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Abstract: This paper argues for the importance of detailed reporting of results of machine learning modeling applied in 
medical, healthcare and health applications. It describes ten criteria under which results of modeling should 
be reported. The ten proposed criteria are experimental design, statistical model evaluation, model calibration, 
top predictors, global sensitivity analysis, decision curve analysis, global model explanation, local prediction 
explanation, programming interface and source code. The criteria are discussed and illustrated in the context 
of existing models. The goal of the reporting is to ensure that results are reproducible, and models gain trust 
of end users. A brief checklist is provided to help facilitate model evaluation.  

1 INTRODUCTION 

Application of Machine Learning (ML) and more 
broadly Artificial intelligence (AI) methods require 
careful reporting of results. The current gold standard 
for reporting results in the field is statistical model 
evaluation reported as area under receiver-operator 
curve, accuracy, precision, recall, F1-score and their 
variants. While these metrics are useful in assessing 
one aspect of model performance, they are 
insufficient for assessing model applicability, 
reproducibility of results and deployment of models. 
Even machine learning models that have very high 
testing scores, tend to make obvious mistakes that can 
be immediately spotted by human experts. Thus, 
researchers and data scientists need to better 
understand their models’ behavior and limitations. 
The presented work discusses ten criteria that in the 
authors’ view should be used to report results of 
machine learning modeling. They include specific 
technical aspects of models, but models need to make 
sense to domain experts and data scientists alike. 

Recent significant interest in machine learning 
and artificial intelligence methods, also outside 
scientific community, have led to renewed focus on 
trust in these approaches. Consequently, people 
started questioning quality of many works, 
reproducibility of results and criteria that are needed 
for model evaluation. Such detailed reporting is 
needed for review of methods, reproducibility and 
meaningful application of the results. It is a wide 

belief among non-machine learning experts that the 
created models “do not generalize” and thus are 
essentially useless. While the truth cannot be farther 
from this statement, authors of many published works 
fail to sufficiently report properties of their models. 
The lack of generalizability refers to the fact that 
models trained on one data, do not perform well on 
different data, i.e., data from another institution, but 
it also means that models built on historical data do 
not work in practice. 

More generally, transparency of science and 
reproducibility of results are among the most 
important aspects of scientific discovery. In order for 
the results to be widely accepted by scientific 
community and consequently applied, there needs to 
be trust in how they were obtained. The results may 
be reproduced by other groups on the same or 
different data, or simply accepted when sufficient 
evidence is provided in relation to quality of the work. 

One can argue that there are many reasons for the 
lack of details and sufficient reporting in published 
works. Scientists are under constant pressure to 
produce and publish results and faster. Many journals 
and almost all conferences have space limits for 
submitted manuscripts, and only some allow for 
submission of supplemental material. Many scientists 
report results in a standard way as most others do and 
do not even consider the need for more detailed 
studies. Finally, there is a strong bias for presenting 
only positive results, thus some scientist may decide 
not to present selected results that may negatively 
affect review process of their work. 
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1.1 Recent Interest  

Within the past few years many works have been 
published on the topic of transparency of machine 
learning methods, reproducibility of results, and 
overall reliance on these methods. Medical, 
healthcare and health application areas of ML are of 
special interest with results of modeling directly 
affecting patients’ lives (Liu et al., 2019). 

The need for detailed reporting of methods and 
results is critical in science, yet has often be ignored 
in ML, AI, and more broadly data science 
(Gundersen, 2020) and only gained attention recently. 
The problem is also being recognized in medical 
applications (i.e., Beam et al., 2020). 

To address this issue several sets of criteria have 
been proposed. Luo et al. (2016), developed a set of 
guidelines for reporting machine learning results in 
biomedical research. They developed 12 reporting 
criteria to be directly utilized in preparing 
manuscripts, but do not discuss what specific metrics 
should be used. Similarly, Stevens et al. (2020) 
discuss reporting criteria split into main categories: 
study design, data sources and processing, and model 
development and validation. Vollmer et al., discuss a 
framework consisting of 20 criteria (questions) 
intended to guide ML and statistical research, split 
into six categories: inception, study, statistical 
methods, reproducibility, impact evaluation and 
implementation. The authors argue for the need for 
interdisciplinary teams to address these questions. 

