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Abstract: Despite recent significant advancements in the field of human emotion recognition, applying upper body move-
ments along with facial expressions present severe challenges in the field of human-robot interaction. This
article presents a model that learns emotions through upper body movements and corresponds with facial ex-
pressions. Once this correspondence is mapped, tasks such as emotion and gesture recognition can easily be
identified using facial features and movement vectors. Our method uses a deep convolution neural network
trained on benchmark datasets exhibiting various emotions and corresponding body movements. Features ob-
tained through facial movements and body motion are fused to get emotion recognition performance. We have
implemented various fusion methodologies to integrate multimodal features for non-verbal emotion identifi-
cation. Our system achieves 76.8% accuracy of emotion recognition through upper body movements only,
surpassing 73.1% on the FABO dataset. In addition, employing multimodal compact bilinear pooling with
temporal information surpassed the state-of-the-art method with an accuracy of 94.41% on the FABO dataset.
This system can lead to better human-machine interaction by enabling robots to recognize emotions and body
actions and react according to their emotions, thus enriching the user experience.

1 INTRODUCTION

Human emotions play a vital role in human-human
and human-machine interaction. Emotions represent
the instantaneous mental states, which varies accord-
ing to human behavior and communication. Re-
searchers are emphasizing automatic recognition of
human emotions as it is one of the essential param-
eters for natural human-machine interaction.

In human-machine interaction, the interaction
would be impaired if machines cannot recognize
or understand human emotions. Similar applies to
human-human interaction if the other party fails to
understand these body expressions.

If machines can react to our moods, that would
enable smart homes or centers to adjust lighting, mu-
sic, and temperature accordingly. It would also help
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medical doctors and physiologists automatically iden-
tify the symptoms of hypertension, depression, and
other behavioral disorders, enabling them to have
early preparations for such conditions. This skill
can enable sociable robotics to assist people in sim-
ple tasks such as delivering meals or vacuuming the
house. Humanoid robots that provide services to peo-
ple, the human-robot interaction would greatly im-
prove if these robots could adjust their reactions to
the current emotional state of a person Augello et al.
(2018); Kim et al. (2011); Sorbello et al. (2014). Gen-
erally, it would enable machines to respond, not lim-
ited to direct commands but with the ability to ad-
just their reactions to have natural and human-like,
human-machine interaction. However, these interac-
tions are minimal and could be improved if the robot
had more knowledge about the person they need to
interact with Breazeal (2003).

Human recognize and demonstrate emotions
through multi-modalities such as through facial ex-
pressions Nguyen et al. (2018); Barros et al. (2015);
Ilyas et al. (2018b); Mano et al. (2016), body move-
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ments Nguyen et al. (2018); Lang et al. (2015); Barros
et al. (2015); de Gelder et al. (2015), speech recog-
nition Bänziger et al. (2009) and physiological sig-
nals Agrafioti et al. (2011); Jerritta et al. (2011); Kim
and André (2008); Martı́nez-Rodrigo et al. (2015);
Picard et al. (2001). Existing methods for identi-
fying these body expressions are heavily relying on
audio-visual cues Bänziger et al. (2009) and wear-
able sensors such as ECG monitors Agrafioti et al.
(2011); Jerritta et al. (2011); Kim and André (2008);
Martı́nez-Rodrigo et al. (2015); Picard et al. (2001).
Audio-visual fusion have achieved remarkable results
with accuracy of approximately 99% Noroozi et al.
(2018). However, these approaches have their lim-
itations as audio-visual sensors cannot extract inner
affection Ekman et al. (2013); Picard et al. (2001).
For instance, a person can be happy or sad without
smiling and crying and vise versa. In addition, people
vary greatly in the expression of their emotions. De-
tection of signals through physiological sensors corre-
late heartbeat, blood pressure, and others signals with
happiness, anger, surprise, and others. This approach
is more suitable for identifying inner feelings as it
provides information about heart rhythm interaction
with the brain system. However, the wearable body
sensors cause inconvenience, so it is not suitable for
emotion detection in everyday practices.

