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Abstract: The paper discusses a new approach to recognition / identification of the test objects according to their 
intensity shape in the images registered by photon counting detectors. The main problem analyzed within the 
framework of the proposed approach is related to the identification decision (inference ) based on a registered 
set of discrete photocounts (~ photons) regarding the similarity of the shape of the object's intensity in the 
image to the shape of previously observed objects (precedents). It is shown that when the intensity shape is 
approximated by a mixture of Gaussian components within the framework of this approach, a recurrent 
identification algorithm can be synthesized, similar to the well-known K-means clustering algorithm in the 
machine (statistical) learning.  

1 INTRODUCTION 

Biomedical imaging includes several methods and 
techniques for representing by images (usually 
digital) various organs and their sections, hidden as a 
rule from direct (visual) observation. The demand for 
imaging tools in modern medicine is growing at a 
rapid pace, and this is noted both in the field of 
analysis of clinical cases and in the field of 
diagnostics. The need for modern diagnostic methods 
in medicine has led to the expansion of developments 
in various areas of biomedical imaging. Magnetic 
resonance imaging (MRI), computed (X-ray) 
tomography (CT), positron emission tomography 
(PET), single-photon emission computed 
tomography (SPECT), etc. should be noted among the 
main areas that have won reliable positions today 
(Darby, 2012). 

The existence of various imaging methods is 
usually associated with the sensitivity of the 
corresponding techniques to a certain type of tissue. 
For example, MRI images are sensitive to soft tissue, 
while X-ray images are more sensitive to hard and 
bony structures. However, despite the difference in 
the underlying physical principles, a common feature 
of all methods is the low level of the used radiation. 
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This leads to the fact that the so-called photon-
counting detectors (PCDs) are widely used as the 
sensors of the visualization (Leng, 2019). At the same 
time, while the photon-counting mode is natural for 
PET and SPECT, until recently, the mode of photons 
accumulation (energy-integrating detectors ‒ EIDs) 
was mainly used for CT. However, the recent 
developments of energy-sensitive PCD open up new 
possibilities for obtaining X-ray images at low photon 
fluxes, involving the registration of images in the 
PCD mode (from ~ 10 photons per pixel to, in the 
future, 1:1) (Willemink, 2018). 

This energy-sensitive PCD technology has the 
potential to revolutionize clinical CT by providing a 
higher contrast-to-noise ratio, improving spatial 
resolution, and opening the possibilities for spectral 
(colour) imaging. In this regard, the report outlines a 
new image processing method that can be chosen as 
the basis for a modern approach to PCD-imaging 
problems. The proposed method is defined as the 
method of maximum similarity and represents some 
adaptation of the R. Fisher's maximum likelihood 
method (ML) to machine learning problems.Within 
the framework of the proposed approach, the 
recognition, or more precisely, the identification of 
objects on PCD images is performed in accordance 
with the shape of their intensity.  
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2 MAXIMUM SIMILARITY 
METHOD 

The starting points of the maximum similarity method 
formally are as follows. It is assumed that for the 
objects under consideration there are sets of (random) 
observations ‒ counts of the form 𝑋 = {�⃗�ଵ, … , �⃗�௡}, 
where �⃗�௜ ∈ ℝଶ . In this case, the number n of 
observations in set 𝑋 can be arbitrary. The physical 
mechanism of their registration (observation) is not 
specified here. For the maximum similarity method 
presented in this work, only the statistical description 
of observations is essential. 

From the statistical point of view, it is assumed 
that each observation �⃗�௜ is random and the process of 
its registration is described by some parametric 
probability distribution with density 𝜌൫�⃗� | �⃗�൯ , �⃗� ∈𝛩 ⊂ ℝ௣ (parametric model). It is assumed, following 
the Bayesian point of view, that the parameters �⃗� are 
also random variables with a certain prior distribution 
density 𝒫൫�⃗�൯, the exact form of which, however, is 
not essential. Both assumptions allow us to utilize the 
joint distribution density 𝜌൫�⃗� ; �⃗�൯ = 𝜌൫�⃗� | �⃗�൯𝒫൫�⃗�൯ of 
observationы �⃗� and parameters �⃗�. 

