299 x 3 under-goes
a series of convolutions in the Stem module, followed
by the hybrid Inception-ResNet modules. Each hy-
brid Inception-ResNet module is followed by a Re-
duction module to reduce the dimensions of the rep-
resentation.

Later, the final hybrid Inception-ResNet mod-
ule’s output is fed to the average pooling layer, fol-
lowed by a dropout layer to output the predictions.
The design of such deep neural networks that in-
creases the number of layers leads to instability dur-
ing training. The network may die early, for exam-
ple. (Szegedy et al., 2016a) suggested scaling down
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Figure 6: Schema for Inception-ResNet modules.

the residuals before adding them to the previous ac-
tivation layer to stabilize the training, and (He et al.,
2016a) suggested a two-phase training where the first
warm-up phase is performed with a low learning rate
and followed by a high learning rate in the second
phase. (Szegedy et al., 2016a) also trained an ensem-
ble of one Inception-v4 and three Inception-ResNet-
v2 models on the ILSVRC 2012 classification task
(ImageNet dataset (Russakovsky et al., 2015)) and
achieved 3.08% top-5 error rate on the test set of the
ImageNet dataset.

3.2.4 ResNetl152V2

The Deep Residual Networks introduced by (He et al.,
2016a) have improved the accuracy of the deep archi-
tecture models and are shown to have excellent con-
vergence behaviors. (He et al., 2016b) studied the
propagation formulation behind the residual blocks,
i.e., to create a direct path for propagating informa-
tion through the entire network including the residual
unit as shown in Figure 8 and demonstrated that when
the identity maps are used as the skip connections
and after-addition activation, forward and backward
signals are directly propagated between any residual
blocks.

Identity mappings help protect the network from
vanishing gradient problem. The significant differ-
ence between ResNet-V1 and ResNet-V2 is that be-
fore the convolution, ResNet-V2 performs batch nor-
malization and ReLU activation at the input; whereas,
ResNet-V1 performs convolution, followed by batch
normalization and ReLU activation. The architecture
of ResNet152-v2 is shown in Figure 7, which takes an
input image of size 224 x 224 x 3 that goes through an
initial convolution with a kernel size of 7 x 7 followed
by a Pooling operation with a kernel size of 3 x 3.

Later, the pooling layer’s output is passed on to a
series of Residual blocks, each containing three lay-
ers: 1 x 1 Convolution, 3 x 3 convolution, and a 1
x 1 convolution, which is then followed by an Av-
erage Pooling layer and a fully connected layer with
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Figure 7: ResNet152-V2 Architecture.

softmax activation to output the class of Imagenet
dataset. When trained on Imagenet dataset (Rus-
sakovsky et al., 2015) with this architecture, (He et al.,
2016b) reported the top-1 error rate of 21.1% and top-
5 error rate of 5.5%.

3.2.5 DenseNet-201

Computer Vision and Pattern Recognition (CVPR) is
an annual international conference regarded as one
of the field’s most important and influential confer-
ences. Densely Connected Convolutional Networks
(DenseNet) introduced by (Huang et al., 2017) won
the best paper award at the CVPR 2017 conference
(CVP, ), which connects each layer of the network in
a feed-forward manner to every other layer.
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DenseNets have a similar advantage to that of
ResNets (He et al., 2016a), (He et al., 2016b) in solv-
ing the problem of vanishing gradients and several
other benefits, including enhancing the propagation of
features between the layers, facilitating the re-use of
features, and significantly reducing the overall learn-
able parameters of the network.

The DenseNet-201 large scale architecture is
shown in Figure 9, which takes an input image of
size 224 x 224 x 3 that goes through an initial con-
volution of kernel size 7 x 7 and stride 2, followed
by a Max pooling operation of kernel size 3 x 3 and
stride 2. Later, the max-pooling output is subjected
to a series of dense blocks and transition layers (four
dense blocks and three transition layers). The dense
block consists of a 1 x 1 convolution followed by a 3
x 3 convolution where each convolution operation is a
sequence of Batch Normalization, ReLU Activation,
and Convolution.

