
Efficient Secure Communication for Distributed Multi-Agent Systems

Davide Costa a, Daniel Garrido b and Daniel Castro Silva c

LIACC, Artificial Intelligence and Computer Science Laboratory, FEUP, Faculty of Engineering, University of Porto,
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

Keywords: Multi-Agent, Middleware, Security, Distributed, Architecture.

Abstract: The use of multi-agent systems has been increasing and with it the need to improve communication perfor-
mance and to make it secure. In a system with hundreds of agents, in which their reaction must be fast, it is
essential to ensure low latency and high message throughput. These agents can work in a cooperative or com-
petitive environment and, especially in the last, the absence of secure communications opens the possibility
for malicious agents to intercept and/or change the content of the messages. This paper explores alternatives to
the Message Transport Service as described in the Foundation for Intelligent Physical Agents architecture for
multi-agent systems, namely using message-oriented middleware. It also introduces a new component to the
typical multi-agent system architecture, the certification authority service. This component is responsible for
creating certificates that platform agents can use to ensure their identity and communicate safely. This archi-
tecture also manages external agents distribution across several machines, similar to a federated environment,
making the system more suitable for computationally demanding scenarios. The architecture was tested on an
existing simulation platform, showing very good results.

1 INTRODUCTION

The increased use of multi-agent systems (MAS) for
several applications, such as energy systems and in-
dustry 4.0, has led to the need for better perfor-
mant communication middleware and the use of se-
cure message exchange (Pires et al., 2018) (Xie and
Liu, 2017). A system with a high number of agents
in simultaneous communication and with the need
to ensure (near) real-time communication requires
a middleware that can ensure both low latency and
high throughput (Calvaresi et al., 2017) (Leitão et al.,
2013). Moreover, these agents can work in a com-
petitive environment, in which secure communica-
tion stops malicious agents from intercepting and/or
changing the contents of the messages being ex-
changed. This way, secure communications in MAS
has been referenced in (Briones et al., 2016), (Tangod
and Kulkarni, 2018), (Hedin and Moradian, 2015),
(Subburaj and Urban, 2018) and other works as an
important feature for current MAS.

The possibility of improving legacy applications
by introducing MAS features has been referenced as

a https://orcid.org/0000-0002-2190-5453
b https://orcid.org/0000-0002-7421-3119
c https://orcid.org/0000-0001-9293-0341

a great advantage of MAS (Oprea, 2004). This can
be done with the concept of external agents. External
agents act like external applications not specifically
developed for a MAS platform but that can connect
to it and act as an agent. These agents have access to
normal MAS functionalities like message exchange,
yellow and white pages, allowing them to communi-
cate and locate each other using a well-known stan-
dard promoted by FIPA1 (Foundation for Intelligent
Physical Agents).

In this paper we present an architecture that aims
to introduce a new component in the FIPA architec-
ture for MAS, the CA service. This service should
create certificates that ensure agents’ identities and
allow them to communicate securely. We also study
the integration of a communication middleware that
can be used on a MAS. This middleware must provide
the desired messaging performance (both in terms of
latency and throughput) and implement security on
message delivery ensuring confidentiality, integrity
and authenticity.

To achieve that, some related work regarding
multi-agent platforms, communication middleware
and communication security will be explored in Sec-
tion 2. A comparative analysis and some performance

1More information available at http://fipa.org/

Costa, D., Garrido, D. and Silva, D.
Efficient Secure Communication for Distributed Multi-Agent Systems.
DOI: 10.5220/0010375605430552
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 1, pages 543-552
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

543



tests will be conducted to show performance dif-
ferences between message-oriented middleware and
multi-agent platforms in Section 3, acting as state of
the art regarding current MAS communication perfor-
mance. The architectural solution, proposed in Sec-
tion 4, should be generic, so it can be applied to
any multi-agent system, endowing it with high per-
formance and security on message delivery, while
maintaining important features like compliance with a
standard agent communication language and support
for external agents. This is showcased in Section 5,
with a case study. Section 6 presents some final con-
clusions on the developed solution and its abilities.

2 RELATED WORK

Some related works on multi-agent platforms, com-
munication middleware and communication security
are shown in the following sections.

2.1 Multi-Agent Platforms

Several studies on multi-agent platforms have been
conducted, and detailed information can be found in
(Kravari and Bassiliades, 2015) or (Leon et al., 2015).
We focus on those platforms that are more referenced
and adopted by the community, with current active
development, support for secure communication (at
least authenticity, confidentiality and integrity), fol-
lowing FIPA standards and with the possibility of run-
ning agents in different networked computers.

JIAC (Java-based Intelligent Agent Compo-
nentware): is an open-source framework and multi-
agent architecture, developed in Java and distributed
by DAI-Labor. JIAC uses, since version 5, Apache
ActiveMQ as communication middleware. ActiveMQ
(detailed below) is a message-oriented middleware
that should provide JIAC with good performance
(Lützenberger et al., 2015). JIAC has been used in
several projects such as Energy Efficiency Controlling
in the Automotive Industry (EnEffCo) (Küster et al.,
2013), Intelligent Solutions for Protecting Interdepen-
dent Critical Infrastructures (ILIas) (Konnerth et al.,
2012), Service Centric Home (SerCHo) (Hirsch et al.,
2006) and others.

JADE (Java Agent DEvelopment Framework):
is an open-source framework for multi-agent systems
developed in Java and distributed by Telecom Italia
(Telecom IT, 2017) (Kravari and Bassiliades, 2015).
JADE uses a proprietary protocol for communication,
the Internal Message Transport Protocol (IMTP). This
protocol uses Java event-based communication within
the same container and Remote Method Invocation

(RMI) between containers (Soklabi et al., 2013) (Bel-
lifemine et al., 2007). In JADE, a container represents
a set of agents, and it is possible to have multiple con-
tainers distributed across the network. JADE has been
widely referenced and used in several projects, such
as Agreement Negotiation in Normative and Trust-
enabled Environments (ANTE) (Lopes Cardoso et al.,
2016) and a system that simulates dispatching and
scheduling of transport and production tasks with au-
tomated guided vehicles in manufacturing systems
(Braga et al., 2008).

SPADE (Smart Python Agent Development En-
vironment): is an open-source platform for devel-
oping multi-agent systems in Python. Communica-
tion between two SPADE agents is based on instant
messaging with Extensible Messaging and Presence
Protocol (XMPP). This is a communication protocol
for XML-based middleware (Gregori et al., 2006).
SPADE is used in several projects such as a platform
called SimFleet, a simulator for the use of car fleets
in a more decentralized way (Carrascosa et al., 2019)
and a recommendation system that analyzes user be-
haviour when visiting historical and cultural museum
collections (Gelvez Garcı́a et al., 2019).