Research has also shown that body language com-
prises a significant amount of the affective informa-
tion Lang et al. (2015); de Gelder et al. (2015). Ac-
cording to Mehrabian Mehrabian et al. (1971), only
7% of human communication is conveyed through
words, 38% through vocal tone, and 55% through
non-verbal elements such as facial expression, body
language, and gestures. Body posture, gestures, eye
movement, hand and head movement, touch, or even
personal space represent the body language Mehra-
bian et al. (1971). Many studies have proved theo-
retically and empirically the benefit of incorporating
various modalities in the perception of human emo-
tions compared to using a single methodPicard et al.
(2001); Soleymani et al. (2011). Complex human
emotions can be fully-implied by integrating signif-
icant features from multiple modalities (e.g., facial
features and body gestures).

In our research article, we have tried to explore the
effectiveness of facial expressions and body gestures
to recognize emotions. For this purpose, we have fol-
lowed two approaches; in the first technique, Convo-
lutional Neural Networks (CNNs) classify emotions
without considering temporal features. In this system,
single images are used, thus classifying each frame in
videos in real-time. In the second approach, following
Barros et al. (2015); Sun et al. (2018), we have used

the temporal information to classify the emotions, but
a contrast to Barros et al. (2015); Sun et al. (2018)
full images are fed to the Long Short Term Memory
(LSTM) network to exploit the temporal information.
Besides, this article will explore various fusion tech-
niques like product fusion method (PFM), average fu-
sion method (AFM), and Multimodal Compact Bi-
linear Pooling (MCB) Fukui et al. (2016) fusion and
discuss their performances. Even though deep learn-
ing approaches show improved accuracy compared to
conventional approaches, they are still more compu-
tationally demanding. Hence, this work will explore
a solution with less computational requirements.

The paper organization is as follows: The fol-
lowing section 2 will discuss the related research.
Section 3 presents the proposed model, illustrating
how it deals with a frame-based and sequence-based
recognition of the emotions with different fusion tech-
niques. This section also discusses the evaluation of
the parameters to decrease the computation power.
Section 4 describes the experimental results and com-
pares them with state-of-the-art methods. The conclu-
sion and discussion of the experimental results with
future work are presented in section 5.

2 RELATED RESEARCH

Emotion recognition through non-verbal modalities
like facial expressions and body gestures is viewed
as one of the most effective cues Ekman et al. (2013).
Therefore, many researchers have explored the fusion
of visual-modalities for improved affect understand-
ing Picard et al. (2001); Gunes and Piccardi (2006);
Chen et al. (2013); Agrafioti et al. (2011); Shan et al.
(2007); Karpouzis et al. (2007). They illustrate that
facial expressions and body gestures augment each
other in understanding emotional states in activities of
daily living (ADL) and social robot interactions. Re-
searchers Gunes and Piccardi (2007) and Shan et al.
(2007) have analyzed the facial features with body
gestures, particularly upper limbs and head move-
ments, for emotion recognition. Former has utilized
facial action units (AU) and performed classification
with Bayes Net with early and late fusion whereas
later has employed Spatio-temporal features classifi-
cation with SVM along with Canonical Correlation
Analysis (CCA) at the decision level. In recent years,
researchers have focused on deep learning approaches
to solve this issue, which has achieved the best recog-
nition rates.

Gunes and Piccardi Gunes and Piccardi (2008)
presents the performance of facial expressions, body
movements, and their fused representation for auto-
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Figure 1: Bimodal Emotion Classification Model through Facial Expressions and Upper Body Movements.

matic recognition of emotions. They extract the facial
and bodily features separately and compare their per-
formance accuracy. For facial expressions, they lo-
calize face and track landmarks and then extract fea-
tures. Similarly, for body motion analysis, they track
hand, shoulder, and head movements and then extract
a series of features with different features representa-
tion techniques. Both facial and bodily features are
classified with Support Vector Machines (SVM) and
Random Forests. In the last step, features are fused
to recognize emotions. Studies exhibit better perfor-
mance of system with feature fusion techniques Chen
et al. (2013)Gunes and Piccardi (2008).

