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Abstract: The communication between persons includes several channels to exchange information between individuals.
The non-verbal communication contains valuable information about the context of the conversation and it is
a key element to understand the entire interaction. The facial expressions are a representative example of this
kind of non-verbal communication and a valuable element to improve human-machine interaction interfaces.
Using images captured by a monocular camera, automatic facial analysis systems can extract facial expressions
to improve human-machine interactions. However, there are several technical factors to consider, including
possible computational limitations (e.g. autonomous robots), or data throughput (e.g. centralized computation
server). Considering the possible limitations, this work presents an efficient method to detect a set of 68
facial feature points and a set of key facial gestures at the same time. The output of this method includes
valuable information to understand the context of communication and improve the response of automatic
human-machine interaction systems.

1 INTRODUCTION

Human communication includes several information
channels, including verbal and non-verbal messages.
A complete analysis of human communication needs
to evaluate the person’s gestures and expressions. As
a representative example, facial gestures are powerful
communication elements used by any single person
instinctively. Using low-cost monocular cameras, an
automatic detection system can extract those expres-
sions, being a key element for most human-machine
interaction interfaces.

The final implementation of a facial gesture anal-
ysis tool needs to consider several technical factors
for the final deployment. Considering computation-
ally constrained edge devices like smartphones and
onboard systems, computational efficiency is a key el-
ement that determines the final performance. Apart
from the optimization techniques used for the final
implementation, the adopted analysis method is one
of the main factors influencing efficiency.

Moreover, the facial analysis method may need to
identify different kinds of facial attributes depending
on the final application scope. The list of possible at-

tributes includes such diverse elements as the facial
feature points, the orientation of the head, the eye-
gaze and the local gestures, among others. There are
synergies between some attributes that could be har-
nessed to improve the performance of the final esti-
mation. For instance, facial feature points and the
estimation of the facial gesture are strictly related at-
tributes, and it is possible to combine them taking ad-
vantage of this relationship to improve the accuracy
of both estimations.

This article proposes an efficient method based
on multi-task, multi-modal and multi-level approach
(named M3) to improve the landmark and gesture es-
timations, as well as other attributes like eye gaze and
head orientation. It divides the analysis into local
facial regions, where the estimated attributes have a
strong correlation (e.g. mouth landmarks and mouth
gestures). This division improves local estimations in
expressiveness and accuracy, maintaining a high level
of computational efficiency.

We compared computational performance and ac-
curacy of our method with similar approaches using
the same hardware, as reference for their use in plat-
form with computational limitations.
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2 RELATED WORK

The analysis of these gestures and emotions using
monocular images can estimate the state of inatten-
tion, level of liking or other interesting indicators for
multiple applications. However, the great diversity of
facial shapes and possible deformations make it diffi-
cult to define those facial gestures.

In the last decades, various notations have been
proposed to define facial gestures. Summarising, we
can point to three main notations: a) gestures based on
micro-expressions (commonly called Action Units or
AUs), b) gestures based on cardinal expressions (e.g.,
happiness, sadness, surprise, fear, anger and disgust),
and c) gestures based on a combination of local ex-
pressions (e.g., smile, kiss, blink and brow rise).

The methods based on micro-expressions (Li
et al., 2017; Shao et al., 2018; Rathee and Gan-
otra, 2018; Sanchez-Lozano et al., 2018) combine
elemental facial movements to generate more com-
plex gestures (e.g., movements of several muscles of
the mouth to define the smile gesture). The meth-
ods based on emotion or cardinal expressions (Aneja
et al., 2017; Pons and Masip, 2018; Jain et al., 2018)
use a set of six complex emotional gestures - happi-
ness, surprise, sadness, fear, disgust and anger- pro-
posed by (Ekman et al., 2002) to define a wide range
of facial gestures. The methods based on face region
expressions can be seen as a middle ground between
the other two. Such methods estimate local zone-
specific gestures and combine them to generate the
global face estimation as a complete expression (Cao
et al., 2016; Zhang et al., 2014; Ranjan et al., 2018).