2.2 Message Oriented Middleware
Platforms

Several studies on message-oriented middleware plat-
forms have been conducted, and detailed information
can be found in (Celar et al., 2016) or (Yongguo et al.,
2019). A survey on message oriented middleware
was made in order to understand their characteristics,
features, advantages and disadvantages. We focused
on platforms that are more referenced in the litera-
ture, are free to use, have active development, and
support for secure communication. Middleware plat-
forms normally present an architecture with a broker.
We can think of a broker as a post office: a message is
sent to the broker and it then sends the message to the
destination. However, some platforms use a broker-
less architecture, using connections directly between
sender and receiver, in a peer-to-peer (P2P) style.

ActiveMQ: is an open-source communication li-
brary developed by the Apache Software Founda-
tion under the Apache License 2.0 (Apache Software
Foundation, 2019d). There are currently two versions
of this library: ActiveMQ 5 and ActiveMQ Artemis.
We focus on Artemis as it will be the successor to
ActiveMQ 5 as ActiveMQ 6 (Apache Software Foun-
dation, 2019b). ActiveMQ Artemis uses a broker
architecture in which the association to a queue or
set of queues is made using the concept of address.
The messages have an address that indicates where

SDMIS 2021 - Special Session on Super Distributed and Multi-agent Intelligent Systems

544



they should be sent. Thus, sending a message to a
given address may correspond to a send, by the bro-
ker, of the message to one or more queues associ-
ated with that address. There are two types of rout-
ing for a message: multicast, where each message is
sent to all queues associated with that address; and
anycast 2, where the message is only sent to one
queue (Apache Software Foundation, 2019a). Ac-
tiveMQ has been used as communication middleware
for several projects related to MAS such as in Decen-
tralized Coordination Framework for Various Multi-
Agent Systems (DeCoF) (Preisler et al., 2016) and
also in the JIAC system, presented above.

Apache Kafka: is an open-source communica-
tion platform developed by LinkedIn for the Apache
Software Foundation, under an Apache License 2.0
(Wang et al., 2015). Apache Kafka uses a broker ar-
chitecture using the concept of topics. A topic serves
as an address where records are published by produc-
ers. A record corresponds to a key, a value and a
timestamp. A topic has several partitions and each
partition consists of records that have been published
there. A producer is responsible for choosing the
partition where the record he produced will be pub-
lished. The partition keeps the records in an orderly
fashion, using a unique sequential identifier for each
record (Apache Software Foundation, 2019c). A con-
sumer can read a record by specifying the identi-
fier of the record it wants to read from the partition.
Apache Kafka has been used as communication mid-
dleware for several projects related to MAS such as
a distributed data analysis framework for Industry 4.0
(Peres et al., 2016) and a distributed multi-agent ap-
plication for continuous and integrated big data pro-
cessing (Shashaj et al., 2019).

RabbitMQ: is an open-source communication
platform developed by Pivotal Software under the
Mozilla Public License (Pivotal, 2019). In Rab-
bitMQ, sending messages from a producer to a con-
sumer must always go through a broker, called
Exchange. There are four types of exchanges
(CloudAMQP, 2015): direct, fanout, topic and head-
ers. RabbitMQ has been used as communication mid-
dleware for several projects related to MAS such as
an ontology-based approach to scheduling jobs (Khe-
gai et al., 2015) and a system to test multi-agent sys-
tems using a publish-subscribe architecture (Nasci-
mento et al., 2017).

ZeroMQ: is an open-source communication li-
brary developed by iMatix Corporation under an
LGPLv3 license (Lauener and Sliwinski, 2017). It
has a brokerless architecture (Marcos, 2016), which

2More information available at https://www.cloudflare
.com/learning/cdn/glossary/anycast-network/

brings, in theory, two advantages: i) a greater
throughput, since the bottleneck for sending a larger
number of messages is, in most cases, the lack of ca-
pacity of the broker; ii) lower latency, since the mes-
sage is sent directly from producer to consumer, in-
stead of sending it to the broker, who would process
it and only then send it to the final recipient. Ze-
roMQ has been used as communication middleware
in several projects related to MAS such as a system
architecture for data and multimedia transmission for
multi-UAV systems (Uk et al., 2018) and a system
that allows to automate mission-level decision mak-
ing for unmanned systems (Unmanned Systems Au-
tonomy Services) (Li et al., 2018).

2.3 Communication Security

To mitigate security risks on communication, there
are some requirements that a MAS must ensure
(Borselius, 2002): integrity, ensuring there was no
change in message content between send and arrival;
confidentiality, ensuring the message content can only
be perceived by authorized agents (i.e., those who
have the key); authenticity, ensuring the message was
in fact sent by whoever claims to be the author; and
non-repudiation, ensuring that an agent cannot deny
having sent a message it actually sent.

These requirements were covered in several MAS
works such as (Poggi et al., 2001) and (Xu et al.,
2010), with the use of public key cryptography
(Mollin, 2002). Public key cryptography uses two
keys: one public, known to everyone, and one private,
that should be kept secret. The two keys are gener-
ated using some mathematical properties in a way that
they are different but one can revert the effect of the
other. Typical algorithms are elliptic curve and RSA,
but elliptic curve manages to maintain the same level
of security with much smaller keys when compared to
RSA, making it more efficient and faster to compute
(Sullivan, 2013).

As mentioned, the public key is known to every-
one, but the association of a public key to an entity
poses a problem: how to ensure a given public key
actually belongs to that entity. The solution found to
this vulnerability is the existence of trusted central-
ized authorities, who certify that a given public key
really belongs to an entity by issuing a certificate3.
This certificate, usually called digital certificate, cor-
responds to the entity’s public key signed by the cen-
tralized authority with its private key, associated with
an entity identifier. This certificate then allows ev-
eryone to verify, using the public key of the authority

3More information available at https://www.venafi.com/
education-center/pki/how-does-pki-work

Efficient Secure Communication for Distributed Multi-Agent Systems

545



(which is known to everyone), that a given public key
really belongs to an entity (Henmi, 2006).

Another type of cryptography is private key cryp-
tography, in which the same key is used to both en-
crypt and decrypt the content of a message. This type
of encryption is much faster than public key encryp-
tion (according to (Haque et al., 2018), 1000 times
faster) and also more secure (Mollin, 2002). How-
ever, it does not consider key exchange.