Recent work of Barros et al. (2015) and Sun et al.
(2018) used Convolutional Neural Networks (CNN)
to recognize emotion from both face and body move-
ments. Both studies incorporated temporal features
into their classification, which forces them to analyze
an entire video before it can be classified.

2.1 Facial Expression Recognition

Facial expressions are one of the vital source to know
about mood and feelings in an interpersonal commu-
nication. Therefore, researchers focus to analyze fa-
cial expressions through traditional machine leaning
and advanced deep learning algorithms. Khorrami
et al. (2016) used a deep learning approach to merge
CNNs with RNNs and evaluate how each portion of
the neural network contributed to the overall success
of the emotion recognition system. For training, two
different architectures were used, the first with a sin-
gle CNN frame and the second with a combination
of CNN and RNN. Although CNN learns valuable
features from the video data from the single frame
regression, it disregards temporal information. This
knowledge can be implemented through the use of
RNN. Results determined that the CNN+RNN model
translates to more accurate predictions.

2.2 Emotion Recognition through Body
Movements

Upper body movement, such as hand and head move-
ment, conveys vital information related to emotional
states. For instance, when a person displays a neutral
emotion, they generally do not move their arms; how-
ever, when they are happy or sad, the body tends to be
extended, and the hands move upwards closer to the
head Noroozi et al. (2018). However, this information
is subjective, dependant upon the personal attitude
to the circumstances and cultural bias.Research pre-
sented by Piana et al. (2014) suggest real-time emo-
tion recognition through body movements and ges-
tures. The features are extracted from 3D motion
clips containing full-body movements, recorded us-
ing two systems: a professional optical motion cap-
ture system and Microsoft Kinect. The body joints are
tracked, and feature vectors of the movements are ex-
tracted and used for classification using a linear SVM
classifier. The emotions tested were the six standard
emotions. Human validation demonstrated that three
emotions were easily recognized from body move-
ments (happiness, sadness, and anger), while the oth-
ers (surprise, disgust, and fear) were confused with
each other. Because of that, a sub-problem with only
four emotions (happiness, sadness, anger, and fear)
was formulated. The approach showed better results
when only classifying four out of the six emotions.

Glowinski et al. (2011) took a different approach,
which analyzed affective behavior solely based on
upper-body movements. A range of twelve different
emotions was classified according to their valence and
arousal. Features were extracted from two videos, one
that displayed a frontal view of the subjects and an-
other that displayed a lateral view. The trajectories
of the head and hands were tracked, and low-level
physical measures, i.e., position, speed, acceleration,
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were extracted. Higher-level expressive and dynamic
features include smoothness and continuity of move-
ment, spatial symmetry of the hands, gesture dura-
tion were then computed, forming a 25-features vec-
tor. PCA was later applied to reduce the dimension-
ality of the data. Furthermore, clustering was used
to classify the data into four clusters according to the
categorical variables, i.e., valence (positive, negative)
and arousal (high, low). The framework was tested
on the GEMEP (GEneva Multimodal Emotion Por-
trayals) dataset Bänziger et al. (2012). The results
demonstrate that gestures can be effectively used to
detect human emotional expression.

Research proposed by Barros et al. (2015) model
these upper body movements for emotional classifi-
cation by using FABO Gunes and Piccardi (2006)
dataset. They present the motion by an additional
layer on the network that tracks the frame-wise differ-
ence in each sequence. This representation involves
the structure and information of the gesture/motion
with the aid of weighted shadows. Another study by
the same authors Barros et al. (2014) extracts spatial
and temporal features of gesture sequences through
Deep Neural Networks (DNN) to generate a motion
representation. Moreover, a Multichannel Convolu-
tional Neural Network (MCCNN) is used to learn and
extract features from the previously generated motion
representation and uses such features to classify dif-
ferent gestures.