Reproducibility and quality of work has also been 
addressed in the context of clinical trials (Wicks et al., 
2020). The criteria are described in Liu et al., (2020) 
who provided guidelines for reporting results of 
clinical trials that involve AI as an extension to the 
standard CONSORT reporting (Moher et al., 2010).  

Many authors describe criteria of reproducibility 
in the context of other work or specific types of data. 
For example, Wojtusiak and Baranova (2011) argue 
that accuracy, transparency, acceptability, efficiency 
and exportability are main criteria for machine 
learning to be deployed in health applications. Kim et 
al. (2020) describe reproducibility in the context of 
genomic data. Ronald et al. (2020) as well as Yu et al. 
(2020) focus on image data and reproducibility of ML 
methods. Several more examples of such works are 
available in the literature. 

1.2 Focus of This Work 

While several sets of criteria for reproducibility and 
reporting of results exist, often much broader than the 
work presented here, it is opinion of the author that 
they are hard to follow in practice as they are too 

general. The focus of this work is to list specific 
metrics along with examples that are essential to 
include in the reported results. The presented ten 
machine learning reporting items, denoted MLI-1 to 
MLI-10, include information about: experimental 
design, statistical model evaluation, model 
calibration, top predictors, sensitivity analysis, 
decision analysis, global model explanation, local 
prediction explanation, programming interface, and 
source code. The criteria are intended to help guide 
data scientists provide sufficient level of information 
on the modeling process. The ten criteria are not 
intended to be the only way reporting should be done. 
Instead, they consist of a minimal set of criteria that 
need to be addressed.  While focus of this work is on 
structured data (EHR, claims, etc.), the criteria are 
also applicable to unstructured data. 

Further, the presented work is not novel in terms 
of the specific criteria used. All these criteria are 
known and long used by machine learning 
community, but often ignored. This work is intended 
to contribute to discussion about reproducibility and 
transparency of models and provide the authors’ view 
on the topic.  

2 REPORTING CRITERIA 

2.1 Experimental Design 

Complete understanding of how models were 
constructed require detailed explanation of 
experimental design in a broad sense including cohort 
selection, data preprocessing, final data description, 
hyperparameter tuning, and testing procedures.  Most 
importantly, one needs to carefully describe what is 
being modeled (i.e., predicted), including the 
relationship between the real world and its data 
representation. The later is investigated by Cabitza et 
al. (2020) in the context of relationship between the 
ground truth and labeling of data as one measure to 
assess the quality of data used for modeling.  
Inclusion: Detailed information about inclusion 
criteria to the study need to be presented. Johnson et 
al. (2017) demonstrated that information included in 
published ICU mortality prediction studies based on 
MIMIC III data are insufficient to even reproduce 
exact cohort. In most cases, the reproduced cohort is 
much larger than one implied by publication, in many 
cases because some exclusions applied while 
preprocessing data are forgotten or buried in the 
description.  

There are different ways to report on how the 
cohort was selected. The author’s preference is a 
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flowchart that shows all exclusion steps along with 
counts of included and excluded cases. 
Cohort: The most commonly present way of 
describing data is what is often referred to in 
biomedical literature as “Table 1” that shows 
characteristics of the data, typically as simple 
descriptive statistics. The data are typically split 
between different groups that correspond to 
experimental work. Often, the data may be split based 
on the predicted classes (values of output attributes). 
While informative description of the population, such 
table is not intended to provide detailed description of 
the data. Such description should include as detailed 
as possible description of how data were transformed 
from the original form to the final analytic file fed into 
ML algorithms. 
Attributes & preprocessing: More specifically, 
details of construction of derived attributes should be 
described, including details of coding used. Such 
descriptions are typically very complex and may 
require presentation of source code (see MLI-10).  
Experimental setup: Experimental setup description 
includes a detailed description about how learning 
and testing of the models was set up. For example, 
was data split into training, validation and testing sets 
and how was the split done, was cross-validation used 
to tune hyperparameters and select algorithms, and 
what specific methods and libraries were used at each 
step of model construction. 

In summary, MLI-1 is a broad category with 
multiple items to be reported. Essentially, it is about 
describing every step that was performed so that the 
final models are constructed. 