Transport Layer Security (TLS4) is a commonly
used protocol for secure communication, using a hy-
brid approach of public and private encryption. For
a given session between two parties, this protocol
uses public key encryption for authentication and ex-
change of a secure symmetric key; then, for the rest
of the session, that symmetric key is used for private
key encryption, as it is more efficient and secure.

3 EXPERIMENTAL
PERFORMANCE EVALUATION

To better understand if a more efficient and secure
solution could be found with the use of a message-
oriented middleware, we performed some experi-
ments to compare the performance of the studied
message-oriented middleware and MAS. These ex-
periments were done both without and with the use
of security (TLS), also providing us with insights on
the performance penalty it entails.

The experiments were performed for three typical
agent communication scenarios (Paletta, 2012): one-
to-one; broadcast; and many-to-one. The tests were
carried out with 10, 50 and 100 pairs of agents com-
municating simultaneously in the one-to-one commu-
nication scenario; 10 producers with 10, 50 and 100
consumers and 50 producers with 10, 50 consumers
in the broadcast communication; and 10, 50 and 100
producers sending to only one consumer in many-to-
one communication.

The content of each message is its own times-
tamp. A group with 500 messages was sent by each
producer, iteratively with an interval of 1ms between
each message. The use of this interval makes the test
case closer to the real one and has a great impact on
the performance values of the middleware.

The tests on communication middleware were
performed using ActiveMQ Artemis 2.10.1, Rab-
bitMQ 3.8.2 and Apache Kafka 2.4.0 server versions,
and Apache.NMS.ActiveMQ 1.7.2, RabbitMQ.Client
5.1.2, Confluent.Kafka 1.3.0, NetMQ 3.3.3.4 and

4More information available at https://www.cloudflare
.com/learning/ssl/transport-layer-security-tls/

clrzmq4 4.1.0.31 C# .Net clients. The use of C#
clients is related to compatibility with the case study
presented in section 5. The tests on MAS were per-
formed using JIAC 5.2.4, JADE 4.5.0 with JADE-S
3.10 and SPADE 3.1.4. All tests were performed on a
computer with an Intel 4720HQ@2.6Ghz CPU, with
16GB of RAM @1600MHz, 500GB SSD and Win-
dows 10 operating system.

In one-to-one communication, results on Table 1
show ZeroMQ as the best in terms of latency (re-
sults in the format Latency / Throughput). In terms
of throughput, ZeroMQ when using security suffers a
very significant impact and RabbitMQ takes the lead.
Regarding ZeroMQ, it is also necessary to refer the
use of two C# clients, NetMQ in the insecure version
and clrzmq in the secure one. Despite being the rec-
ommended client, and having recently received sup-
port for the use of elliptic curve encryption, NetMQ
does not yet support the use of certificates for client
authentication.

Table 1: One-to-One Performance Tests. Values represent
latency (ms) and throughput (msg/s).

Secure Platform 10 Pairs 50 Pairs 100 Pairs

No

ActiveMQ 11 / 1830 23 / 2004 26 / 3358
A. Kafka 574 / 9763 747 / 6512 1475 / 7525
ZeroMQ 0 / 4771 1 / 20342 4 / 23321
RabbitMQ 1 / 4980 11 / 12742 27 / 12791
JADE 3 / 2393 14 / 7319 104 / 12376
JIAC 1317 / 763 9223 / 1512 17437 / 2125
SPADE 468 / 3771 1302 / 7542 2706 / 14321

Yes

ActiveMQ 18 / 1905 181 / 1968 429 / 1981
A. Kafka 565 / 4244 618 / 1901 1166 / 2871
ZeroMQ 3 / 2657 13 / 2360 23 / 3282
RabbitMQ 1 / 4789 19 / 8951 33 / 11529
JADE 33 / 1679 125 / 2811 1016 / 5792
JIAC 1583 / 744 14224 / 1301 18567 / 1871
SPADE 553 / 2649 1978 / 4360 3978 / 9282

Some other platforms also presented good results:
RabbitMQ has good latencies and good throughput;
ActiveMQ has good latencies but a low throughput
when compared to other middleware; JADE is the
only MAS with good overall results (but still far from
most middleware in most cases). Apache Kafka,
SPADE and JIAC present worse results, a situation
that repeats itself in other communication scenarios.
Apache Kafka presents unexpectedly bad results,
much higher than all other middleware. The overall
cost of using security was an increase of 21.38% in
latency and a decrease of 51.3% on throughput.

In broadcast communication, results on Table 2
show RabbitMQ as the best. ZeroMQ’s latency has
increased a lot with the need of using a broker for
broadcast – its documentation recommends the use of

SDMIS 2021 - Special Session on Super Distributed and Multi-agent Intelligent Systems

546



a broker to solve the ”Dynamic Discovery Problem”5.
In terms of throughput, ZeroMQ is now superior in
both insecure and secure communication, by a large
margin. Regarding other platforms, we refer to the
overall good results of JADE but mainly for the sce-
nario of 50 publishers and 50 subscribers, in which
results are very close to those of RabbitMQ. The over-
all cost of using security was an increase of 13.33%
in latency and a decrease of 52.7% on throughput.

Table 2: Broadcast Latency Performance Tests. Values rep-
resent latency (ms) and throughput (msg/s).

Secure Platform 10 Pubs 10 Pubs 10 Pubs 50 Pubs 50 Pubs
10 Subs 50 Subs 100 Subs 50 Subs 50 Subs

No

ActiveMQ 5216/31 7095/64 7259/70 10305/192 9583/896
A. Kafka 50000/604 18154/3211 13488/3977 11640/3901 6894/9557
ZeroMQ 181159/3 454546/237 372024/425 146456/904 441889/1473
RabbitMQ 40683/2 63516/11 75896/32 39494/41 76108/279
JADE 13466/14 16159/32 12634/381 34699/207 34882/271
JIAC 870/1267 1004/6096 1269/18656 981/9156 1866/18943
SPADE 2791/1065 2802/3370 3398/6685 3058/3768 3262/9529

Yes

ActiveMQ 3659/300 2927/82 2458/273 2504/130 2552/921
A. Kafka 4163/1115 12303/2898 13488/4265 10493/4294 3699/11042
ZeroMQ 47755/4 166778/340 190986/831 76617/1429 167515/3658
RabbitMQ 34435/5 50648/17 45741/103 48049/33 48005/293
JADE 6154/123 10940/126 11121/1603 21988/350 18207/375
JIAC 884/1502 954/7433 1155/19674 1060/9355 1484/21365
SPADE 2760/1115 2880/3898 3135/7265 2992/4294 3269/11042

In many-to-one communication, results on Table 3
show JADE as the overall best in terms of latency
without the use of security (results in the format La-
tency / Throughput), followed by RabbitMQ. When
using security, RabbitMQ has better latencies. Ze-
roMQ and JADE, with very similar performance be-
tween them, are the ones that follow RabbitMQ but
with significantly higher values. The other middle-
ware and MAS have much higher results. In terms
of throughput, ZeroMQ is superior in all scenarios.
The overall cost of using security was an increase
of 21.39% in latency and a decrease of 91.41% on
throughput.