We have trained our system with full frames of the
FABO dataset with facial and body gestures features
to capture the gesture information. The networks ex-
tract the spatial and temporal information using CNN
and LSTM and finally classify the emotions.

2.3 Bi-modal Emotion Recognition

Fusion of multiple modalities can achieve better
recognition performance than single modality. Nev-
ertheless, a good fusion strategy must be applied; oth-
erwise, the fusion of modalities can hurt the accuracy
of the recognition system.

Gunes and Piccardi studied this case precisely and
conducted experiments where only single modalities
were tested (facial expression or body gestures) and
where both modalities were fused to formulate a de-
tection Gunes and Piccardi (2006, 2007). The results
revealed that the bimodal approach had better perfor-
mance.

The bi-modal approach is also considered by
Barros et al. (2015) to recognize emotions by tak-
ing into account facial expression and body move-
ments. They used neural networks on their solution
and achieved much higher average accuracies on fus-

ing both modalities than testing each modality sepa-
rately, going from 57.84±7.7% on body motion and
72.70± 3.1% on facial expression, to 91.30± 2.7%
average accuracy on bimodal emotion recognition.

The research proposed by Nguyen et al. (2018)
fused the audio-visual, face, and body modalities us-
ing the compact bilinear pooling (MCB) method and
demonstrated the state-of-the-art results. In this ar-
ticle, besides general feature-level fusion techniques
such as average fusion, product fusion, we have also
explored the bilinear pooling technique for face and
body fusion.

3 PROPOSED SYSTEM

Our model is comprised of Convolution Neural Net-
works (CNNs) to extract facial features and bodily
features, with linear addition of Long Short Term
Memory (LSTM) model to use the sequential infor-
mation. Each modality (face or body) is trained with
CNN in frame-based and sequence-wise to generate
the emotional states. It is challenging to determine
the multimodal fusion efficiency for emotion recog-
nition accuracy, so we have proposed three different
fusion techniques to identify the best approach. The
network structure remains the same for all considered
fusion modalities. Overview of the system is illus-
trated in Fig 1

3.1 Convolutional Neural Network

Convolutional Neural Network (CNN) performs re-
markably good at acquiring spatial information. Each
CNN layer operates twofold; filtering through the
convolution layer and max-pooling to avoid losing
useful information. Generally, CNNs are composed
of convolutional layers, and fully connected layers ex-
tract features. Most of the parameters are also present
in the fully connected layers responsible for most of
the computation power. For instance, fully connected
layers of VGG16 contains 90% of all the parameters.
The VGG16 is a deep convolutional network with up
to sixteen layers (thirteen convolutional layers and
three fully connected layers). Inception V3 reduces
the parameters by the introduction of global average
pooling Szegedy et al. (2016). Similarly, Xception
Chollet (2016) takes advantage of the use of residual
modules and depth-wise separable convolutions.

To lessen the computation cost, we have imple-
mented CNN architecture as proposed by Arriaga
et al. (2017). It is a simple architecture that achieves
almost state-of-the-art performance classifying emo-
tions. The architecture classifies emotions based on
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Figure 2: Selection of the facial region on a frame from the FABO dataset and scaling into 48*48 to form image database.

facial expressions and faces according to gender. On
the contrary to Arriaga et al. (2017), only relying
on the FER-2013 dataset, we use the FABO dataset
for training purposes. Besides, our CNN architecture
contains four residual deep separable convolutional
layers, where batch normalization and ReLU acti-
vation function accompany each convolutional layer.
Batch normalization normalizes the activation of the
previous layer at each batch. Residual modules mod-
ify the desired mapping between two subsequent lay-
ers by connecting the output of previous layers to the
output of new layers. Depth-wise separable convo-
lutions reduce further the number of needed parame-
ters. They are composed of depth-wise convolutions
and point-wise convolutions. Instead of the fully con-
nected layers, this architecture uses Global Average
Pooling that reduces each feature map to a scalar by
calculating the average of all the elements in the fea-
ture map. The last convolution layer has the same
number of feature maps as the number of classes. In
the end, a softmax activation function is applied to
produce a prediction.