2.2 Statistical Model Evaluation 

Statistical classification model evaluation results are 
a gold standard of reporting results of ML modeling. 
They typically include reporting of metrics such as 
Area Under Receiver-Operator Curve (AUC), 
Accuracy, Precision, Recall, and their derivatives. 
For regression learning problems, reported values 
typically include Mean Square Error (MSE), Mean 
Absolute Error (MAE), and correlation coefficient. 
Such metrics should be calculated on both training 
and testing datasets, including results from cross-
validation, if performed.  

The model accuracy is defined as the total number 
of correctly classified exampled divided by the total 
number of examples in the test set. In many cases, 
accuracy is the most important metric reported. It is a 
direct count how many times a model is correct or 
incorrect. In other cases, when data are imbalanced or 
one class is important than others, measures 

additional measures are used. Model recall (known as 
sensitivity in biomedical literature) is defined as the 
number of correctly classified positive examples 
divided by the total number of positive examples in 
the test set. Similarly, model precision is defined as 
the proportion of true positives to the total number of 
examples classified as positive. 

There is an obvious tradeoff between recall and 
precision. Precision ad recall are often combined to 
create one metric, such as F1-score and their 
continuous relationship is related to the concept of 
receiver-operator curve (ROC) and Area under 
Receiver-Operator Curve (AUC or AROC), 
sometimes referred to as C-statistic, represents 
integration of all possible true and false positive rates 
for a given model. In many application domains AUC 
is considered as impractical as it shows overall 
relationship between true positives and false 
positives, but not precision and recall at the final 
threshold. It is most often used to compare models.  

There are many other statistical measures of 
model quality. For example, the pattern quality 
measure, q(w), (Michalski and Kaufman, 2001b) 
allows weighting model recall and precision. Other 
measures that rely on counting positive and negative 
examples exist and are frequently used in the 
literature: sensitivity, specificity, positive predictive 
value, negative predictive value, and others. In 
addition to the statistical model quality measures, 
characteristics of learning algorithms should be 
presented, including learning curves, attribute 
selection curves, and hyperparameter tuning curves 
accompanied by relevant statistical measures. 

2.3 Model Calibration 

There is a common misunderstanding that machine 
learning methods return a probability of the target 
event, or probabilities of classes in a multiclass 
prediction problem. In fact, most models return a 
score that is typically in 0 – 1 range and resembles 
probability. Yet, probabilities have a well-defined 
frequency interpretation, i.e., exactly 20% of 
examples that receive score of 0.2 should really 
belong to the predicted class. Model calibration is a 
process that aims at changing the output scores, so 
they are closer to the actual probabilities. Calibration 
can be assessed numerically by metrics such as the 
Brier Score, that is defined as the mean squared error 
between the provided values and actual probabilities 
(score zero means perfect calibration). Calibration is 
often visually presented using calibration plots 
(reliability curves). An example calibration curve 
along with Python code is available at Scikit-learn 
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website (2020).  Below the actual calibration curves, 
there is typically a histogram of distribution of output 
values from the model.  

Calibration curves as well as ROC are closely 
related to the probabilistic interpretation of models 
further discussed in later sections. 

2.4 Top Predictors 

Domain experts often want to see a list of “top 
predictors” or attributes with highest scores according 
to some metrics. This is in part related to their need to 
understand models, and in part due to training in 
standard statistics that clinicians often receive. The 
attribute quality metrics can be specifically related to 
models, such as coefficients in logistic regression 
models or average GINI scores in random forests, or 
based on criteria used in attribute selection methods 
such as information gain, likelihood ratio or 
Pearson’s correlation coefficient. 

While listing of top predictors is often done and 
should be done to provide some information to 
domain experts, it is not necessarily a correct way of 
presenting models and may be misleading. This is 
particularly the case for nonlinear models for which 
strength of each attribute/predictor needs to be 
assessed locally in the neighborhood of a specific 
example for which a prediction is made. This is 
further discussed in sections 2.5 and 2.8. 

Regardless of this limitation, an abbreviated list of 
the top predictors can be included in the description 
of created models, typically as a table. If space 
permits, an appendix with a complete or longer list of 
all predictors can be presented.  