Table 3: Many-to-One Performance Tests. Values represent
latency (ms) and throughput (msg/s).

Secure Platform 10 Pubs 50 Pubs 100 Pubs

No

ActiveMQ 11 / 808 28 / 2365 381 / 3897
A. Kafka 617 / 64103 768 / 27503 1628 / 12034
ZeroMQ 13 / 454546 58 / 446429 186 / 310559
RabbitMQ 1 / 5005 13 / 18382 28 / 25013
JADE 4 / 2589 7 / 10549 14 / 13763
JIAC 1574 / 1072 11747 / 1917 19475 / 2555
SPADE 133 / 1771 741 / 10342 2079 / 11321

Yes

ActiveMQ 9 / 931 67 / 1466 3787 / 1764
A. Kafka 448 / 4382 782 / 5569 1319 / 5105
ZeroMQ 16 / 4916 65 / 14501 201 / 16955
RabbitMQ 1 / 4921 17 / 10233 47 / 16361
JADE 11 / 2152 57 / 4428 176 / 7409
JIAC 1818 / 856 17361 / 1659 21096 / 2176
SPADE 140 / 2109 830 / 6192 1907 / 8437

5More information available at http://zguide.zeromq
.org/page:all#header-39

Table 4 shows an overall comparison of all tested
platforms. The first two lines show the number of
times a platform has been the best in all scenarios
for insecure and secure versions, respectively. Re-
sults are presented as Latency / Throughput. The third
and fourth lines show the number of times a platform
reached the top 3 in a scenario, allowing for a bet-
ter understanding of which platforms perform the best
overall. The last two lines show the percentage differ-
ence of the secure version when compared to the in-
secure one (the fifth line shows latency and the sixth
throughput), providing a clearer picture of the perfor-
mance impact in each platform.

These results show RabbitMQ as the most consis-
tent in all scenarios, and also to have better perfor-
mance than all tested MAS platforms. Considering
these results, the quality of its documentation and the
fact that the second best choice (ZeroMQ) would im-
ply using two C# clients, RabbitMQ was chosen.

Table 4: Overall Comparison (Ins. for Insecure and Sec. for
Secure).
Metric ActiveMQ A. Kafka ZeroMQ RabbitMQ JADE JIAC SPADE
1st Ins. 0 / 0 0 / 1 3 / 10 5 / 0 3 / 0 0 / 0 0 / 0
1st Sec. 0 / 0 0 / 0 3 / 7 8 / 4 0 / 0 0 / 0 0 / 0
Top 3 Ins. 7 / 0 0 / 6 5 / 11 11 / 11 10 / 3 0 / 0 0 / 2
Top 3 Sec. 7 / 0 0 / 5 7 / 11 11 / 11 8 / 2 0 / 0 0 / 4
Latency 603% -7% 235% 39% 632% 18% 19%
Throughput -41% -68% -80% -25% -47% -11% -22%

4 PROPOSED ARCHITECTURE

We propose a multi-agent system in which RabbitMQ
acts as the Message Transport Service (MTS6) of the
FIPA architecture for MAS, being responsible for all
message transfers between agents. In order to se-
cure yellow and white pages operations, RabbitMQ
will also transport messages regarding these opera-
tions, but the operation itself continues to be pro-
vided by the original MAS. This works as a wrapper
around operations’ messages, with confidentiality and
integrity assurance for all operations and also sender
identity verification when registering, modifying and
de-registering a service. In this architecture, all agents
are connected as publishers, subscribers or both, al-
lowing them to send messages to each other. When
starting an agent, the system will create a queue for
the agent, which other agents can use to send mes-
sages to it. A channel is also created that can be used
by the agent to send messages. Two main communi-
cation scenarios are presented, for individual messag-
ing and broadcast.

6More information available at http://www.fipa.org/
specs/fipa00067/SC00067F.html# Toc26669817

Efficient Secure Communication for Distributed Multi-Agent Systems

547



The individual scenario is the most simple case
of communication, messaging from one agent to an-
other. In this scenario, we use a direct exchange in
which a message arriving at the exchange is sent to
the queues whose routing key is the same as the rout-
ing key of the message (Marcos, 2016). Each agent
has a unique routing key (its AID, or Agent Identi-
fier), so any agent just needs to know the recipient’s
AID (which can be learned using the yellow or white
pages) to communicate with it.

The broadcast scenario uses broadcast to send
messages to all agents interested in a topic. This
scenario uses a fanout exchange in which a message
reaching an exchange is sent to all queues linked to it
(Marcos, 2016). An agent only needs to send a mes-
sage to the correct exchange (different exchange per
topic) using a routing pattern for the topic. In our case
we want a message sent to an exchange to be sent to
all subscribers, so we need to have n queues bound to
the exchange, one per subscriber agent.

In order to fulfill our objectives we needed to add
to this base FIPA architecture support for secure com-
munication. RabbitMQ supports the use of security
between sender and broker and between broker and
receiver. However, it is necessary to provide each
agent with a certificate in which the RabbitMQ broker
trusts because it was signed by a certificate authority
(CA) it knows and trusts. The certificate also needs
to contain agent-specific information such as AID. To
allow this, our architecture introduces a new compo-
nent, a CA service, that will sign a certificate for each
valid agent.