3.2 Long Short Term Memory
Networks (LSTMs)

LSTMs are a recurrent neural network that processes
and absorb sequential information. According to Ilyas
et al. (2018a):

”The LSTM states are controlled by three gates
associated with forget (f), input (i), and output (o)
states. These gates control the flow of information
through the model by using point-wise multiplica-
tions and sigmoid functions σ, which bound the in-
formation flow between zero and one.”

To take advantage of spatial and temporal infor-
mation, we have linearly combined the CNN and
LSTM model, where CNN extracts the features and
then sequentially feeds into the LSTM network. Such
a combination works well in the case of video data, as
exhibited by Yao et al. (2015); Fukui et al. (2016).

3.3 Fusion Methods

One of the issues in multimodal emotion recognition
is deciding when to combine the information. There
are a few different techniques to fuse the emotion
recognition results of different modalities with certain
advantages and disadvantages. Some of the most ex-
plored techniques are early (feature-level) fusion and
late (decision-level) fusion. Recent studies explore
another feature-based fusion method called bilinear
pooling fusion.
Feature-level Fusion. Feature-level fusion com-
bines the data from both modalities before classifi-
cation. A single classifier is used containing features
from both modalities. One of the biggest drawbacks
of feature-level fusion is high-dimensional feature
production resulting in more parameters and more
computation power consumption. To reduce the di-
mensions, we have applied the compact bilinear pool-
ing (MCB) as proposed by Lin et al. (2017). Bilin-
ear pooling multiplies two vectors that produce tons
of parameters, and it is costly. However, compact bi-
linear pooling reduces the dimensions with the same
information level but with very few parameters.
Compact Bilinear Pooling Fusion. Lin et al.
(2017) proposes a compact bilinear pooling technique
for fine-grained visual recognition. In this technique,
outer product ⊗ is calculated by element wise mul-
tiplication of two input feature vectors f1 ∈ V n1 and
f2 ∈ V n2 and scaling it into a matrix [ ] to reduce di-
mensions. For instance y = X [ f1⊗ f2], where X is
a learned model, ⊗ denotes the outer product and [
] represents linearizing the matrix in a vector. This
technique has produced better results for multimodal
emotion recognition task as mentioned by Nguyen
et al. (2018), who fused audio-visual, face and body
features to recognize emotions by considering co-
relation among them.
Decision-level Fusion. Decision level fusion does
not produce high-dimensional features as each modal-
ity is trained and classified separately to fuse recogni-
tion accuracy at the end. However, this method fails to
understand the correlation between input modalities.
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This co-relation is more important and meaningful in
human-machine interactions where body movements
and facial expressions complement each other Barros
et al. (2015).

4 EXPERIMENTAL RESULTS

In this section, we first describe the databases in-
volved and their training protocols. Then we demon-
strate the results.

4.1 Benchmark Datasets

We have used the bi-modal face and body FABO
dataset and the FER-2013 dataset for the emotion
recognition task. Details of the datasets are men-
tioned as follows:
FABO-dataset. The bi-modal face and body data
set is presented by Gunes and Piccardi (2006). Two
cameras acquire the database for monitoring face and
body movements, that captures the facial data and up-
per body movements separately. The videos provide
annotations on the stages of the affective states, there-
fore splitting the demonstration of each emotion into
neutral, onset, apex, and offset phases. Annotation is
performed for 16 subjects out of the 23 subjects for
emotional classification. The face and body posture
tend to shift in the onset process, and these changes
reach a steady level at the apex phase. Finally, ex-
pressions and movements exhibit relaxation at the off-
set stage. However, these phase annotations are only
done for twelve of the subjects.

