
A Novel Deep Learning Power Quality Disturbance Classification 
Method using Autoencoders 

Callum O’Donovan, Cinzia Giannetti and Grazia Todeschini 
College of Engineering, Swansea University, Fabian Way, Swansea, Wales, U.K. 

Keywords: Classification, Feature Extraction, Power Quality Disturbance, Deep Learning, Convolutional Neural 
Network, LSTM, Recurrent Neural Network, Autoencoder. 

Abstract: Automatic identification and classification of power quality disturbances (PQDs) is crucial for maintaining 
efficiency and safety of electrical systems and equipment condition.  In recent years emerging deep learning 
techniques have shown potential in performing classification of PQDs. This paper proposes two novel deep 
learning models, called CNN(AE)-LSTM and CNN-LSTM(AE) that automatically distinguish between 
normal power system behaviour and three types of PQDs: voltage sags, voltage swells and interruptions. The 
CNN-LSTM(AE) model achieved the highest average classification accuracy with a 65:35 train-test split. The 
Adam optimiser and a learning rate of 0.001 were used for ten epochs with a batch size of 64. Both models 
are trained using real world data and outperform models found in literature. This work demonstrates the 
potential of deep learning in classifying PQDs and hence paves the way to effective implementation of AI-
based automated quality monitoring to identify disturbances and reduce failures in real world power systems.

1 INTRODUCTION 

In ideal power systems, voltage and current 
waveforms are sinusoids at fundamental frequency 
(i.e., 50 Hz or 60 Hz for Europe or the USA mains 
respectively) (Baggini, 2008). While amplitude of the 
voltage waveform is strictly regulated and maintained 
close to the rated value, the current waveform is more 
variable, as it depends on the rating of loads connected 
to the system and their power demand. Any deviation 
from the ‘ideal’ waveform is defined as a power quality 
disturbance (PQD) (Bollen, 2003). Numerous PQDs 
exist in practice, and power quality standards have 
been developed to provide a classification of each 
disturbance and to provide acceptable limits (IEEE 
Standards Association, 2019).  

Because voltage waveforms are generally more 
stable and less subject to fluctuations of electricity 
demand, this research focused on the classification of 
voltage signals, and on the identification of three 
PQDs: voltage sags/dips, voltage swells and 
interruptions. Voltage sag is a reduction in voltage 
amplitude between 5-90% of the nominal (rated) 
voltage, voltage swell is an increase of the voltage 
amplitude above 105% of the nominal voltage, and an 
interruption is a reduction of the voltage amplitude 
below 10% of the nominal voltage. 

Small deviations from the rated voltage value are 
acceptable and do not harm the electricity system or 
the equipment. With increasing levels of PQDs, some 
detrimental effects can be observed. For example, 
excessive fluctuations of the voltage waveform for 
extended periods of time may lead to damage of 
equipment connected to the power grid, such as motor 
failures (Wang & Chen, 2019). 

In recent years, with the increase of power-
electronics based devices connected to the power grid 
(such as renewable energy sources and electric 
vehicles), PQDs have become more common, thus 
leading to concerns for utilities and power system 
operators in terms of guaranteeing the quality of the 
electrical energy supplied to their customers. As a 
result, increasing numbers of power quality monitors 
are currently being installed, thus allowing the 
collection of large amounts of voltage and current 
data (Demirci et al., 2011). Analysis of these 
waveforms and identification of PQDs   allows 
implementing mitigating solutions, thus improving 
system operating conditions and extending the life-
time of the equipment (Wang & Chen, 2019).  
Various PQD classification methods exist, as 
described in (Demirci et al., 2011). Historically, 
PQDs have been classified using visual inspection of 
the voltage and current waveforms (Wang & Chen, 
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2019). Later on, techniques have been developed to 
automatically detect and classify PQDs, based on 
signal processing techniques (Bravo-Rodriquez, 
Torres and Borrás, 2020). In recent years, some 
methods have been proposed to provide automatic 
classification of PQDs using Big Data with machine 
learning (Wang & Chen, 2019).  