Multi-agent systems were designed with a dis-
tributed architecture in mind, allowing to distribute
agents across several machines. Typically, multi-
agent platforms allow to do that with internal agents
by default. However, when using external agents this
is not assured. In order to allow distribution for ex-
ternal agents, while considering the secure certifica-
tion architecture already presented, we also developed
a distribution architecture. We have called Remote
Node to a node/computer where agents can be placed
to run. This solution is similar to the distribution of
the load on a MAS platform using a federation with
multiple MAS platform instances (Wang and Zhang,
2012). This mechanism works with multiple Remote
Nodes to allow high demanding scenarios, but also
works with the simple case of just one Remote Node
with all agents. This Remote Node can even be on
the same machine as the Master node with the sys-
tem working as a package, like a big single compo-
nent. In this distributed architecture, an agent’s cer-
tificate needs to contain the IP address of the machine
where the agent is running (the machine from which

the agent will connect to the RabbitMQ broker). If an
agent migrates to another Remote Node it will have
its certificate regenerated for the new IP address. We
considered that a multi-agent platform with support
for distribution needs to have at least two roles: a
Master node, the central entity of the system respon-
sible for launching the agents; and the agents them-
selves.

To allow all agents to have valid certificates we
had to create an integrated architecture that allows an
agent to ask for certification. It is also necessary that
the CA only issues certificates to trusted agents. The
process adopted to achieve this is depicted in Fig. 1.

Master Node 1 2

5

Remote Node

6

4 Agent 3

Private Key
Public Key

CA Certification
Service

Figure 1: Agent Certification Architecture.

In step 1, the Master node distributes the agents by all
available Remote Nodes in order to achieve load bal-
ance. The communication between the Master node
and each Remote node can be carried out securely
through the use of certificates with RabbitMQ. The
Master node as well as the Remote nodes previously
had digital certificates generated on their behalf and
signed by the system’s CA. In terms of scalability, as
there is only one Master node and the Remote nodes
growth is controlled by it, this is an easily practiced
precondition.

In step 2, each Remote node will start the execu-
tion of the received agents.

In step 3, each agent, at the time of its creation, is
responsible for the generation of a pair of keys, used
later to ensure its identity. This pair consists in a pub-
lic key and a private key.

In step 4, each agent sends its public key to the
system CA to create a valid certificate through a new
component that works as a service. For this com-
munication to happen safely, the created agents will,
only for this request and since an agent is a Remote
node’s child, send its public key to be signed on be-
half of the Remote node. The goal is to ensure that
only agents that have been created by system Remote
nodes (and that way considered trusted) have their
certificates signed and further access to the platform.

In step 5, the system’s CA generates a certificate
for each received request, verifying they came from a
trusted Remote node.

In step 6, each certificate is sent to the agent, who

SDMIS 2021 - Special Session on Super Distributed and Multi-agent Intelligent Systems

548



can use it in future communications with other agents.
These agents of the platform trust these certificates
because they trust in the identity that issued it (the
system’s CA). This sending operation is carried out
securely through RabbitMQ using certificates from
the system CA and the agent’s Remote node (as the
signed certificate is public, and anyone can see it, this
is only a security measure to prevent integrity issues).

After these steps, it is now possible to guaran-
tee that messages are exchanged with confidentiality
and integrity. However, in terms of authenticity we
only ensure that who sends the message is an agent
with a certificate trusted by the RabbitMQ broker. As
RabbitMQ uses a broker, the final message receiver
doesn’t have access to the certificate used by the orig-
inal sender and so it can’t validate its identity. How-
ever, this can be solved using a RabbitMQ property,
user-id7, that can be sent together with the message.
This property can be set by the sender to indicate its
identity but a message is only successfully sent if the
logged in user has in fact logged in with a username
equal to user-id. Thus, the use of this property implies
that every agent registers itself in the broker.

RabbitMQ offers a plugin that helps in user man-
agement, allowing to register a user just using a user-
name and no password. To login, a user has to use
a certificate in which the broker trusts and that has
a Distinguished Name (DN) equal to the username
used. The DN8 is an identifier that uniquely identifies
an entity in a certificate. This identifier is built us-
ing other fields of the certificate like CommonName
(CN), UserId (UID) and others.

The registration imposes two challenges: having
certificates to all the platform agents with DN equal to
the username registered; and secure communication
with the RabbitMQ management plugin for registra-
tion. The certificates architecture presented before al-
ready solves the first, as long as the generated certifi-
cates have the correct DN. A good DN format could
be ”UID=<AgentId>,CN=<AgentIpAddress>” and
so this needs to be the username with which the agent
is registered. The use of the agent’s IP address as the
CN is necessary because RabbitMQ checks if the IP
from which it is receiving the request matches that
value. The UID field of a certificate can be used for
storing the agent id (AID), allowing the receiver to
check it. The registration of an agent in RabbitMQ
can be done securely using the available HTTPS API,
by the Master node before launching the agent.

RabbitMQ allows setting permissions regarding

7More information available at https://
www.rabbitmq.com/validated-user-id.html

8More information available at https://tools.ietf.org/
html/rfc4514

access to queues and exchanges, which are divided
in three: configure (related to declaring operations),
read and write (Pivotal, 2020). When registering a
user we used these permissions to only allow the nec-
essary operations to that agent, improving security by
using authorisation. Only an agent with ID equal to
X should be able to declare a queue in some standard
format, like ”Agent-X-MessageQueue”, to read mes-
sages. However, all agents should be able to write to
it, to communicate with others.

Since the beginning we knew that using security
would have a performance penalty that the previous
performance tests shown. So, we have planned to
make possible the use of different security assurance
levels to balance between security and performance as
needed. The idea is that the Master node can choose
between different types of security on a given execu-
tion. The levels of security available are: authentica-
tion + SSL, just SSL and no security.

5 CASE STUDY

To test the proposed solution we used a simula-
tion platform (SimPlatform) previously developed
by this research group for simulation of coopera-
tive missions using heterogeneous autonomous ve-
hicles (Silva, 2011). This platform uses a FIPA-
compliant multi-agent system, AgentService9, with
no security in message exchange. We made a compar-
ison between the performance of SimPlatform with
AgentService and now with RabbitMQ (both insecure
and secure versions). The tests were divided in three
scenarios as before: one-to-one and many-to-one at
Table 5 and broadcast at Table 6.

Table 5: One-to-One and Many-to-One Before and After
Comparison. Values represent latency (ms) and throughput
(msg/s).

Test Platform 10 pairs 50 pairs 100 pairs

One-To-One
AgentService 2216 / 466 14416 / 422 31922 / 388
RabbitMQ Ins. 2 / 4916 15 / 6342 36 / 4884
RabbitMQ Sec. 5 / 4344 26 / 5421 46 / 3732

Many-To-One
AgentService 7428 / 338 115677 / 117 685647 / 39
RabbitMQ Ins. 2 / 4995 13 / 11611 35 / 8258
RabbitMQ Sec. 4 / 4985 36 / 10365 61 / 7365

The tests show a tremendous improvement both in
latency and throughput, even when using security,
which was not used before. AgentService’s values are
much worse than all other MAS tested before (JADE,
JIAC and SPADE). However, it needs to be consid-
ered that AgentService was used with external agents

9Archived image available at https://web.archive.org/
web/20170703015137/http://www.agentservice.it/

Efficient Secure Communication for Distributed Multi-Agent Systems

549



Table 6: Broadcast Before and After Comparison. Latency
in ms and Throughput in msg/s.