Frames in the apex phase are considered for CNN
training since they are the ones that reflect the emo-
tions best. Two apex phases are assessed from the an-
notated videos. The dataset contains 1410 images for
anger, 458 for disgust, 343 for fear, 613 for happiness,
570 for sadness, and 588 for a surprise, split into test
and training. The neutral emotion is the exception,
the images for this emotion were obtained from the
neutral phase from each video, amounting to 786 im-
ages. The selected images display the upper body of
the subjects; therefore, a facial recognition algorithm
was applied to extract only the facial region within
the image. The method used was a DNN face detec-
tor module included in OpenCV 3.6 . The selected
frames were grayscaled and resized to the FER-2013
dataset size, which is 48*48 pixels as demonstrated in
the figure 2
FER-2013 Dataset. The FER-2013 database con-
sists of approximately 36,000 images, labeled with
seven emotion classes (six Ekman emotional states
plus neutral expression). FER-2013 is one of the

biggest databases for FER in-the-wild environment
but with a low image resolution of 48 * 48 pixels lead-
ing to problems for facial landmark detectors. The
dataset contains 35887 annotated images, with 4953
anger images, 547 disgust, 5121 fear, 8989 happi-
ness, 6077 sadness, 4002 surprise, and 6198 neutral
images. Some samples of the images are shown in
Fig. 3.

Experiments are performed to detect emotions
from face and and upper body separately and fused
accuracy is also calculated. Details are provided in
the section 3.3.

4.2 Network Training

The CNN architecture is trained with benchmark
datasets FER-2013 and FABO datasets to extract the
facial and body features and evaluate the effectiveness
of each modality.
Face-CNN Model: (For Facial Emotional Recogni-
tion). Only facial features are trained to the network
to evaluate facial expressions. To recognize emotions,
first face is localized, tracked, and then face cropping
is applied according to the network input parameters.
CNN is trained with the FER-2013 dataset, with data
augmentation techniques applied to train with more
diverse data. It also helps to prevent overfitting and to
generalize the model.

Early stopping is used to avoid overfitting. It stops
the training process of the model when the error on
the validation set gets higher than before. The learn-
ing rate is reduced when validation loss has stopped
improving.

The CNN was trained using Adam optimizer. This
optimization algorithm is an extension of the stochas-
tic gradient descent. It has some benefits compared to
other algorithms, such as less memory requirement,
computationally efficient, and it is well suited for
problems with extensive data and parameters Kingma
and Ba (2014). The trained model that we called the
face-CNN model achieved 65% accuracy in the val-
idation set. To recognize the emotions from upper

Figure 3: FER-2013 sample images for facial emotion
recognition.
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body movements, we have trained the CNN model
with body features of the FABO dataset.
Body-CNN Model: (For Upper Body Emotion
Recognition) Only the FABO dataset is used to
train the body-CNN model. This dataset is already de-
scribed in Section 4.1. However, to train this model,
full image frames of the FABO dataset with facial and
body gestures information are used, as illustrated in
Fig. 2.

CNN-body architecture is the same as CNN-
face, but the images are descaled from their original
1024x768 dimensions to 128x96 and grayscaled to
ease and fasten the training process. The pixel val-
ues were normalized to a range between -1 and 1.
Data augmentation strategies are also applied to in-
crease the number of training samples. Furthermore,
the data was split into train and validation data with
an 80/20 ratio. The model achieved a 96% accuracy
in the validation set.

4.3 Bi-modal Emotion Recognition

As mentioned in section 2, the fusion of different
modalities is capable of achieving more significant re-
sults than single modalities for emotion recognition.
To identify which fusion technique works best in our
task, we have applied MCB fusion at the feature-level,
whereas product and average fusion strategies are ap-
plied at the decision level.