The facial expression estimation methods use fa-
cial feature point estimations, facial texture analysis
or a combination of both elements.

The method proposed in (Baltrušaitis et al., 2015)
analyses the face texture using a set of previously de-
tected facial feature points and a Histograms of Ori-
ented Gradients (HoG) analysis to extract the gesture
features. With both type of features as input, the au-
thors propose training a specific AU regressor to es-
timate the gestures. Experiments show real-time per-
formance on a desktop PC, but there are no measure-
ments on computationally constrained devices.

In addition, the method in (Rathee and Ganotra,
2018) proposes first to detect the facial feature land-
marks of the users’ face and then estimate the facial
expression using the face texture with the landmark
location as reference. In this second stage, a set of Ga-
bor filters analyse the area around the feature points.
This method uses information that feature point de-
tection is not using (like skin wrinkles, for example).

Within the scope of automatic detection of facial
feature points, there are many and diverse methods to
detect characteristic points in monocular images (Jin
and Tan, 2017; Wu and Ji, 2018).

A widely adopted method was presented in
(Saragih et al., 2009) which was later adopted by
works like (Baltrušaitis et al., 2018). The method
proposed iteratively improving an initial rough es-
timation of the face, analysing the region around
each landmark to improve the previous location with
each repetition. On each iteration, a two-dimensional
structural model constrains the new locations consid-
ering all the landmark set to avoid unnatural or im-
possible point distributions.

Later, studies like (Ren et al., 2014; Kazemi and
Sullivan, 2014) suggest using specialised regressors
to detect the face landmarks, dramatically improving
the performance of the process. They both assume
that the regression method includes the global facial
shape constraints for the entire facial structure, avoid-
ing the use of a shape verification process. However,
in both cases, accuracy suffers in the presence of out-
of-plane head rotations.

As a real-time Deep Learning (DL) method, the
study (Zhang et al., 2014) outlines the extraction
of facial features and a set of facial gestures using
the same computation adopting a multi-task strategy.
Based on a direct relationship between the landmark
locations and the face gesture, the proposed method
uses the facial gestures to improve the landmark es-
timation, and the landmarks to estimate the face ges-
tures. This method achieves real-time performance on
a desktop PC with a limited set of facial gestures.

3 MULTI-LEVEL APPROACH

The proposed approach divides the task in two lev-
els of analysis (see Figure 1): a) holistic face attribute
detection and b) facial zone-specific attribute estima-
tion.

The first level extracts general facial attributes. It
takes the entire face in to consideration in order to
estimate an initial set of landmarks and the head pose
(i.e., the face yaw orientation).

The second level uses the output of the first level
as input - it extracts the attributes of each facial zone
(i.e., landmarks, gestures or gaze). First, it gener-
ates a set of normalised facial zone patches, one for
each face region (i.e., mouth, eyebrows and each eye).
Then, it estimates the zone-specific landmarks and
gestures using the zone patches and the orientation of
the head.
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Figure 1: Flowchart of the proposed multi-level analysis pipeline.

The final output merges all the landmarks from
both levels into a single set of 68 landmarks. Figure
2 shows all the landmarks detected on each level and
the final set of landmarks for a face image.

Figure 2: A combined representation of all the detected fea-
tures. Each colour represents the landmarks for each face
zone.

The zone patch generation process uses two ref-
erence landmarks from the landmark set extracted in
the first step. Then, it applies a warping procedure
to align the reference landmarks with two target lo-
cations in a previously defined zone patch template.
The warping procedure normalises the orientation and
size of the zone image region. Note that this process
could add some unwanted distortion in patch regions
occluded by a large out of plane head rotation.

The reference feature points used to generate the
patches are those that maintain their relative location
during gestures. Considering the high deformability
of the mouth region, we chose feature points out of
the gesture influence, like the bottom of the nose and
the chin. We selected those landmarks because the
influence of the evaluated mouth gestures in those lo-
cations is small enough to assume that they are stable
or relatively static. Likewise, the reference points for
each eye region are the eye corner landmarks, and the
reference points for the eyebrow region are the left
eye left corner and the right eye right corner land-
marks, including both eyebrows in the same image
patch. Figure 3 shows some examples of normalised
face patches, including the location of the reference
landmarks.