Test Platform 10 Pubs 10 Pubs 10 Pubs 50 Pubs 50 Pubs
10 Subs 50 Subs 100 Subs 10 Subs 50 Subs

Latency
AgentService 24992 128926 308930 428928 1652217
RabbitMQ Ins. 12 30 96 43 274
RabbitMQ Sec. 19 63 289 59 383

Throughput
AgentService 965 944 744 339 436
RabbitMQ Ins. 27762 33607 20055 24512 25849
RabbitMQ Sec. 14885 21404 14550 23558 19879

and the other MAS with normal in-platform agents.
The values presented by RabbitMQ, when compared
to the tests made with RabbitMQ alone, suffered some
performance penalty related to the use of larger mes-
sages and the cost of message serialization. However,
RabbitMQ continues to present the best overall results
when compared to all other middleware and MAS.
With these changes, and the new middleware, Sim-
Platform is now capable of providing real-time simu-
lations with many more agents and in a secure way.

6 CONCLUSIONS

This paper presents the integration of a message-
oriented middleware in a multi-agent system to im-
prove communication efficiency, and also to provide
support for secure message exchange with the in-
troduction of CA certification service on FIPA stan-
dard architecture for MAS. The middleware choice
was done after performance tests on a selected group
of MAS and communication middleware platforms.
JADE, the studied MAS with best results, presented
on average 7 times higher latencies and half the
throughput when compared to RabbitMQ. To the best
of our knowledge, this is the first solution that uses
RabbitMQ to replace a multi-agent system middle-
ware. We believe this solution could be implemented
in other multi-agent systems with very good results,
as was the case of our case study, SimPlatform. We
also describe how a simulation platform with exter-
nal agents, i.e., external applications with MAS func-
tionalities, can have its performance improved using
agents distribution over several machines and how it
can be done securely.

Future improvements could be made to this ar-
chitecture mostly regarding availability and security.
Regarding fault tolerance, this architecture presents
three potential points of failure: RabbitMQ broker
failure; Master node failure; CA certification service
failure. RabbitMQ broker failure can be solved with
the use of a broker cluster, which also improves per-
formance, as described in (Jack Vanlightly, 2018).
Both Master node failure and CA certification ser-
vice failure can be solved with the use of multiple

instances/nodes of each one working with a mecha-
nism called ”Role Exchange” between a set of mas-
ter and slave nodes, as described in (Gankevich et al.,
2016). This mechanism allows one slave node to take
over the master’s role/position when it fails. This way
it becomes possible to have better performance and
availability.

Regarding security, the developed system allows
receiving agents to verify the AID and IP address of
the agent who sent the message. Although safe, this
system does not include the agent’s decision process
on whether or not to trust the sender of a given mes-
sage. One approach to this would be a mechanism ref-
erenced in the literature as distributed trust, in which
agent A adjusts the level of trust in another agent B
based on the veracity of the information it has been
receiving from B (Dorri et al., 2018).

REFERENCES

Apache Software Foundation (2019a). Core. Available
at https://activemq.apache.org/components/artemis/
documentation/latest/core.html (accessed Nov. 2019).

Apache Software Foundation (2019b). How does
ActiveMQ compare to Artemis. Available at
https://activemq.apache.org/how-does-activemq-
compare-to-artemis (accessed Nov. 2019).

Apache Software Foundation (2019c). Introduction. Avail-
able at https://kafka.apache.org/intro (accessed Nov.
2019).

Apache Software Foundation (2019d). Legal Notice.
Available at https://activemq.apache.org/components/
artemis/documentation/1.5.0/notice.html (accessed
Nov. 2019).

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007).
Developing Multi-Agent Systems with JADE (Wiley
Series in Agent Technology). John Wiley & Sons, Inc.,
Hoboken, NJ, USA.

Borselius, N. (2002). Security in multi-agent systems. In
Proceedings of the 2002 International Conference on
Security and Management (SAM’02), June, Las Vegas,
Nevada, 2002, pages 31–36.

Braga, R., Rossetti, R., Reis, L. P., and Oliveira, E. (2008).
Applying multi-agent systems to simulate dynamic
control in flexible manufacturing scenarios. In Pro-
ceedings of 19th European Meeting on Cybernetics
and Systems Research (EMCSR 2008). Mar. 25-28, Vi-
enna, Austria, 2008, pages 488–493.

Briones, A. G., Chamoso, P., and Barriuso, A. (2016). Re-
view of the Main Security Problems with Multi-Agent
Systems used in E-commerce Applications. Advances
in Distributed Computing and Artificial Intelligence
Journal, 5(3):55–61.

Calvaresi, D., Marinoni, M., Sturm, A., Schumacher, M.,
and Buttazzo, G. (2017). The Challenge of Real-Time
Multi-Agent Systems for Enabling IoT and CPS. In
Proceedings of the 2017 International Conference on

SDMIS 2021 - Special Session on Super Distributed and Multi-agent Intelligent Systems

550



Web Intelligence (WI’17), Aug. 23-26, Leipzig, Ger-
many, 2017, pages 356—-364.

Carrascosa, C., Terrasa, A., Palanca, J., and Julián, V.
(2019). SimFleet: A New Transport Fleet Simula-
tor Based on MAS. In De La Prieta, F., González-
Briones, A., Pawleski, P., Calvaresi, D., Del Val,
E., Lopes, F., Julian, V., Osaba, E., and Sánchez-
Iborra, R., editors, Proceedings of International Work-
shops of Practical Applications of Survivable Agents
and Multi-Agent Systems (PAAMS 2019), June 26-28,
Ávila, Spain, 2019, pages 257–264.

Celar, S., Mudnic, E., and Seremet, Z. (2016). State-of-
the-art of messaging for distributed computing sys-
tems. In Proceedings of 27th International Sympo-
sium on Intelligent Manufacturing and Automation
(DAAAM’16), 26-29 Oct., Mostar, Bosnia and Herze-
govina, 2016, volume 27, pages 298–307.