Machine learning is a broad term that refers to 
algorithms that can learn from large amount of data. 
In recent years, machine learning has gained much 
popularity due to development of more accurate 
algorithms, increased training data availability and 
increased computational resources worldwide 
(Jordan & Mitchell, 2015). Machine learning models 
can be used for a vast range of tasks such as credit-
card fraud detection, speech recognition and medical 
diagnosis (Jordan & Mitchell, 2015). Deep Learning 
refers to the particular type of Machine Learning 
techniques used for learning high-level features from 
data in a hierarchical manner using stacked, layer-
wise architectures (Goodfellow & Bengio, 2015). 
Among these are convolutional neural networks 
(CNNs), long short-term memory networks 
(LSTMs), convolutional autoencoders (CAEs), and 
LSTM autoencoders. Deep Learning models 
demonstrate excellent predictive capabilities in image 
and speech recognition, natural language processing 
(NLP), and intelligent gamification (Goodfellow & 
Bengio, 2015). We demonstrate the application of 
Deep Learning to automatically detect PQ events 
using real world datasets. The proposed deep learning 
models are capable of accurately classifying four 
different types of PQ events and outperform other 
models proposed in the literature. 

Machine learning models explored in this paper 
are a combination of several techniques including 
convolutional neural networks (CNNs), long short-
term memory networks (LSTMs), convolutional 
autoencoders (CAEs), and LSTM autoencoders.  

The paper is organised as follows. Section 1 
includes background information on machine 
learning techniques used for PQD classification. 
Section 2 describes the methodology; results are 
presented in section 3 and the paper is concluded in 
Section 4. 

2 BACKGROUND 

In this section a review of deep learning techniques in 
the context of PDQs is provided.  
 
 
 

2.1 Convolutional Neural Networks 
(CNNs) 

CNNs are a type of artificial neural network (ANN) 
used for feature extraction, that primarily take images 
as input but can also handle other data such as words 
and temporal signals (O’Shea & Nash, 2015), 
(Kalchbrenner, Grefenstette & Blunsom, 2014), 
(Palaz, Collobert & Magimai-Doss). In (Bagheri, Gu 
& Bollen, 2018), deep CNNs were utilised to perform 
automatic feature extraction and classify different 
types of voltage dips (sags) recorded by power quality 
monitors (specifically, the PQube meters). Pre-
processed data was used rather than raw data. The 
model was trained and tested as case studies (C1, C2 
and C3) which handled three voltage datasets in a 
different way. The three data set were from Sweden 
(D1), the world (D2) and the UK (D3) (Bagheri et al., 
2018). This method is summarised in Table 1.  

Table 1: Summary of the different ways data was used in 
(Bagheri, Gu & Bollen, 2018). 

Case Study Training Set Testing Set 

C1 
0.75 

(D1+D2+D3) 
0.25 

(D1+D2+D3) 
C2 D2+D3 D1 
C3 D1+D2 D3 

  
Model performance was represented as loss, 

accuracy, classification rate and false alarm rate, but 
only accuracy will be discussed here to align with this 
project (Bagheri et al., 2018). For C1, C2 and C3, 
accuracy was 97.72%, 95.18% and 93.59%, 
respectively (Bagheri et al., 2018). Results suggest 
CNNs are effective for PQD classification, works in 
the literature also use data from 
http://map.pqube.com/. Architecture proposed in 
(Bagheri et al., 2018) is summarised in Table 2. Both 
batch size and epochs were set to 250, and the Adam 
optimiser was applied (Bagheri et al., 2018).  

Table 2: Summary of architecture proposed in (Bagheri, Gu 
& Bollen, 2018). 