4.4 CNN Architecture

For our experimentation, we have used the same ar-
chitecture as proposed by Arriaga et al. (2017), as
described in detail in section 3.1. However, our im-
plementation varies with Arriaga et al. (2017) as we
have used different datasets for training with the ad-
dition of the LSTM model to exploit the temporal in-
formation. We aim to reduce the number of CNN pa-
rameters and computational costs and achieve better
generalization. The network is composed of 4 con-
volutional layers and ReLu and batch normalization
at each layer. As mentioned in section 3.1 instead of
fully connected layers, global average pooling is ap-
plied. However, in the case of a temporal database
LSTM model is installed, followed by the softmax.

4.5 Performance Analysis

4.5.1 Frame-based Emotion Recognition

The performance of each modality is tested with our
trained network for emotion recognition. Various

Table 1: Results of different evaluation metrics for each
frame-based emotion recognition method.

Evaluation
Matrix

Facial
Expressions

Upper Body
Movement

Bimodal
Average
Fusion

Bimodal
Product
Fusion

Bimodal
Bilinear
Pooling

Precision 77.2 % 72.8 % 81.7 % 82.6 % 83.7 %

Recall 73.0 % 72.7 % 80.4 % 80.9 % 81.5 %

F1-Score 72.8 % 71.5 % 80.3 % 80.9 % 82.5 %

Accuracy 77.7 % 76.8 % 85.7 % 86.6 % 87.2 %

classification models with different evaluation met-
rics analyze which modality has better performed. We
have analyzed the system performance with precision,
recall, accuracy, and F1-score metrics, as illustrated in
Table 1. Moreover, bi-modal fusion with different fu-
sion methods is applied to identify the performance of
fusion strategies.
Facial Expression Analysis. The normalized con-
fusion matrix in Fig. 4 shows the percentage of im-
age samples that are of a specific emotion (true la-
bel) and that are classified as corresponding to a spe-
cific emotion (predicted label). The confusion matrix
shows the best classification results corresponding to
the anger and neutral emotions with 94% and 90%, re-
spectively. The worst classification result corresponds
to the surprise emotion that is often mistaken with
fear; however, fear rarely is misclassified as a sur-
prise.
Upper Body Movement Analysis. Fig. 5 displays
the normalized confusion matrix for the upper body
movements emotion recognition. This confusion ma-
trix shows the true positive rate; hence, the percent-
age of samples from each dataset that are classified
correctly.

From Fig. 5 it is possible to observe that, once
again, the best recognition results are attributed to
anger and neutral emotions. Comparatively to the fa-
cial expression recognition, in this recognition modal-
ity, the surprise emotion has a much better recognition
rate and is less often mistaken by fear. Also, the sad-
ness emotion is quite often misclassified as a surprise.

Bi-modal Analysis. Two different decision-level
fusion methods are tested, an average method and the
product-method. In the average method, the average
is calculated between both modalities and for each
of the emotions. In the product method, the product
of the probabilities of each modality is calculated for
each of the emotions.

Finally, the combination of both modalities pro-
duces the results in Fig. 6 using the average fusion
method, and Fig. 7 using the product fusion method.
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Figure 4: Normalized confusion matrix for facial expres-
sion recognition.

Figure 5: Normalized confusion matrix for upper body
movements emotion recognition.

4.5.2 Sequence-based Emotion Recognition

To train the system with spatial and temporal infor-
mation of the FABO dataset, we have to use the face-
CNN model pre-trained on the FER-2013 dataset. As
the FABO dataset posses video data with emotional
annotation for 16 subjects out of 23. Each video
displays the same emotion from two to four times,
so we have divided each video into neutral, onset,
apex, and offset maximum phase length of five sec-
onds. We trained this network with these video data
and obtained the features, as we have used the full
frames of the FABO dataset containing facial and ges-
ture features. These features are feed into LSTM in a
timely manner to evaluate the sequential information
for emotional classification. Details of recognition ac-
curacy is presented in the Fig. 8.
Facial Expression Analysis. Our network achieved
an average accuracy of 93.213 % when it is trained to
80 epochs. It is observed that system performance
reached its maximum accuracy when epochs range

Figure 6: Normalized confusion matrix for bimodal emo-
tion recognition using the average fusion method.