2.5 Global Sensitivity Analysis 

Global sensitivity analysis is intended to test if 
models are behaving in a certain way they are 
expected to. It is used to measure how uncertainty in 
the output of the model can be derived from 
uncertainty in the model inputs. The other way of 
thinking about the sensitivity analysis is to measure 
how much inputs to the model would need to change 
for the output to significantly change so that results 
are affected. In practice, this means to ensure a 
relatively smooth behavior of the model and 
minimize output fluctuation, i.e., small changes to 
inputs cause small changes to outputs, as well as the 
models are “smooth” (the output values do not jump 
back and forth when inputs are changed).  This is 
exemplified in Figure 1 that shows predicted 
probability of mortality calculated by C-LACE2 
model (Wojtusiak et al., 2017) based on patient age. 

The three lines with “spikes” in the data represent 
average predicted probabilities for patients in the data 
with a given age. As one can see, the model appears 
unstable. However, when patients are taken from a 5-
year age window the model is smooth. This is because 
the variation is caused by small number of patients at 
every given age.  
 

 
Figure 1: Sensitivity of C-LACE2 model presented as 
predicted probability in relation to patient age.  

2.6 Decision Curve Analysis 

Fine-tuning of models for application on entire 
population level data typically involves cost-benefit 
analysis of correctly and incorrectly classified 
objects. Whenever a model is employed to make a 
prediction there is a potential cost and benefits 
associated with correct and incorrect classification. 
Here, the words cost and benefits are loosely defined 
and may carry various meaning in the context of 
specific applications. In the AI community these are 
often referred to as a utility function, although more 
often in the context of reinforcement learning. 
Benefits and costs are positive and negative 
consequences of predictions. Let us assume that these 
are denoted CTP – the cost of true positives, CFP – the 
cost of false positive, CTN, - the cost of true negative, 
and CFN, - the cost of false negative. Typically, CFN > 
CTP > CFP > CTN, but most importantly CFN >> CFP. 

To exemplify this idea, let’s consider a model that 
is used to early detect a medical condition. Patients 
who are identified by the model as likely to have the 
condition receive additional screening (i.e., genetic 
test). There are potential costs associates with all 
possible outcomes of the prediction: patients who are 
correctly predicted to have the condition (TP) are 
subject to cost of additional testing and then cost of 
treatment for early detected condition, CTP. Patients 
with the condition who are not tot correctly detected 
by the model (FN) incur potentially large costs 
associated with treatment of the condition at a late 
stage, CFN. The patients who are correctly identified 
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as not having the condition (TN), do not undergo 
additional testing and are healthy thus do not require 
any treatment or testing. Their total associated cost 
can be considered as zero. Finally, there are patients 
who do not have the condition, but are identified by 
the model as positive (FP) and receive additional 
screening with cost CFP. If cost of testing and early 
treatment is much smaller than cost of late treatment, 
it may be reasonable to early test everyone. However, 
if the frequency of positive cases is very low, vast 
majority of tests will be done unnecessarily.  

In the example below, a model was created to 
predict which elderly patients receiving a traditional 
form of care may benefit from a new approach. The 
model predicted probability of cost savings in the new 
setting vs. traditional approach. The new setting is 
cheaper for some patients, but not for all. The model 
was applied to about 13,000 patients receiving 
traditional care and identified patients who may be 
moved to the new setting. The plots in Figure 2 were 
constructed to visually demonstrate the potential 
savings. The plot shows entire population of 13,000 
patients and indicates that the benefit of moving to the 
non-traditional program peaks at about 9,000 patients 
after which the model predicts the traditional program 
to be more beneficial.  

 

Figure 2: Decision/utility curve that illustrate potential 
savings based on numbers of people moved to a new 
treatment approach. 

2.7 Global Model Explanation 

In order to gain trust in the models, decisionmakers 
want to understand their internal working. Despite 
transparency and interpretability being considered by 
some authors as ill-defined concepts (Lipton, 2018), 
there is a recently growing interest in the model 
transparency that narrows down to two approaches: 
(1) Construct models that are transparent in the first 
place, or (2) generate an explanation for a black-box 
model.  