The transition layers have a sequence of 1 x 1 con-
volution followed by an average pooling of 2 x 2.
At the end of the fourth dense block, the global av-
erage pooling is carried out with softmax activation.
(Huang et al., 2017) reported that with only 0.8 mil-
lion parameters (about 1/3 of ResNet parameters), the
DenseNet-201 architecture is able to achieve a com-
parable accuracy of ResNet (He et al., 2016b) with
10.2 million parameters. When trained on the Ima-
geNet dataset (Russakovsky et al., 2015), the top-1
error rate was 22.58%, and the top-5 error rate was
6.34%.

3.3 C(lassification Performance Metrics

Evaluation metrics are critical for accessing the per-
formance of a deep learning classification model.
There are different metrics of assessment that are
available for these purposes. However, the standard
metrics reported in the literature for deep learning
classification tasks are accuracy, precision, recall, f1
score.

3.3.1 Accuracy

The accuracy of the model is calculated using the
equation 1, which is a ratio of correct predictions to
the total predictions.

TP+TN

Accuracy = (D
TP+TN+FP+FN

3.3.2 Precision

The precision of the model summarizes model’s ac-
curacy in terms of the number of samples which were
predicted positive and is given by the equation 2.

TP

Precision = ——— 2)
TP+FP

3.3.3 Recall

Recall of the model is calculated using the equation 3,
that tells how well the positive class was predicted.
TP

Recall = ———— 3)
TP+ FN

3.3.4 F1 Score

F1 score is the calculation of harmonic mean of preci-
sion and recall of the model and is given by the equa-
tion 4

FI Score — 2% Prec-is.ion x Recall @)
(Precision+ Recall)

3.3.5 AUC Score

AUC score is the measure of area covered by the re-
ceiver operating characteristics (ROC) curve. For a
perfect classifier, the AUC score is 1.0

3.4 Weighted-Average Ensemble
Classification Algorithms based on a single architec-
ture/ model often does not capture entire features in

the data for optimal predictions. The aggregation
of multiple algorithms into an ensemble of models
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Figure 9: DenseNet-201 Architecture.

captures the data’s underlying distribution more pre-
cisely, making better predictions (Shahhosseini et al.,
2019), (Brown et al., 2005), (Dietterich, 2000). The
Figure 11 shows the building blocks of the weighted
average ensemble model.

Each transfer learning model’s output is then mul-
tiplied by a weight and then combined linearly, fol-
lowed by a softmax layer to output predictions. Dur-
ing the training process, the weights are optimized
with the condition that they add up to 1. These op-
timized weights determine the contribution of each
transfer learning model in the final prediction.

3.5 Dataset Description

For all the experiments conducted in this study, we
used a Chest X-ray dataset by (Kermany et al., 2018).
The dataset comprises 5,856 chest X-ray images
(1583 images labeled as Normal and 4273 images la-
beled as Pneumonia) taken from children are labeled
either Normal or Pneumonia. The original training
and test sets are heavily imbalanced. So, we initially
combined the dataset with all Normal images in one
folder and all the Pneumonia images in another folder.
We show a sample of a Normal image and Pneu-
monia image in Figure 10. The dataset was then shuf-
fled and split into training, validation, and test sets, of
which 3,748 images in the training set, 936 images in
the validation set, and 1,172 images in the test set.

3.6 Data Preprocessing
The chest X-ray images in the dataset are in vary-

ing sizes, i.e., all the chest X-ray images’ dimensions
are not the same. However, the deep neural network
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(a) Normal Image.

(b) Pneumonia Image.

Figure 10: Sample of a Normal and Pneumonia Image.

architectures utilized in this study as part of transfer
learning expect all the images to be in a common di-
mension. For example, Xception architecture expects
the dimensions of the image (width x height x no. of
Channels) to be 299 x 299 x 3, and width and height
should be no smaller than 71. The dimension of the
input image will also vary by the type of deep neural
network architecture. For example, the DenseNet201
architecture expects the input image shape to be (224
X 224 x 3), with width and height no smaller than
32, and InceptionResNet-V2 expects the input image
shape to be (299 x 299 x 3), with width and height
no smaller than 75. To have common dimensions ac-
cepted by all the architectures used in this study, we
initially resized all the chest X-ray images to have the
shape of (224 x 224 x 3).