Figure 3: Examples of (from left to right) an eyebrow patch,
a right eye patch and a mouth patch using the image shown
in Figure 2. The red cross represents the target location
of the reference landmarks for each patch. Note that the
reference point of the mouth patch is out of the patch region.

To enhance the zone patches for the inference step,
we apply a bilateral filtering process to reduce the
possible noise in the warped image. At the same
time, it preserves the information of edges and gen-
eral shape. In the case of the eye regions, the warp-
ing process smooths the edge information because the
size of this region tends to be small compared with
the entire face region. An image intensity histogram
equalisation compensates the sharpness reduction in-
creasing the contrast and normalising the brightness
for the eye patches.

Finally, each zone-specific neural network ex-
tracts the landmarks and attributes of each zone patch,
also considering the estimated head orientation. The
inclusion of the head orientation in the estimation pro-
cess helps to ignore or reduce distortions caused by
large head rotations during the warping procedure,
making the estimation more reliable.

4 FACIAL ATTRIBUTE
DEFINITION

The final estimation includes different facial at-
tributes: a) the orientation of the head, b) the gesture
of the mouth, c) the gesture of the eyebrows and d)
the eye gaze of each eye.

The head pose (i.e., face yaw orientation) is de-
fined as a classification between 5 possible classes -
60 (for angles <-60), -30 (for angles from -60 to -30),
0 (for angles from -30 to 30), 30 (for angles from 30
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to 60) and 60 (for angles >60).
The included zone-specific gestures are: smile,

mouth frown and kiss gestures for the mouth region
and inner eyebrow raise and inner eyebrow frown for
the eyebrow region. The gestures in each region are
mutually exclusive, so only one can be active in a
frame. Other gestures (e.g., mouth open) can be di-
rectly extracted from the landmark positions, measur-
ing the distance between inner mouth landmarks, for
example.

Gesture estimation is a classification process
which estimates the probability distribution of the
group of gestures for each face element. Moreover,
we include an additional neutral class for each re-
gion to represent the absence of all gestures. The final
probability estimation of the gestures in a face region
is normalised using a softmax function.

Eye gaze estimation defines a gaze vector for each
eye as a normalised vector of three values.

5 NETWORK STRUCTURE

Each network relies on a Multi-Task Learning (MTL)
approach for the estimation process. It defines a CNN
model to generate a list of outputs of different types
and meanings using the same computation, similar to
the method proposed by (Zhang et al., 2014). Con-
ventional MTL approaches try to optimise all tasks
at once using a combined loss function. In our case,
the loss function combines the loss of each task, as-
signing different priorities to each one. This priority
designation defines the landmark detection as the pri-
mary task, setting the gesture estimation as an auxil-
iary task. Even if the landmarks have higher priority
than the gestures, the gesture information improves
the accuracy of the landmark detection due to the di-
rect correlation between the position of the landmarks
and the definition of each gesture.

The structure of each network has two parts, a)
the trunk which performs the general feature extrac-
tion, and b) the leaves in charge of the final task es-
timations. The trunk of the network estimates all the
features needed by the leaves to generate their estima-
tions. The trunk shares its output with all the leaves,
which use this information to estimate the landmarks
and gestures. During training, the process updates the
weights of the trunk and leaves combining all the out-
puts of the network. Hence, all the estimation tasks
influence the training of the feature detection, enhanc-
ing their results through the synergies between them.
The first row of Figure 4 shows a schematic exam-
ple of a multi-task network, divided in the trunk (in
green) and leaves (in blue).

The trunk is a concatenation of four convolutional
layers, including a pooling step after each convolu-
tion, and a final fully connected layer. Each convolu-
tion layer includes a Rectified Linear Unit (ReLU) ac-
tivation function. This network configuration is sim-
ilar for all the cases, with small variation in layer
sizes. Figure 4 shows the detailed configuration of
each layer.