Layers 
Filter Size / 

No. of cells 
2D Conv1+ReLU (5, 5) x 16 

2D Conv1+ReLU+Max-
Pooling 

(3, 3) x 32 

2D Conv1+ReLU (3, 3) x 64 
2D Conv1+ReLU+Max-

Pooling 
(3, 3) x 128 

FC1+ReLU 1024 
FC2+ReLU 128 

FC3+Softmax 7 
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Also supporting use of CNNs to classify PQDs is 
(Balouji & Salor, 2017), as it applies CNNs with real 
event images from four transmission substations and 
achieves 100% accuracy. The architecture proposed 
in (Balouji & Salor, 2017, pp219) is similar to 
(Bagheri et al., 2018, pp4); the main difference 
between the two papers is that (Bagheri et al., 2018) 
worked with pre-processed data whilst (Balouji & 
Salor, 2017) used images of voltage waveforms. This 
project will apply raw data, but these two alternatives 
should be considered in future. The study in (Balouji 
& Salor, 2017) also found that using 65 to 135 epochs 
was most suitable. 

2.2 Long Short-term Memory 
Networks (LSTMs) 

LSTMs are a type of recurrent neural network (RNN) 
that deal with data in a sequential format (Baccouche, 
Mamalet, Wolf, Garcia & Baskurt, 2011). This, 
combined with their gating system which gives them 
a ‘memory’ (as it will be explained later), means that 
LSTMs are able to put data into context (Baccouche 
et al., 2011). 

LSTMs were utilised for automatic feature 
extraction and classification of three-phase voltage 
dips collected from various countries (Balouji, Gu, 
Bollen, Bagheri & Nazari, 2018). Model performance 
was evaluated using classification rate and false alarm 
metrics on the test set. Seven different classes were 
defined, and the median average classification and 
false alarm rates of dip types were 93.4% and 7.78% 
respectively (Balouji et al., 2018). Additionally, four 
LSTM layers were implemented with a hyperbolic 
tangent activation for feature extraction, so that 
different layers could extract the multiscale features 
(Balouji et al., 2018). Each LSTM layer is 
accompanied by a batch normalisation layer, and a 
fully-connected layer (also known as a dense layer) 
with softmax activation for classification is used as the 
final layer (Balouji et al., 2018). Before feature 
extraction and classification, the method pre-processed 
the voltage sequence data into root mean square (RMS) 
sequence data and divided it into segments for 
computational efficiency (Balouji et al., 2018).  

In (Katić & Stanisavljević, 2018) a LSTM-based 
network was proposed to automatically detect and 
classify voltage dips in real, simulated and 
laboratory-produced data. High model performance 
was shown through overall classification accuracy 
exceeding 97% (Katić & Stanisavljević, 2018). 
Together, (Balouji et al., 2018) and (Katić & 
Stanisavljević, 2018) suggest application of LSTM 
layers to classify PQDs could be effective. 

2.3 Convolutional Autoencoders 
(CAEs) 

CAEs take CNNs’ ability to extract spatially local 
features, but also employ autoencoders’ (AEs) ability 
to learn features from unlabelled data (unsupervised 
learning), which allows distinction of more subtle 
features than a CNN could identify alone (Seyfioğlu, 
Özbayoğlu & Gürbüz, 2018). 

A comparison of performances of a convolutional 
autoencoder to a multiclass support vector machine 
(SVM), an autoencoder and a CNN, when classifying 
different types of human activity based on radar 
measurements, is shown in (Seyfioğlu et al., 2018). 
Results showed that accuracies of a multiclass SVM, 
an autoencoder, a CNN and a CAE were 76.9%, 
84.1%, 90.1% and 94.2% respectively. This suggests 
that using a deep CAE (DCAE) during model 
development could result in a higher performance 
model than using a traditional CNN or AE.  