Once the images are resized to 224 x 224 x 3,
we created TFRecords of the images and one-hot en-
coded the labels. TFRecord is a binary file format
that is a standard and the most recommended data
storage format in Tensorflow (Use, ). Storing data
in a binary file format improves the data importing
pipeline’s performance and reduces the model’s train-
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Figure 11: Weighted Average Ensemble.

ing time. Deep learning models are in general data-
hungry. They require a massive amount of data during
training to capture the most relevant features; other-
wise, the model does not generalize well when tested
on new data. Data Augmentation is a technique used
when the training data is limited to increase the train-
ing data size. This study augmented the training data
by randomly flipping each image in a batch (see Fig-
ure 12).

[
0 50 100 150 200

Figure 12: Chest X-ray image flipped left to right.

3.7 Hyper-parameter Tuning

Hyper-parameter tuning is one of the main contribu-
tions of this study. In the following subsections, we
briefly discuss the parameters that are fine-tuned dur-
ing training the model.

3.7.1 Learning Rate

The learning rate is one of the single most crucial
hyper-parameters to be carefully chosen while train-
ing the model. In other words, it would be equally
important to choose the appropriate learning rate for
the model to select the right model from a family of
models or learning algorithms. The typical values of
the learning rate while training a model with standard-
ized inputs, i.e., the inputs are in the interval (0, 1), are
greater than 1e-06 and less than 1 (Bengio, 2012).
Since we are using transfer learning with pre-
trained weights in this study, it is critical to have a
very low learning rate to avoid the risk of overfit-
ting very quickly. High learning rates apply larger
weight updates to the model. Therefore, it’s best to

avoid high learning rates as pre-trained models al-
ready hold decent weights that do not need larger
weight updates again while using them as transfer
learning models to train new datasets. Other common
strategies include learning rate warm-ups (He et al.,
2016a), (Goyal et al., 2017) and reducing the learn-
ing rate on the plateau, which is a part of callbacks
API in Keras (Cal, ). Learning rate warm-ups use less
aggressive learning rates at the start of training. The
other reduces the learning rate after a certain number
of epochs if the model does not improve the moni-
tored metrics, such as loss, accuracy, etc. during train-
ing.

In this study, the model’s training started with a
learning rate of 0.001 and then reduced the learning
rate by a factor of 0.3 for every five epochs if the
model did not improve. This strategy worked bet-
ter than others for the model to converge, where the
last reported learning rate was 2.7e-05, which helped
achieve the best model performance metrics.

3.7.2 Batch Size

Batch size is a configurable hyper-parameter during
the training of a neural network model, which refers
to the number of training examples used in a single
iteration. Generally, the batch size is between 10 and
1000, and 32 is a good default value according to
Bengio (Bengio, 2012). The Tensor Processing Unit
(TPU) was used to train the model, which consists of
four processors, and each of them has two TPU cores,
allowing eight cores for each TPU. We set a batch size
of 16 for each core of a TPU, with eight cores; the fi-
nal batch size was 128.

3.7.3 Number of Epochs

The number of epochs or the number of training it-
erations is another hyper-parameter that can be op-
timized using the principle of Early stopping (Ben-
gio, 2012). Early stopping is another way of ensur-
ing that the model does not overfit the training data
by stopping the training process (see Figure 13), even
though other hyper-parameters such as learning rate
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Figure 13: Early Stopping.

and batch size would yield over-fitting. Early stop-
ping comes as a callbacks API in Keras (Cal, ). The
patience parameter and the quantity to be monitored
are set to 20 and the loss. When the model shows no
improvement in the loss for 20 consecutive epochs,
the compiler terminates the training process.