The input of the network in the first layer is only
the cropped image of the face. However, the networks
in the second level have two inputs: the normalised
face zone patch and the orientation of the head esti-
mated in layer one. To include the orientation of the
head in the estimation process, the networks in the
second level include an extra fully connected layer.
This layer includes the head orientation values as con-
catenated elements (see Figure 4). Then, the final
fully connected layer integrates all the elements into
a single output vector.

Figure 4 includes the details and configuration of
the proposed networks, and how the output of level 1
interacts with the estimation process of level 2.

6 LEARNING PROCESS

Due to the multilayer structure of the method, the
learning process has two phases. In the first phase,
we train the neural network defined for level 1. Then,
in a second phase, we use the model trained for level
1 to generate the input data to train the models in level
2.

In all the cases, we define the landmarks yi as a list
of x and y coordinate values in the image Ii, ordered
as a unique list yi =

{
x0

i ,y
0
i ,x

1
i ,y

1
i , ...,x

n
i ,y

n
i
}

. The er-
ror function for the landmarks is set as a least square
problem,

L(y,I,W) =
1
2

N

∑
i=1
‖yi− f (Ii;W)‖2 (1)

where f is the model function, N is the number of
images in the batch and W is a list of weights that
encapsulates the trained parameters of the neural net-
work.

As mentioned previously, the model in level 1
classifies the head pose values (i.e., head yaw orienta-
tion) in five classes. Each head orientation class takes
a probability value in the range [0,1]. For the ground
truth, a class has the value 1 if the head pose matches
the class or 0 if it does not. As an orientation can
only belong to one of the classes, they are mutually
exclusive.

To compute the head’s pose probability, the
method adopts a softmax function P, which mod-
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Figure 4: The neural network configuration for the attribute estimation process. The first row shows the network configuration
for the first estimation level, including the input and the output elements. The rows below show the network configuration for
each estimation model in the second level. A single eye model estimates the eye attributes for both eyes, using symmetry to
estimate the attributes of the second eye. For each model, ’C’ represents the kernel size of the convolutional layer and the ’P’
represents the configuration of the pooling layer.

els the class posterior probability. P combines all
orientation classes in a list of probabilities h =
{h0,h1, ...,h4}. Equation (2) shows the cross-entropy
loss function used for the head orientation error dur-
ing the training process for a list of A classes. In this
equation, hi,a represents the ground truth value of the
orientation class a for the image i.

H(h,I,W) =−
N

∑
i=1

A

∑
a=1

hi,a log(P(hi,a|Ii;W)) (2)

For the final error function, we combine equations
(1) and (2) in a single expression to produce a com-
bined output. The final loss function (3) includes a
regularisation term to penalise high layer weight val-
ues, similar to the function proposed in (Zhang et al.,
2014). To maintain the landmark estimation as the
primary task, the final loss function includes a prior-
ity factor λ to manage the influence of the orientation
class estimation error in the learning process. We de-
fine the λ value experimentally to correctly balance
the landmark and gesture estimations.

argmin
W

{
L(y,I,W)+λH(h,I,W)+‖W‖2

2

}
(3)

For models in level 2, the learning process fol-
lows a similar approach. However, the data used as
ground truth for the training of the models in level

2 needs to be generated using the model trained for
level 1. Thus, we processed the training dataset using
the model trained for level 1, storing the output data
for the posterior level 2 training phase.

For the mouth and eyebrow regions, each gesture
g gets a value in the range [0,1], 1 being if the gesture
is present and 0 if the gesture is not present. For the
training process, it uses a loss function similar to (3)
to determine the gesture probability model.

The softmax function P models the class posterior
probability. To simplify the output and assuming that
the gestures in the training dataset are mutually exclu-
sive, it combines all gestures for a facial zone in a list
of gesture probabilities g= {g0,g1, ...,gn}. For exam-
ple, for the gestures in the mouth region (smile, mouth
frown and kiss) the gesture probability distribution
would be g =

{
gsmile,g f rown,gkiss,gneutral

}
. The last

value (gneutral) defines the absence of any gesture,
having the value of 1 when none of the defined ges-
tures is present. Equation (4) shows the cross-entropy
loss function used for the gesture error during the
training process for a list of B gestures (including the
neutral gesture). In this equation, gi,b represents the
ground-truth value of the gesture b for the image i.