The approach (1) follows the concept of natural 
induction (i.e., Michalski, 2004; Wojtusiak et al., 

2006) in which models are created directly in a 
transparent representation and are based on early 
ideas in machine learning. The following paragraph 
is from Michalski (1983) and is part of the first 
published machine learning book: 

The results of computer induction should be 
symbolic descriptions of given entities, semantically 
and structurally similar to those a human expert 
might produce observing the same entities. 
Components of these descriptions should be 
comprehensible as single “chunks” of information, 
directly interpretable in natural language, and 
should relate quantitative and qualitative concepts in 
an integrated fashion. 

 

This approach assumes that the models are created 
in representations that are easy to interpret. Among 
the best-known transparent representations are 
decision rules, decision trees, linear models such as 
logistic regression or naïve Bayes, and sometimes 
Bayesian networks. While the idea of using 
transparent representations is great in principle, many 
statistical methods outperform the transparent ones in 
terms of statistical measures described in Section 2.2. 
Statistical methods are usually simply more accurate. 
In fact, one of benefits of using machine learning 
methods is the ability to select from wide selection 
available algorithms.  

Therefore, considerable efforts are made to create 
solutions to approach (2) that aims at explaining 
black-box models. It is important to note that one can 
explain algorithms that are used to create a model, but 
it is impossible to grasp the entire model. For 
example, how to explain a random forest with 1000 
trees or a deep neural network? 

There are numerous methods for explaining 
global models that have been investigated, including 
surrogate models, lists of predictors, and a wide range 
of visualization techniques. Guidotti et al., (2018) 
define global explanation of a black-box model in 
terms of finding a transparent model (surrogate 
model) that is able to mimic the behavior of the black-
box model. The authors provide review and discuss 
approaches available in the literature. Similarly, Du 
et al. (2020) discuss global model explanation mainly 
in the context of deep neural networks. An interesting 
study of trust in machine learning by clinicians is 
presented by Tonekaboni et al. (2019) in which the 
authors surveyed ICU clinicians about specific 
aspects of model explanations that are useful to them. 
A special issue of BMC Medical Informatics and 
Decision Making fully dedicated to explainable AI 
includes a wide range of related works (BMC, 2020). 
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2.8 Local Prediction Explanation 

Local prediction explanation refers to the ability of a 
model to inform decision makers about the reasons of 
why a specific prediction was made. While related to 
the global model explanation, prediction explanation 
requires different approaches. Very often, local 
prediction explanation is more important for decision 
makers than global explanation. Knowing why a 
specific prediction is made, increases chance of that 
prediction being used. There are four main types of 
local explanations: listing top predictors for an 
individual case, demonstrating causality, building 
local models, and visualization. There are also several 
less frequently used approaches, often developed in 
the context of specific methods or application areas. 

Local Interpretable Model-agnostic Explanations, 
LIME (Ribeiro et al., 2016), and Shapley 
Additive exPlanations, SHAP (), are two of the most 
frequently used local explanation methods. The 
approaches and their many recently published 
variants rely on generating synthetic data close to the 
example being explained and fitting local models into 
that synthetic data. Such a simple model can be used 
to locally explain prediction. 

There are a number of other works in the literature 
that base explanations on listing top predictors, 
including Luo and Ruminshisky (2016) and Ge et al. 
(2018) that used this approach in models for 
predicting mortality in intensive care units (ICU). 

Some authors argue that to explain prediction, one 
needs to identify causal mechanism that links input 
attributes to the predicted outcome (output attribute). 
This approach is often done in the context of 
graphical models such as Bayesian or Gaussian 
Networks, and builds upon long research of Judea 
Pearl (i.e., Pearl, 2000). Pearl (2019) recently argued 
for the need of causality in machine learning 
providing list of approaches that allow for causal 
reasoning.  

Uncertainty should be part of explanation. There 
are no events in the future that can be predicted with 
100% accuracy. This is the nature of time. We can 
know for certain only the past that have happened, but 
the future is always uncertain. Except for trivial 
problems one should not expect to achieve 100% 
accuracy for constructed models. This fact needs to 
be communicated to end users. Further, in 
classification problems, the goal is to predict the most 
likely answer, but models typically communicate a 
level of uncertainty in that answer (i.e., probability for 
well-calibrated models as discussed in section 2.3). 
Consequently, it is important to communicate and 
explain that uncertainty as part of prediction. For 

example, CBIT online calculator presents the 
probability of a patient’s functional independence and 
communicates that uncertainty in graphical form as 
well as textual description (Wojtusiak et al., 2020). 
Equipped with that information clinicians can make 
informed decisions and decide on the appropriate 
course of action. 