This approach is supported by another research 
work that compared performance of a DCAE to SVM, 
sparse representation classifier (SRC) and stacked 
autoencoder (SAE) models when classifying high-
resolution synthetic aperture radar (SAR) images 
(Geng, Fan, Wang, Ma & Chen, 2015). Results 
showed overall accuracy of the SVM, SRC, SAE and 
DCAE models were approximately 76.92%, 81.08%, 
82.45% and 88.11% respectively (Geng et al., 2015). 
Results presented in this work further support 
application of DCAE models for classification because 
DCAE accuracy significantly exceeds accuracy of 
other models. Furthermore, results showed that the 
DCAE was most accurate at classifying four out of five 
individual classes (Geng et al., 2015).  

Even though both (Seyfioğlu et al., 2018) and 
(Geng et al., 2015) propose ‘deep convolutional 
autoencoders’, their interpretation of this 
nomenclature is different. In (Seyfioğlu et al., 2018), 
three convolutional layers are used on each side, with 
max-pooling and unpooling layers located between 
them. The number of filters applied decreases across 
each layer for the first three convolutional layers 
(encoding) and increases across each layer for the last 
three convolutional layers (decoding) (Seyfioğlu et 
al., 2018). However, (Geng et al., 2015) proposes a 
convolutional layer in the same network as a 
traditional sparse autoencoder (encoder-decoder 
made from fully-connected layers rather than 
convolutional layers).  

As results from (Seyfioğlu et al., 2018) were 
encouraging, application of six convolutional layers 
for a CAE will be tested.  
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2.4 LSTM Autoencoders 

LSTM autoencoders are also known as sequence-to-
sequence autoencoders and have been shown to be 
successful in tasks such as machine translation, 
natural language generation and reconstruction and 
image captioning (Mehdiyev, Lahann, Emrich, Enke, 
Fettke & Loos, 2017).  

A GRU-based autoencoder presented in 
(Amiriparian, Freitag, Cummins & Schuller, 2017) 
successfully classified labelled acoustic scene audio 
data with accuracy of 88%. LSTM units were adopted 
instead of GRUs during model design, but did not 
show a performance improvement, suggesting value 
in experimenting with GRU and LSTM autoencoders.  

Specific parameter values for the architecture 
proposed in (Amiriparian et al., 2017) are not given, 
but the general idea is that RNN layers define the 
encoder, followed by a fully-connected layer with a 
hyperbolic tangent activation function. The final 
layers consist of RNN layers for the decoder, 
followed by a linear projection layer with a 
hyperbolic tangent activation function are also 
applied to the RNN layers’ inputs and outputs 
(Amiriparian et al., 2017). This type of architecture 
will be tested when developing models, as the results 
from (Cho et al., 2014), (Bengio et al., 2015), 
(Amiriparian et al. 2017) and (Patilkulkarni & 
Lakshmi, 2013) have shown to improve performance. 

2.5 CNN-LSTM 

CNN-LSTM networks are neural networks that 
combine elements of CNNs (mainly CNN and 
pooling layers) with elements of LSTM networks 
(mainly LSTM and flatten layers). CNN-LSTM 
networks are used in classification problems as they 
provide advantages of both CNNs and LSTMs, 
namely the spatial feature extraction ability of CNNs 
and the temporal sequential learning ability of 
LSTMs (Mohan, Soman & Vinayakumar, 2017). 

A comparison of the performance of several 
models that were CNN, RNN, identity recurrent 
neural network (I-RNN), LSTM, GRU and CNN-
LSTM based, when classifying synthetic and real-
time PQDs, can be found in (Mohan et al., 2017). The 
synthetic data contained eleven different classes 
which were both single and combined disturbance 
types, whereas real-time data contained only three 
classes (Mohan et al., 2017). Results showed that for 
synthetic data, the CNN-LSTM model have the 
highest overall accuracy of 98.4% (Mohan et al., 
2017). Only the CNN-LSTM model was tested on 
real-time data and it achieved an accuracy of 91.9% 

(Mohan et al., 2017). These results suggest a CNN-
LSTM model can perform accurate classification of 
synthetic and real-time PQDs. A batch size of 32 and 
1000 epochs were proposed (Mohan et al., 2017).  