The presented parametric model belongs to the 
class of the so-called generative models (Jebara, 
2004), which imply a correspondence of certain 
values of the parameters �⃗�ଵ, �⃗�ଶ, … , �⃗�௞, … ∈ 𝛩  to the 
objects observed (in short, these values can be 
thought of as object class labels (Wasserman, 2004)). 
However, the problem with generative models is that 
the exact values of the parameters corresponding to 
the objects are unknown, only their statistical 
estimates, based on the sets of objects observed data 𝑋ଵ, 𝑋ଶ, … , 𝑋௞, … are available. 

In particular, the maximum likelihood (ML) 
estimates �⃗�௞(ெ௅) (Efron, 1982), determined from the 
R. Fisher's ML equations, can be used as such 
estimates: �⃗�௞(ெ௅) = 𝑎𝑟𝑔maxఏሬሬ⃗ ∈௵ 𝜚൫𝑋௞| �⃗�൯. (1)

As follows from (1), to find maximum likelihood 
estimates, it is necessary for each n, as well as for  𝑛 = 1, to determine its parametric n‒model of the set 
of observations 𝑋  ‒ the corresponding probability 
distribution density 𝜚൫�⃗�ଵ, . . . , �⃗�௡ | �⃗�൯  (these models 
for different n should be consistent in accordance 
with the Kolmogorov theorem, see (Billingsley, 
1986)). However, it is possible to significantly 
simplify the problem of determining n‒models by 

assuming the conditional (for a given �⃗� ) 
independence of individual observations of the set: 𝜚൫𝑋 | �⃗�൯ = ∏ 𝜌൫�⃗�௜| �⃗�൯௡௜ୀଵ  . (2)

Note that assumption (2) is actively used in 
machine learning problems, for example, within the 
framework of the naive Bayesian method (Barber, 
2012), which is one of the ten most popular modern 
algorithms (Wu, 2007). 

The problem of identification, correlation of some 
observable, test object with one of the previously 
registered training objects (hereinafter called 
precedents) is formalized now in the context of the 
presented parametric model as the problem of 
maximizing some measure of similarity of the 
observed data from the object 𝑋 = {�⃗�ଵ, … , �⃗�௡} with 
the data sets 𝑋ଵ, 𝑋ଶ, … , 𝑋௞, …, obtained earlier for the 
precedents. Since no additional knowledge about the 
object and precedents except for observed data 𝑋, 𝑋ଵ, 𝑋ଶ, … , 𝑋௞, … is assumed (including the values 
of the characteristic parameters �⃗�ଵ, �⃗�ଶ, … , �⃗�௞, … ∈ 𝛩, 
characteristics of 𝒫൫�⃗�൯, etc.), it is highly desirable 
that the corresponding similarity measure  𝜇(𝑋, 𝑋௞ ) 
could be expressed in terms of this and only this data. 

A natural quantitative characteristic of the 
consistency of data 𝑋  and an arbitrary set of 
observations 𝑋௞  is the probability density of their 
joint distribution 𝑝(𝑋, 𝑋௞), under the assumption that 
both sets correspond to the same unknown object.  

Taking into account the basic assumption about 
the considered model (2) (as well as the sets 𝑋 and 𝑋௞ 
conditional independence), density  𝑝(𝑋, 𝑋௞)  can be 
written in the following form: 𝑝(𝑋, 𝑋௞ ) = ׬ 𝑝൫𝑋, 𝑋௞ | �⃗�൯𝒫൫�⃗�൯𝑑�⃗� == ׬ 𝜚൫𝑋 | �⃗�൯𝜚൫𝑋௞ | �⃗�൯𝒫൫�⃗�൯𝑑�⃗� == ׬ ∏ 𝜌൫�⃗�௜| �⃗�൯௡ଵ ∏ 𝜌൫�⃗�௝| �⃗�൯௡ೖଵ 𝒫൫�⃗�൯𝑑�⃗� == ׬ 𝜚൫𝑋 ∪ 𝑋௞ | �⃗�൯𝒫൫�⃗�൯𝑑�⃗� . (3)