G(g,I,W) =−
N

∑
i=1

B

∑
b=1

gi,b log(P(gi,b|Ii;W)) (4)
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For the landmarks in the mouth and eyebrow re-
gions, the learning process uses the same loss func-
tion presented in Equation (1). Both loss functions
(L and G) are combined in a single expression (equa-
tion (5)) to produce a combined output. The equation
also includes the regularisation term and the balance
modifier λ.

argmin
W

{
L(y,I,W)+λG(g,I,W)+‖W‖2

2

}
(5)

For the attributes in the eye region, the learning
process replaces the classification loss function with a
regression function similar to that presented in Equa-
tion (1). In Equation (6), g is the model function, the
vector vi represents the ground truth values for the eye
gaze vector on image i, and v lists the eye gaze vector
values for all the images.

V (v,I,W) =
1
2

N

∑
i=1
‖vi−g(Ii;W)‖2 (6)

Similar to previous examples, the final loss func-
tion for the eye region (Equation (7)) combines the
error of the landmarks and the eye gaze estimation,
with the additional λ factor to manage the influence
of the secondary task.

argmin
W

{
L(y,I,W)+λV (v,I,W)+‖W‖2

2

}
(7)

7 EXPERIMENTAL RESULTS

To evaluate the general performance of M3, this sec-
tion compares the computation time of its implemen-
tation with two real-time methods proposed in the
literature: (Kazemi and Sullivan, 2014) and (Bal-
trušaitis et al., 2018). Although the method by (Bal-
trušaitis et al., 2018) is also capable of estimating cer-
tain gestures, the experimental comparison focuses
only on the result of the main task, which is the ex-
traction of facial feature points.

The authors in (Kazemi and Sullivan, 2014) pro-
pose a fast landmark detection method, able to esti-
mate 68 face landmarks in a single millisecond. It
relies on linear regressors, using binary pixel compar-
isons as a feature.

The work presented in (Baltrušaitis et al., 2018)
combines the AU detector presented in (Baltrušaitis
et al., 2015) with efficient methods to extract facial
feature landmarks (Zadeh et al., 2017), head orien-
tation estimation, and facial texture generation in a
single analysis tool.

7.1 Model Training

For the training phase, we used a subset of the im-
ages from the Multi-Task Facial Landmark (MTFL)
dataset presented in (Zhang et al., 2014). However,
we manually re-annotated the entire dataset with 68
facial landmarks, the gestures of the mouth (smile,
mouth frown and kiss) and the gestures of the eye-
brows (inner eyebrow raise and inner eyebrow frown).

First, we generated a mirrored copy of each image,
doubling the number of samples. Then, we used an
automatic landmark detection based on (Kazemi and
Sullivan, 2014) to get a first estimation of the facial
landmarks. Finally, we manually checked the results
to discard the images with significant landmark esti-
mation errors. The final dataset had 18720 images in
total.

To increase the number of samples in the train-
ing dataset and increase the robustness of the estima-
tion in different image capture conditions, we aug-
mented the number of samples using different image
perturbations (e.g., random noise, affine transforma-
tions and occlusions).

In addition, we balanced the dataset for the classi-
fication. Thus, the final training dataset for each clas-
sification process (i.e., the models for level 1, eye-
brows and mouth) had the same number of samples
for each of the classes to classify. For example, for
the model in level 1, we generated a different number
of augmentation images so that the number of final
samples was the same for each orientation. We fol-
lowed the same approach to create the training data
for mouth and eyebrow models in level 2.

For the eye regions, we used the samples created
using a synthetic eye image generator based on the
approach proposed in (Wood et al., 2016). It creates a
set of photo-realistic 3D eye renders, simulating eyes
from different persons by variations in shape, skin
colour and skin texture, among others. It also varies
the eye-gaze and the orientation of the head with re-
spect to the camera randomly.