The performance of a CNN-LSTM model when 
classifying electrocardiogram (ECG) signals into five 
different classes for automatic arrythmia diagnosis 
was studied in (Oh, Ng, Tan & Acharya, 2018). 
Results showed that the hybrid model performed with 
98.1% accuracy (Oh et al., 2018). This result supports 
the claim that adoption of a CNN-LSTM model can 
result in accurate classification performance. 
Although ECG signals differ to PQ signals, ECG 
signals are still voltage measurements but taken in the 
heart, and both data types are periodical. Architecture 
of the CNN-LSTM proposed in (Oh et al., 2018) is 
described with good detail. A batch size of ten was 
chosen and the model was trained for 150 epochs.  

In (Garcia et al., 2020), a CNN-LSTM model was 
used to classify five different PQDs using voltage 
waveforms as training and testing data and achieved 
a maximum accuracy of 84.76%. 

Based on the literature review, the following 
networks have been identified as successful for the 
identification of PQDs: CNN autoencoder with 
LSTM and CNN with LSTM autoencoder. 

Therefore, the networks above were adopted for 
testing with PQD signals. In the following sections, 
tests were carried out using CNN and LSTM. 
Additional networks are at the moment under 
development and will be presented in future work.  

3 METHODOLOGY 

The proposed approach is comprised of two steps. 
Step 1 is the collection and pre-processing of data. 
Step 2 refers to the development of two models using 
Design of Experiments (DOE) and suggestions from 
the literature. 

3.1 Step 1: Data Collection &  
Pre-processing 

This work uses real data recorded by PQube power 
quality monitors. The data can be accessed online and 
is openly available (Power Standards Lab, 2019). 
Each sample contains three-phase voltage data (L1-
N, L2-N and L3-N) for varying numbers of time-
steps, accompanied by the label for the type of PQD 
present. The source website contains PQD data from 
numerous PQube meters located around the world. 

Different meters had different software versions 
and were recording data for different types of 
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electrical systems, which meant each meter had a 
different range of disturbances. In addition, some 
meters recorded voltages in L-N format, some in L-L 
format, and some only recorded voltages in one or 
two phases rather than three. The dataset involved 
with this work was retrieved from the PQube map 
website (Power Standards Lab, 2019) and is 
summarised in Table 3. 

Table 3: Number of samples for each class. 

Class Number of Samples 
Snapshot (Normal) 976 
Voltage Sag/Dip 315 

Voltage Swell 275 
Interruption 123 

Total 1689 
 

After data was imported, it was split into training 
and testing data using the Python ‘train_test_split’ 
function. A 65:35 train-test split was adopted as ratios 
of 80:20, 75:25 and 70:30 were experimented with and 
gave poorer results. This was likely due to 65% of the 
data being enough for the model to learn about it and 
predict classes, whereas any higher percentage resulted 
in the model learning the training data too well and 
therefore performing poorly on test data (overfitting). 

As shown in Table 3, there is a significant 
imbalance between the number of samples of each 
class, with the snapshot class being a large majority 
class: of the 1689 samples, 976 (approx. 57.8%) are 
snapshots. If the data was trained and tested on with 
this imbalance, it could potentially reduce model 
performance, because any model could learn that it 
can achieve this as an accuracy just by classing every 
sample as a snapshot, which is undesirable (Towards 
Data Science, 2019). Therefore, to solve this problem, 
oversampling was performed to balance the number 
of samples of each class. Several oversampling 
options existed, and multiple methods were 
attempted. The RandomOverSampler function was 
chosen and works by choosing random samples of the 
minority class or classes and duplicating them until 
classes are balanced (Towards Data Science, 2019). 