CloudAMQP (2015). Part 4: RabbitMQ Exchanges,
routing keys and bindings. Available at
https://www.cloudamqp.com/blog/2015-09-03-
part4-rabbitmq-for-beginners-exchanges-routing-
keys-bindings.html (accessed Nov. 2019).

Dorri, A., Kanhere, S. S., and Jurdak, R. (2018). Multi-
Agent Systems: A Survey. IEEE Access, 6:28573–
28593. DOI: 10.1109/ACCESS.2018.2831228.

Gankevich, I., Tipikin, Y., Korkhov, V., Gaiduchok, V.,
Degtyarev, A., and Bogdanov, A. (2016). Factory:
Master Node High-Availability for Big Data Appli-
cations and Beyond. In Gervasi, O., Murgante, B.,
Misra, S., Rocha, A. M. A., Torre, C. M., Taniar,
D., Apduhan, B. O., Stankova, E., and Wang, S., edi-
tors, Proceedings of 16th International Conference on
Computational Science and Its Applications (ICCSA
2016), July 4–7, Beijing, China, 2016, pages 379–389.

Gelvez Garcı́a, N. Y., Ballén Duarte, A. D., and Espi-
tia Cuchango, H. E. (2019). Multi-Agent System Used
for Recommendation of Historical and Cultural Mem-
ories. Tecciencia, 14:43–52.

Gregori, M. E., Cámara, J. P., and Bada, G. A. (2006). A
Jabber-Based Multi-Agent System Platform. In Pro-
ceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems (AA-
MAS ’06), May 8-12, Hakodate, Japan, 2006, page
1282–1284. DOI: 10.1145/1160633.1160866.

Haque, M. E., Zobaed, S., Islam, M. U., and Areef,
F. M. (2018). Performance Analysis of Cryptographic
Algorithms for Selecting Better Utilization on Re-
source Constraint Devices. In Proceedings of 2018
21st International Conference of Computer and Infor-
mation Technology (ICCIT’18), 21-23 Dec., Dhaka,
Bangladesh, 2018.

Hedin, Y. and Moradian, E. (2015). Security in Multi-Agent
Systems. In Proceedings of 19th Annual Conference
on Knowledge-Based and Intelligent Information &
Engineering Systems (KES 2015), Sept. 7-9, Singa-
pore, 2015, volume 60, pages 1604–1612.

Henmi, A. (2006). Firewall Policies and VPN Configura-
tions, chapter Chapter 5 - Defining a VPN, pages 211–
265. Syngress, Burlington.

Hirsch, B., Konnerth, T., Heler, A., and Albayrak, S.
(2006). A Serviceware Framework for Designing

Ambient Services. In Proceedings of the First In-
ternational Conference on Ambient Intelligence De-
velopments (AmID’06), Sept. 20-22, Sophia Antipolis,
France, 2006, pages 124–136. Springer, Paris.

Jack Vanlightly (2018). RabbitMQ vs Kafka Part 5 - Fault
Tolerance and High Availability with RabbitMQ Clus-
tering. Available at https://jack-vanlightly.com/blog/
2018/8/31/rabbitmq-vs-kafka-part-5-fault-tolerance-
and-high-availability-with-rabbitmq (accessed May
2020).

Khegai, M., Zubok, D., and Maiatin, A. (2015). Ontology-
Based Approach to Scheduling of Jobs Processed
by Applications Running in Virtual Environments.
In Proceedings of 6th International Conference on
Knowledge Engineering and Semantic Web (KESW
2015), Sept. 30 - Oct. 2, Moscow, Russia, 2015, pages
273–282.

Konnerth, T., Chinnow, J., Kaiser, S., Grunewald, D.,
Bsufka, K., and Albayrak, S. (2012). Integration of
Simulations and MAS for Smart Grid Management
Systems. In Proceedings of the 3rd International
Workshop on Agent Technologies for Energy Systems
(ATES 2012), June 5, Valencia, Spain, 2012, pages
51–58.

Kravari, K. and Bassiliades, N. (2015). A Survey of Agent
Platforms. Journal of Artificial Societies and Social
Simulation, 18(1):18. DOI: 10.18564/jasss.2661.

Küster, T., Lützenberger, M., and Freund, D. (2013).
Distributed Evolutionary Optimisation for Electricity
Price Responsive Manufacturing using Multi-Agent
System Technology. International Journal On Ad-
vances in Intelligent Systems, 6(1&2):27–40.

Lauener, J. and Sliwinski, W. (2017). How to design
& implement a modern communication middleware
based on ZeroMQ. In Proceedings of International
Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’17), Oct. 8-13,
Barcelona, Spain, 2017.

Leitão, P., Inden, U., and Ruckemann, C.-P. (2013). Par-
allelising Multi-agent Systems for High Performance
Computing. In Proceedings of Third International
Conference on Advanced Communications and Com-
putation (INFOCOMP’13), Nov. 17-22, Lisbon, Por-
tugal, 2013, pages 1–6.

Leon, F., Paprzycki, M., and Ganzha, M. (2015). A Re-
view of Agent Platforms. Technical report, CT COST
Action IC1404, Multi-Paradigm Modelling for Cyber-
Physical Systems (MPM4CPS).

Li, Y., Frasure, I., Ikusan, A. A., Zhang, J., and Dai, R.
(2018). Vulnerability Assessment for Unmanned Sys-
tems Autonomy Services Architecture. In Au, M. H.,
Yiu, S. M., Li, J., Luo, X., Wang, C., Castiglione, A.,
and Kluczniak, K., editors, Proceedings of 12th In-
ternational Conference on Network and System Secu-
rity (NSS 2018), Aug. 27-29, Hong Kong, China, 2018,
pages 266–276.

Lopes Cardoso, H., Urbano, J., Rocha, A. P., Castro, A.
J. M., and Oliveira, E. (2016). ANTE: A Framework
Integrating Negotiation, Norms and Trust, pages 27–
45.

Lützenberger, M., Konnerth, T., and Küster, T. (2015). In-
dustrial Agents, chapter 21 - Programming of Multia-

Efficient Secure Communication for Distributed Multi-Agent Systems

551



gent Applications with JIAC, pages 381–398. Morgan
Kaufmann, Boston.

Marcos, P. B. (2016). Resources Management Monitoriza-
tion Platform on a Message Oriented Middleware Sys-
tem. Master’s thesis, University of Porto.

Mollin, R. A. (2002). RSA and Public-Key Cryptogra-
phy. Discrete Mathematics and Its Applications. CRC
Press, Inc., USA.