2.9 Sharing Models and Programming 
Interface 

Models are created using a variety of computer 
systems, programming languages, libraries, and tools. 
Sharing only saved models is typically insufficient as 
they need additional information to be properly 
executed. For example, models that are saved in 
scikit-learn library in Python can be safely loaded 
only with the same version of the library, and all 
dependent libraries. In addition, an ordered list of 
inputs is needed so that the model is properly 
executed. In practice, the most useful is to include a 
part of source code that demonstrated how to load the 
model, encode inputs, and execute the model on new 
cases. When sharing models, complete information 
needs to be given on how to load and execute them.  

Sometimes models are accessible through an 
application programming interface (API) allowing 
remote computer systems to communicate with 
models without the need for the need to depend on 
specific computer implementation. Such 
programming interfaces are typically based on a data 
sharing standard such as XML or JSON. 

2.10 Source Code 

Full reproducibility of the experimental portion of the 
work is even more complex. Inclusion of complete 
source code for all parts of the work provides the 
cleanest way of presenting steps taken to create 
models. Full reproducibility may also require addition 
of data used to train and test models, but data often 
cannot be shared. Source code can be shared using a 
public repository such as GitHub on an institutional 
website. Some journals allow for submission of 
additional materials, including data and source code. 

In addition to reproducibility, sharing source code 
allows for peer review of details of what has been 
done. Others may find mistakes in the code that may 
affect results. Fully opensource data analysis code 
shared in a centralized repository may be the best way 
to achieve transparency in the data analysis and 
modeling. 
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3 MLI CHECKLIST 

The above criteria are summarized in the following 
checklist intended to help organize reporting of 
results. Even though there is no one-size-fits-all set of 
evaluation criteria and metrics, the checklist is 
intended to be a minimum set of reportable criteria.  

MLI-1: Experimental Design 
- Report inclusion criteria 
- Provide descriptive statistics of data 
- Describe data preprocessing & attribute construction 
- Describe experimental setup, training & testing sets, 

cross-validation 
- Describe model training 
 

MLI-2: Statistical Model Evaluation 
- Calculate Accuracy, AUC, recall, precision, F1-score 
 

MLI-3: Model Calibration 
- Perform model calibration 
- Report calibration curves and calibration measures 
 

MLI-4: Top Predictors 
- Report top-performing attributes in the model 
 

MLI-5: Global Sensitivity Analysis 
- Perform global sensitivity analysis for continuous and 

discrete attributes 
- Report sensitivity plots and analyze if models are stable 
 

MLI-6: Decision Curve Analysis 
- Assign costs to correctly and incorrectly classified 

instances 
- Construct decision curves and report on desirable 

thresholds 
 

MLI-7: Global Model Explanation 
- If transparent representations are used, report entire 

models 
-Otherwise apply one of explanation methods to 

describe models 
 

MLI-8: Local Prediction Explanation 
- Select and implement an approach to explain 

predictions 
 

MLI-9: Sharing Models and Programming 
Interface 

- Is sharing actual models include all needed information 
to load and execute them 

 

MLI-10: Source Code 
- Share complete source code 

4 CONCLUSION 

Mature application of machine learning methods, 
particularly in areas such as medicine and health care, 

require detailed reporting on methods and results. The 
presented ten MLI reporting criteria are based on 
types of information typically present in the literature 
(almost always separately) and are one step towards 
gaining suers’ trust in the developed models and 
increase their use. The presented criteria are focused 
on data scientists and researchers who develop 
models and contribute to scientific literature.  

The presented work does not include many 
additional criteria discussed in the literature, such as 
ethical considerations of ML methods and their 
applications in medicine, and legal requirements and 
regulatory approvals. Instead, it focused on technical 
concepts and research community. 

Finally, the presented work is not nearly 
complete. It represents one small piece of a larger 
discussion on reproducibility, transparency, trust and 
other related concepts in machine learning. The paper 
presents current opinions of the author which are 
likely to evolve. 
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