3.2 Step 2: Model Training & DOE 
Optimisation 

Initially, elements from the models proposed in 
(Mohan et al., 2017), (Seyfioğlu et al., 2018) and 
(Balouji & Salor, 2017) were combined to produce a 
convolutional autoencoder with LSTM model named 
CNN(AE)-LSTM. This achieved an average accuracy 
of 93.8% over ten runs. As suggested by (Mehdiyev 
et al., 2017), (Cho et al., 2014) and (Bengio et al., 

2015), the next model developed replaced the 
convolutional autoencoder element of the CNN(AE)-
LSTM model with a normal CNN element, and 
replaced the LSTM element with a LSTM 
autoencoder. This model was named CNN-
LSTM(AE). This achieved an average accuracy of 
96.6% over ten runs.  

The second aim of Step 2 was to find the optimal 
model parameters which was achieved using 
orthogonal arrays. Five factors were chosen for 
optimisation, namely: number of convolutional 
filters, convolutional and max-pooling strides, 
dropout rate, number of LSTM memory blocks and 
max-pooling filter size.  

Each factor had three different levels, taken 
mostly from the literature. The exceptions were a 
CNN filter combination of 16, 8, 4, 8, 16, stride of 
two, a dropout rate of 0.7 and a max-pooling filter size 
of four. These were chosen experimentally for 
convenience and are not informed from the literature. 
All settings are summarised in Table 4 and Table 5.  

Note that the convolutional filter sizes were not 
changed as previous work (Balouji & Salor, 2017), 
(Mohan et al., 2017) and (Seyfioğlu et al., 2018) 
agreed three was the best. Orthogonal arrays applied 
were L27(35). For the two optimised models, time per 
epoch was compared.  

Table 4: Parameters and levels chosen for the orthogonal 
array for the CNN(AE)-LSTM model. 

Parameter Setting 1 Setting 2 Setting 3 

No. of Conv 
Filters 

8, 4, 2, 4, 
8 

16, 8, 4, 
8, 16 

32, 16, 
8, 16, 32 

Conv & Pooling 
Strides 

1 2 3 

Dropout Rate 0.3 0.5 0.7 
LSTM Memory 
Blocks 

20 50 128 

Max-Pooling 
Filter Size 

2 3 4 

Table 5: Parameters and levels chosen for the orthogonal 
array for the CNN-LSTM(AE) model. 

Parameter Setting 1 Setting 2 Setting 3 
No. of Conv 
Filters 

8 16 32 

Conv & 
Pooling 
Strides 

1 2 3 

Dropout Rate 0.3 0.5 0.7 
LSTM 
Memory 
Blocks 

27,15, 8, 
15, 27 

62, 32, 8, 
32,62 

128, 64, 32, 
64, 128 

Max-Pooling 
Filter Size 

2 3 4 
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4 RESULTS & DISCUSSION 

All models were run ten times and overall accuracies 
are reported in Table 6 which shows slightly better 
accuracies overall for the CNN-LSTM(AE) model 
than the CNN(AE)-LSTM model.  

Also, no significant drops in accuracy exist, likely 
because feature extraction of the LSTM autoencoder 
has been more effective than the plain LSTM. 

Table 6: Testing accuracies achieved for every run of every 
model that initially had high performance during Step 2. 

  Accuracy (%) 

 Exp. 
No. 

CNN(AE)-LSTM CNN-LSTM(AE) 

T
es

t N
o.

 

1 95.6 96.7 

2 93.5 96.1 

3 96.5 98.2 

4 95.8 96.8 

5 97.2 97.1 

6 83.2 97.4 

7 96.0 94.8 

8 93.7 96.9 

9 92.3 95.2 

10 94.8 96.9 
 Avg. 93.9 96.6 

 Std. 
Dev. 

4.0 1.0 

 
The CNN-LSTM(AE) model in Table 7 shows 

that using less convolutional and pooling strides 
resulted in better performance. At first glance, this is 
not supported by the CNN(AE)-LSTM model. 
However, the CAE element of the CNN(AE)-LSTM 
model uses four convolutional layers and two max-
pooling layers, meaning that using a lower stride was 
much more computationally demanding causing 
memory failures at one stride. Using two strides 
worked but this did not appear as the optimal stride 
number because three strides was tested with other 
parameters at better settings.  