where {�⃗�௝} is a set of 𝑛௞ observations 𝑋௞, 𝑋 ∪ 𝑋௞ is a 
set of 𝑛 + 𝑛௞ observations obtained by uniting 𝑋 and 𝑋௞. In other words, 𝑝(𝑋, 𝑋௞) (3) is an unconditional 
distribution density of type (2) model for united set of 
observations {�⃗�௝}  ∪ {�⃗�௜} . Note that the data 𝑋  and 𝑋௞ , being conditionally independent, in the general 
case turn out to be unconditionally dependent due to 
a correlation 𝑋௞~𝜃ሬ⃗ ~𝑋. 

Considering the above interpretation, it is clear 
that 𝑝(𝑋, 𝑋௞)  in some sense reflects the degree of 
consistency between 𝑋 and 𝑋௞. Namely, if all objects 
observed data 𝑋ଵ, 𝑋ଶ, … , 𝑋௞, …, would be of the same 
size 𝑛ଵ = 𝑛ଶ = ⋯ = 𝑛௞ = 𝑚, then all the sets {𝑋 ∪𝑋௞}  would be random samples within the same 
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parametric (𝑛 + 𝑚)‒model 𝜚൫𝑋 | �⃗�൯ (2). In this case, 
the degree of consistency 𝑋  ~ 𝑋௞  would be 
determined by the probability of their joint sample 𝑋 ∪ 𝑋௞, i.e. 𝑝(𝑋, 𝑋௞), indeed, could be considered as 
a similarity measure. The problem, however, is that, 
due to the arbitrary value of 𝑛௞ , the sets {𝑋 ∪ 𝑋௞} 
belong to different models and, therefore, the 
comparison of 𝑝(𝑋, 𝑋௞)  values for different 𝑋௞ 
should be corrected for this circumstance. 

In the proposed maximum similarity method, the 
corresponding correction is specified by normalizing 
the values 𝑝(𝑋, 𝑋௞) (3) to the probabilities 𝑝(𝑋௞): 𝜇(𝑋, 𝑋௞ ) = ௣(௑,௑ೖ )௣(௑ೖ ) = 𝑝(𝑋 | 𝑋௞ ). (4)

i.e. the similarity measure 𝜇(𝑋, 𝑋௞ ) is chosen as the 
ratio of the probability of the 𝑋 ∪ 𝑋௞ sample to the 
probability of the only 𝑋௞  sample. In this case, the 
maximum similarity method consists in choosing the 
precedent for which the expansion of the sample 𝑋௞ 
by the 𝑋 leads to the greatest probability ratio. 

As follows from (4), the chosen probability ratio 
formally coincides with the conditional probability of 
the set 𝑋 with the given observations 𝑋௞. The latter 
leads to an alternative interpretation of the proposed 
method: the observed object is identified with the 
precedent, observations 𝑋௞  of which lead to the 
maximum conditional probability of a set of 
observations 𝑋 for the object tested. 

Using the selected measure of similarity of the 
observed data and precedents 𝜇(𝑋, 𝑋௞ )  (4), the 
maximum similarity method can be formalized as a 
solution to the following maximum similarity (MS) 
equation: 𝑘ெௌ = 𝑎𝑟𝑔max௞ 𝜇(𝑋, 𝑋௞ ) == 𝑎𝑟𝑔max௞ 𝑝(𝑋 | 𝑋௞ ) . (5)

To further substantiate the proposed method, 
namely, the choice of the similarity measure in the 
form (4), it is convenient to turn to the asymptotic 
case of large samples of precedents 𝑛௞ ≫ 1 . Note 
that, in addition to questions of convenience, this case 
quite adequately reflects the specifics of the 
(machine) learning process organization. 