7.2 Performance Comparison

For the comparison, we used a desktop PC to measure
the processing time of each method. The PC included
an Intel i5-9400F (@ 2.90GHz) as the main CPU, and
16 gigabytes of RAM, using an Ubuntu 18.04 as the
operating system. No hardware acceleration was used
in any of the cases.

The database used to make the comparison is the
one presented by (Sagonas et al., 2016). This database
includes 600 images of different resolutions annotated
manually with 68 facial feature points that include
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Figure 5: Each image shows the estimated gesture probabilities as bars (left), the tracked facial feature points (dots) and the
estimated eye gaze vector (purple arrows). The gesture definitions are, from top to bottom, head pose left profile (HPLP), head
pose left-front (HPLF), head pose front (HPF), head pose right-front (HPRF), head pose right profile (HPRP), mouth gesture
smile (MGS), mouth gesture frown (MGF), mouth gesture kiss (MGK), mouth gesture neutral (MGN), eyebrow gesture frown
(EGF), eyebrow gesture raise (EGR) and eyebrow gesture neutral (EGN).

points for the eyes, eyebrows, nose, mouth and the
contour of the face. Since the three compared meth-
ods needed a facial region to initialise the estimation
process, the bounding boxes of the landmarks defined
in the database were used as input for each evaluated
method.

The point detection error is the mean square error
(MSE) using the 68 points on the face and averaging
across all images in the dataset. We normalised the es-
timation of each image using the interocular distance.
This normalisation avoided biases caused by different
image sizes in the dataset.

The measurement of computing time in each case
included only the time necessary for the calculation
of the feature points, excluding any image handling
process (like loading or resizing processes) or the ini-
tialisation of the models.

7.3 Qualitative Results

During tracking, the method extracted the landmark
positions and gesture probabilities from the users
face. Figure 5 shows some examples of attributes ex-
tracted from a monocular video sequence.

Moreover, in the experiments using embedded de-
vices, the implementation reached real-time perfor-
mance (> 25 fps) using the embedded camera as im-
age source. The hardware used for the experiments
was the Iphone SE, which has an A9 (ARMv8-A dual-
core @ 1.85 GHz) central processor.

7.4 Quantitative Results

Taking all this into account, Table 1 presents the data
extracted from the comparison. The table includes the
landmark estimation error and the average time for
their calculation.

The method proposed in (Baltrušaitis et al., 2018)
is more accurate than the other methods, but the com-
putation time is also significantly higher. In the case

Table 1: Results of the landmark estimation time measure-
ment.

Method MSE Seconds
(Kazemi and Sullivan, 2014) 0.0872 0.0018

(Baltrušaitis et al., 2018) 0.0184 0.0389
M3 (Ours) 0.0227 0.0074

of (Kazemi and Sullivan, 2014), it estimates the fea-
ture points very efficiently, but at the cost of signifi-
cantly higher error.

To see the relationship between the MSE and the
computation time, Figure 6 shows the values in a vi-
sual representation. The image shows how the pro-
posed method improves the CPU time and error com-
pared to the other two.

Figure 6: Visual representation of the MSE and time values
for (Kazemi and Sullivan, 2014), (Baltrušaitis et al., 2018)
and the proposed method (M3).

M3 presents a better balance between computa-
tional load and precision, extracting data from the
face gesture in the process.
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8 CONCLUSIONS

This study presents a computationally efficient
method to estimate the facial feature points as well
as several additional attributes (i.e., head orientation,
facial gestures and eye gaze orientation) in a single
computation.

The experimental section shows that even if meth-
ods like (Baltrušaitis et al., 2018) have more accu-
rate landmark estimation and real-time performance,
our method uses significantly fewer resources (∼81%
faster) with a less significant accuracy loss (∼23%).

Considering hardware with computational con-
straints, and the results of the experiments as a ref-
erence, the proposed method maintains real-time per-
formance even on smartphones with ARM architec-
ture like the IphoneSE. Thus, it allows the integration
of real-time face tracking and analysis systems into
several types of constrained devices.
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