Nascimento, N. M., Viana, C. J., von Staa, A., and Lucena,
C. (2017). A Publish-Subscribe based Architecture for
Testing Multiagent Systems. In Proceeding of 29th In-
ternational Conference on Software Engineering and
Knowledge Engineering (SEKE’17), July 5-7, Pitts-
burgh, PA, USA, 2017, pages 521–526.

Oprea, M. (2004). Applications of Multi-Agent Systems.
In Reis, R., editor, Proceedings of International Fed-
eration for Information Processing 18th World Com-
puter Congress (WCC2004), August 22-27, Toulouse,
France, 2004, pages 239–270.

Paletta, M. (2012). Self-Organizing Multi-Agent Systems
by means of Scout Movement. Recent Patents on
Computer Science, 5(3):197–210.

Peres, R. S., Rocha, A. D., Coelho, A., and Barata Oliveira,
J. (2016). A Highly Flexible, Distributed Data Anal-
ysis Framework for Industry 4.0 Manufacturing Sys-
tems. In Proceedings of 6th International Workshop
on Service Orientation in Holonic and Multi-Agent
Manufacturing (SOHOMA 2016), Oct. 6-7, Lisbon,
Portugal, 2016, volume 694, pages 373–381.

Pires, F., Barbosa, J., and Leitão, P. (2018). Quo Vadis
Industry 4.0: An Overview Based on Scientific Pub-
lications Analytics. In Proceedings of 2018 IEEE
27th International Symposium on Industrial Electron-
ics (ISIE 2018), June 13-15, Cairns, QLD, Australia,
2018, pages 663–668.

Pivotal (2019). Mozilla Public License. Available at https:
//www.rabbitmq.com/mpl.html (accessed Jan. 2020).

Pivotal (2020). Authorisation: How Permissions Work.
Available at https://www.rabbitmq.com/access-
control.html#authorisation (accessed May 2020).

Poggi, A., Rimassa, G., and Tomaiuolo, M. (2001). Multi-
User and Security Support for Multi-Agent Systems.
In Proceedings of 2nd Workshop From Objects to
Agents (WOA 2001), Sep. 4-5, Modena, Italy, 2001,
pages 13–18.

Preisler, T., Dethlefs, T., and Renz, W. (2016). DeCoF:
A Decentralized Coordination Framework for Vari-
ous Multi-Agent Systems. In Klusch, M., Unland,
R., Shehory, O., Pokahr, A., and Ahrndt, S., editors,
Proceedings of 4th German Conference on Multiagent
System Technologies (MATES’16), Sept. 27–30, Kla-
genfurt, Austria, 2016, volume 9872, pages 73–88.

Shashaj, A., Mastrorilli, F., Morrelli, M., Pansini, G., Ian-
nucci, E., and Polito, M. (2019). A Distributed Multi-
Agent System (MAS) Application For continuous and
Integrated Big Data Processing. In Chatzigiannakis,
I., De Ruyter, B., and Mavrommati, I., editors, Pro-
ceedings of 15th European Conference on Ambient In-
telligence (AmI 2019), Nov. 13–15, Rome, Italy, 2019,
pages 350–356.

Silva, D. C. (2011). Cooperative Multi-Robot Missions:
Development of a Platform and a Specification Lan-

guage. PhD thesis, University of Porto, Porto, Portu-
gal.

Soklabi, A., Bahaj, M., and Cherti, I. (2013). JIAC Systems
and JADE Agents Communication. International
Journal of Engineering and Technology, 5(2):1976–
1984.

Subburaj, V. H. and Urban, J. E. (2018). Specifying Secu-
rity Requirements in Multi-agent Systems Using the
Descartes-Agent Specification Language and AUML.
In Proceedings of 15th Conference on Advanced In-
formation Technologies for Management (AITM 2018)
and 13th Conference on Information Systems Man-
agement (ISM 2018), Sept. 9-12, Poznan, Poland,
2018, pages 93–111.

Sullivan, N. (2013). A (Relatively Easy To Understand)
Primer on Elliptic Curve Cryptography. Available
at https://blog.cloudflare.com/a-relatively-easy-to-
understand-primer-on-elliptic-curve-cryptography
(accessed Jan. 2020).

Tangod, K. and Kulkarni, G. (2018). Secure Communica-
tion through MultiAgent System-Based Diabetes Di-
agnosing and Classification. Journal of Intelligent
Systems, 29(1):703–718.

Telecom IT (2017). JADE. Available at https://
jade.tilab.com/ (accessed Nov. 2019).

Uk, B., Konam, D., Passot, C., Erdelj, M., and Natalizio,
E. (2018). Implementing a System Architecture for
Data and Multimedia Transmission in a Multi-UAV
System. In Chowdhury, K. R., Di Felice, M., Matta,
I., and Sheng, B., editors, Proceedings of 16th Inter-
national Conference on Wired/Wireless Internet Com-
munication (WWIC 2018), June 18–20, Boston, MA,
USA, 2018, pages 246–257.

Wang, G., Koshy, J., Subramanian, S., Paramasivam, K.,
Zadeh, M., Narkhede, N., Rao, J., Kreps, J., and
Stein, J. (2015). Building a Replicated Logging
System with Apache Kafka. Proc. VLDB Endow.,
8(12):1654–1655. DOI: 10.14778/2824032.2824063.

Wang, X. and Zhang, L. (2012). Multi-Agent Systems Sim-
ulation Base on HLA Framework. In Lee, G., edi-
tor, Proceedings of International Conference on Au-
tomation and Robotics (ICAR 2011), Dec. 1-2, Dubai,
United Arab Emirates, 2011, pages 339–346.

Xie, J. and Liu, C.-C. (2017). Multi-agent systems and
their applications. Journal of International Council
on Electrical Engineering, 7(1):188–197.

Xu, X., Xiong, J., and Cheng, C. (2010). The model and the
security mechanism of the information retrieval sys-
tem based on mobile multi-agent. In Proceedings of
2010 IEEE 12th International Conference on Commu-
nication Technology (ICCT’10), Nov. 11-14, Nanjing,
China, 2010, pages 25–28.

Yongguo, J., Qiang, L., Changshuai, Q., Jian, S., and Qian-
qian, L. (2019). Message-oriented Middleware: A Re-
view. In Proceedings of 5th International Conference
on Big Data Computing and Communications (BIG-
COM’19), 9-11 Aug., QingDao, China, 2019, pages
88–97. DOI: 10.1109/BIGCOM.2019.00023.

SDMIS 2021 - Special Session on Super Distributed and Multi-agent Intelligent Systems

552