3.8 Loss Function

The dataset has two classes (Normal, Pneumonia),
which is generally considered a binary classification
problem(Normal - 0, Pneumonia - 1). In a binary clas-
sification task, we optimize the binary cross-entropy
function, so the model spits out whether the chest X-
ray image is Normal (0) or Pneumonia (1). In this
study, we modeled the algorithm to spit out the prob-
ability of the image being Normal or Pneumonia. So,
we intend to optimize the categorical cross-entropy
function instead of the binary cross-entropy function.

The categorical cross-entropy loss, also known as
log loss or logistic loss or softmax loss, is given by the
equation 5, where M is the number of training exam-
ples, K is the number of classes, Y%, is the target label
for training example m for class k, x is the input for
training example m, and hg is the model with neural
network weights 0.

1 K M '
Jcce = T35 Z Zym XlOg(/’le ()Cm,k)) (5)
Mkzlm:l

The predicted class probabilities are compared
with the actual classes/ labels (Normal, Pneumonia)
to minimize the loss. The loss is calculated that penal-
izes for any deviation between the actual class and the
model’s output. The penalty is a logarithmic loss that
yields larger scores for larger deviations, which tends
to 1, and smaller scores for small deviations tend to 0.
A perfect model will have a categorical cross-entropy
loss of 0.
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3.9 Optimization Algorithm

After all the data preprocessing and hyper-parameters
configuration, the next challenging task is choosing
the right optimization algorithm from a pool of opti-
mization algorithms, consisting of Gradient Descent
(GD), Stochastic Gradient Descent (SGD), Adam,
etc. Gradient Descent is the oldest and the traditional
optimization algorithm that solves the optimal value
along the gradient descent, converging at a linear rate.
In this method, the gradients of all the samples are
calculated for each parameter update making the gra-
dient descent cost calculation very high (Sun et al.,
2019). To overcome this issue, Robbins and Monro
(Robbins and Monro, 1951) proposed the Stochastic
Gradient Descent (SGD) optimization method. In this
method, the parameter updates are calculated using a
random sample from a mini-batch that converge at a
sub-linear rate. Even though the cost calculation is
improved, choosing an appropriate learning rate is of-
ten challenging. Kingma and Ba (Kingma and Ba,
2014) introduced Adam (Adaptive Moment Estima-
tion), a stochastic optimization algorithm based only
on first-order gradients. The algorithm improves the
cost calculation with little memory and calculates in-
dividual adaptive learning rates for different param-
eters from the estimates of gradients’ first and sec-
ond moments. The gradient descent process of the
Adam optimization method is relatively stable com-
pared to gradient descent and stochastic gradient de-
scent methods and is most suitable for large datasets
or parameters (Kingma and Ba, 2014). So, we used
Adam as an optimization algorithm in this study.

4 RESULTS

4.1 Classification Performance Metrics

After finalizing the hyper-parameter configurations
and optimization algorithm, the models are compiled
and fine-tuned during the training. The models’ per-
formance is evaluated on the test dataset, which con-
sists of 1,172 chest X-ray images, and the confu-
sion matrix is computed for each transfer learning
model consisting of True Negatives, False Positives,
False Negatives, and True Positives as shown in Ta-
ble 1. The Xception architecture performance is bet-
ter than all other transfer learning architectures, while
the weighted average ensemble outperformed every
transfer learning model, including the Xception archi-
tecture.

As mentioned in Section 3.3, the accuracy, pre-
cision, recall, and f1 score are calculated for each
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Table 1: Confusion Metrics.

Model True Negative (TN) False Positive (FP) False Negative (FN) True Positive (TP)
DenseNet201 303 14 7 848
Xception 302 15 5 850
InceptionResNet 303 14 7 848
ResNet152V2 299 18 9 846
MobileNetV2 303 14 7 848
Ensemble Model 303 14 4 851
Table 2: Classification Performance Metrics.
Model Accuracy Precision Recall F1Score AUC TestLoss Parameters
DenseNet201 98.21 98.38 99.18 98.78 99.40 0.09 18,096,770
Xception 98.30 98.27 99.42 98.84 99.42 0.11 20,811,050
InceptionResNet 98.21 98.38 99.18 98.78 99.38 0.09 54,279,266
ResNet152V2 97.7 97.92 98.95 98.43 99.33 0.11 58,192,002
MobileNetV?2 98.21 98.38 99.18 98.78 99.08 0.11 2,226,434
Ensemble Model 98.46 98.38 99.53 98.96 99.60 0.08 162,638,991

Table 3: Weighted Average Ensemble Model Weights.