Figure 7: Normalized confusion matrix for bimodal emo-
tion recognition using the product fusion method.

from 40 to 50; after that system, performance did not
fluctuate considerably.
Upper Body Movement Analysis. It is observed
that temporal information contributed to accuracy ef-
ficiency when the network is trained with full FABO
dataset frames. Our network achieved an accuracy of
up to 79.27 % for emotional recognition through up-
per body movement analysis.
Bi-modal Analysis. When the network is trained
with combined facial and upper body features, our
system has surpassed the state-of-art accuracy to
94.418 %. In this experiment, network parameters are
less than the state-of-art method Nguyen et al. (2018),
and it is robust to work in real-time scenarios.

4.6 Parameters Evaluation

Our network contains four deep-separable convolu-
tional neural layers with ReLu and batch normaliza-
tion function. We have used global average pooling
and softmax for emotion classification that contribute
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Table 2: Performance analysis of our system with CNN and
(CNN + LSTM) models and their comparison with state-
of-art methods. We have performed 3-fold cross validation
after splitting data into 80/20 protocols.

Method /
Modality

Facial
Expressions

Upper Body
Movement

Bimodal
Fusion

Gunes and Piccardi (2008) 35.2 % 73.1 % 82.7 %

Chen et al. (2013) 66.5 % 66.7 % 75.0 %

Barros et al. (2015) 72.7 57.8 91.3

Barros and Wermter (2016) 87.3 74.8 93.65

Our Frame based Model 77.7 76.8 87.2

Our sequence Based Model 90.42 79.27 94.41

Figure 8: Performance of the combined CNN + LSTM neu-
ral network model on test data of FABO dataset.

to approximately 600,000 parameters. We trained this
network with the FER-2013 database that provides an
accuracy of 65% on the validation set. However, us-
age off the shelf CNN network that is 70 times more
parametric heavy and provides 71.3% accuracy on the
FER-2013 dataset. In contrast, when we have em-
ployed this network to recognize emotions from face
and body, it surprised the state-of-art method when
we have a bi-modal model with temporal information.
Additionally, this model also showed improved accu-
racy in using a single modality such as the upper body
movements. We acquired an accuracy of 76.8 % and
79.27 % with spatial and temporal information, re-
spectively. Application of compact bilinear pooling
(MCB) contributed to dimensionality reduction with-
out compromising on the performance.

5 DISCUSSION AND
CONCLUSION

The major problem in developing a human-machine
affective system is the integration of multimodal
sensory information. In this research article, we have
explored the spatial-temporal technique for emotion
analysis of visual modalities. We have also studied
different fusion techniques with lesser computation
cost. We have developed a robust architecture to iden-
tify emotions from the face and upper body move-

ments to use in real-time human-machine inter-
action systems.

It is illustrated through the confusion matrices
that the bimodal approach shows better results than
the monomodal approaches, regardless of the fusion
method. In this case, the best recognition rates cor-
respond to both fusion methods for anger, happiness,
and neutral emotions. The worst recognition rate is
attributed to the sadness emotion that is often mis-
classified as a surprise emotion.

All the evaluation metrics being considered to
have greater values with this approach. Accuracy
shows a significant improvement from 77,7% and
76,8% on the facial and upper body movements emo-
tion recognition, respectively, to 85,7% and 86,6%
on the fusion of both modalities.

Furthermore, the product fusion method shows
slightly better results on all the evaluation metrics
than the average fusion method. However, the MCB
method surpassed decision level recognition accu-
racy. It shows that inter modalities relationship to-
wards emotion identification is an essential factor to
consider. We have demonstrated that spatial-temporal
information is better classified for anger, happy and
neutral emotions for further analysis. With upper
body movement alone, state of the art methods found
it challenging to classify the emotions accurately.
However, our system has performed better with the
rest of the methods, as illustrated in Table 2.
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