No trends were found regarding the number of 
LSTM memory blocks used, which appeared to have 
less impact on testing accuracy than CNN-based 
parameters. Setting max-pooling and up-sampling 
filter sizes to two was shown to consistently be the 
best option for this application. This conclusion is 
aligned with the suggestions in the literature (Mohan 
et al., 2017), (Seyfioğlu et al., 2018), (Liu et al., 

2017). In addition, lower max-pooling filter sizes 
mean less smoothing, so more data is preserved. Up-
sampling size is the number of times each sample is 
magnified (Medium, 2018). 

The LSTM autoencoder model surpassed the 
model using a normal LSTM layer. LSTM 
autoencoders were more effective than normal LSTM 
elements as LSTM autoencoders learn about data 
more thoroughly. 

Table 7: Summary of the settings leading to the best 
experimental results for each model, with average 
accuracies achieved and standard deviation values. 

Model CNN(AE)-LSTM 
CNN-

LSTM(AE) 

Trial 1 8.003 35.014 

Trial 2 5.002 32.013 

Trial 3 5.002 32.012 

Average 6.002 33.013 

 
Table 8 shows time taken for each model to run 

one epoch. Three epoch trials were run for each 
model and then an average was taken to minimise 
error, as there was some variation between each 
execution. Results show employing LSTM 
autoencoders required four to five times the time per 
epoch as the non-LSTM autoencoder model. Also, the 
CNN(AE)-LSTM was fast but less accurate than the 
CNN-LSTM(AE) model which was quite slow and 
gave moderately good accuracy. 

Table 8: Average times achieved by each model's best 
experimental set-up in seconds. 

Model 
CNN(AE)-

LSTM 
CNN-

LSTM(AE) 
No. of Conv 

Filters 
16, 8, 4, 8, 16 8 

Conv & 
Pooling Strides 

3 1 

Dropout Rate 0.3 0.3 
LSTM Memory 

Blocks 
50 27, 15, 8, 15, 27 

Max-Pooling & 
Up-Sampling 

Filter Size 
2 2 

Average 
Accuracy 

0.952 0.979 

Standard 
Deviation 

0.012 0.006 
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5 CONCLUSIONS 

In this paper two deep learning models for predicting 
PQDs have been proposed and tested, namely 
CNN(AE)-LSTM and CNN-LSTM(AE) These 
models achieved accuracies of 95.153%±0.012 and 
97.894%±0.006%, respectively.  

The CNN-LSTM(AE) achieved great accuracy 
but it was relatively slow, whilst the CNN(AE)-
LSTM achieved poorer accuracy but was much 
quicker per epoch.  

For the model optimisation step it was found that 
one stride was more accurate but more 
computationally demanding, affecting memory usage 
the most. Larger filter sizes and strides caused lower 
accuracy due to lower resolution of data captured by 
filters, whilst more convolutional filters resulted in 
higher accuracies.  

Generally, a dropout rate of 0.3 was the best.  
CNN layers appeared to be more computationally 

demanding and more effective than LSTM layers, 
possibly because CNN layers are generally used with 
images and filters pixel values in a matrix (similar to 
the PQube data), unlike LSTM layers that are 
generally used with sequences. Accuracy shared no 
relationship with LSTM memory blocks or 
decomposition level.   

The CNN-LSTM(AE) exceeded performance of 
models in the literature (Bagheri et al., 2018), 
(Balouji et al., 2018), (Garcia et al., 2020), (Uyar et 
al., 2008), (Abdel-Galil et al., 2004), of which some 
worked with synthetic data and others worked with 
real data, whilst the CNN(AE)-LSTM exceeded some 
of these (Balouji et al., 2018), (Garcia et al., 2020), 
(Uyar et al., 2008), (Abdel-Galil et al., 2004) The next 
steps of this research will consist of further 
development of the proposed model and in testing its 
accuracy in detecting other PQDs.  
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