Model Weights
DenseNet201 0.22
Xception 0.29
InceptionResNet 0.18
ResNet152V2 0.17
MobileNetV2 0.15

transfer learning model (see Table 2). It is worth not-
ing that the results of MobileNetV2 architecture are
comparable to the best-performing architecture, i.e.,
the Xception architecture with approximately 20 mil-
lion trainable parameters, which is almost ten times
the MobileNet architecture. However, with about 162
million trainable parameters, the weighted average
ensemble model outperformed all other models with
test loss of 0.08 and achieving an accuracy of 98.46%,
precision of 98.38%, recall of 99.53%, fl score of
98.96%, and AUC of 99.60% (See Figure 14). As
mentioned in Section 3.4, the weights are optimized
during training and the individual model weights are

ROC curve (zoomed in at top left)

2

1.000

—— DenseNet (area = 99.400)
Xception (area = 99.420)

—— InceptionResNet (area = 99.380)
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—— Ensemble (area = 99.600)
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Figure 14: Area under the Receiver Operating Characteris-
tics Curve (Zoomed in at the top left).

shown in Table3. The Xception and DenseNet201 ar-
chitectures account for more than 50% of the final
predictions, with Xception architecture contributing
29% of the final prediction and DenseNet201 archi-
tecture contributing 22% of the final prediction.

4.2 Comparison of Results with Other
Recent Similar Works

In this section, we compare the results from our study
with other recent similar works (see Table 4, best per-
formance metrics are in bold). The results of our
weighted average ensemble model outperformed all
the classification metrics such as accuracy, precision,
and f1 score, but recall and AUC from the comparable
works to accurate classification of pneumonia.

S CONCLUSION

According to the World Health Organization (WHO),
pneumonia is one of the world’s largest infectious
cause of death in children, particularly children under
the age of five (Pne, a) and Centers for Disease Con-
trol and Prevention (CDC) estimates that pneumonia
is one of the leading causes of death among adults
in the United States (Pne, b). Chest X-rays are the
standard technique used by radiologists in detecting
pneumonia, and even for the well-trained radiologist,
it is not uncommon to overlook pneumonia detection.
Due to the challenges of obtaining massive training
data mainly because of high annotation costs, we used
transfer learning techniques combined with data aug-
mentation to overcome overfitting during the model
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Table 4: Comparison of results with other recent similar works.

Accuracy Precision Recall F1Score AUC
(Kermany et al., 2018) 92.80 87.20 93.20 90.10 96.80
(Rajaraman et al., 2018) 96.20 97.00 99.50 - 99.00
(Stephen et al., 2019) 93.73 - - - -
(Nahid et al., 2020) 97.92 98.38 97.47 97.97 -
(Chouhan et al., 2020) 96.39 93.28 99.62 96.35 99.34
(Hashmi et al., 2020) 98.43 98.26 99.00 98.63 99.76
(Mittal et al., 2020) 96.36 - - - -
(Rahman et al., 2020) 98.00 97.00 99.00 98.10 98.00
Current Work 98.46 98.38 99.53 98.96 99.60

training process. This study proposes a weighted av-
erage ensemble model by fine-tuning the deep trans-
fer learning architectures to improve the classifica-
tion performance metrics such as accuracy, precision,
recall, and f1 score to detect pneumonia from chest
X-ray images. To the best of our knowledge, we
achieved the best classification performance metrics
ever reported in the literature for pneumonia classifi-
cation with accuracy of 98.46%, precision of 98.38%,
and f1 score of 98.96%. Future work can include in-
vestigating the proposed ensemble model’s general-
ization ability in diagnosing other common diseases.
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