In the general (not necessarily asymptotic) case 
the conditional probability 𝑝(𝑋 | 𝑋௞ ) in terms of the 
parametric model (3) can be written as: 𝑝(𝑋 | 𝑋௞ ) = ׬ ద൫௑ | ఏሬሬ⃗ ൯ద൫௑ೖ | ఏሬሬ⃗ ൯𝒫൫ఏሬሬ⃗ ൯ௗఏሬሬ⃗׬ ద൫௑ೖ | ఏሬሬ⃗ ൯𝒫൫ఏሬሬ⃗ ൯ௗఏሬሬ⃗  . (6)

In the case 𝑛௞ ≫ 1  for 𝜚൫𝑋௞ | �⃗�൯  (2) holds the 
well-known asymptotic approximation in 
neighbourhood of �⃗�௞(ெ௅) (1) (Wasserman, 2004): 

𝜚൫𝑋௞ | �⃗�൯ ≅ 𝜚 ቀ𝑋௞ |�⃗�௞(ெ௅)ቁ ×× exp ൤− ௡ೖଶ ቀ�⃗� − �⃗�௞(ெ௅)ቁ் 𝐼 ቀ�⃗�௞(ெ௅)ቁ ቀ�⃗� − �⃗�௞(ெ௅)ቁ൨. (7)

where 𝑇 is the transposition operation, 𝐼 ቀ�⃗�௞(ெ௅)ቁ is the 
Fisher’s information matrix for the distribution 𝜌൫�⃗� | �⃗�൯ ‒ one of the most important characteristics 
of the adopted parametric model: 𝐼௜௝൫�⃗�൯ = − ׬ 𝜌൫�⃗�| �⃗�൯ൣ𝜕ଶ ln 𝜌൫�⃗�| �⃗�൯ 𝜕𝜃௜𝜕𝜃௝ൗ ൧𝑑�⃗�. (8)

Considering the sharpness of the peak of 
asymptotic (7) in the vicinity of �⃗�௞(ெ௅) , we can 
approximate the numerator in (6) by: ׬ 𝜚൫𝑋 | �⃗�൯𝜚൫𝑋௞ | �⃗�൯𝒫൫�⃗�൯𝑑�⃗� ≈≈ 𝜚 ቀ𝑋 |�⃗�௞(ெ௅) ቁ ׬ 𝜚൫𝑋௞ | �⃗�൯𝒫൫�⃗�൯𝑑�⃗� . (9)

As a result, 𝑝(𝑋 | 𝑋௞ )  (6) is simplified to 𝜚(𝑋 |�⃗�௞(ெ௅)), and the similarity measure 𝜇(𝑋, 𝑋௞ ) (4) 
takes the following simple form: 𝜇(𝑋, 𝑋௞ ) ≅ 𝜚 ቀ𝑋 |�⃗�௞(ெ௅) ቁ. (10)

In other words, in the case of large sets of 
precedent observations 𝑋ଵ, 𝑋ଶ, … , 𝑋௞, …, 𝑛௞ ≫ 1 (the 
number of observations n of a set 𝑋 of an identified 
object does not have to be large), the naive Bayesian 
distribution density 𝜚൫𝑋 | �⃗� ൯ (2) for the values of the 
parameter �⃗� = �⃗�௞(ெ௅)  can be used as a similarity 
measure 𝜇(𝑋, 𝑋௞ ). The latter means that for arbitrary 
precedents (arbitrary 𝑛௞ ), the similarity measures 𝜇(𝑋, 𝑋௞ )  (4) are determined within the same n‒
model, so the comparison of their values is quite 
justified. Note that not only ML estimates but also 
many other, called consistent estimates, give us an 
asymptotic of the form (7). In this context, �⃗�௞(ெ௅)can 
be understood as any of consistent estimates, and not 
necessarily a solution to problem (1). 

With a pragmatic point of view, expression (10) 
for the similarity measure 𝜇(𝑋, 𝑋௞ ) seems even more 
attractive than (4). The corresponding formulation of 
the maximum likelihood method, which is the 
asymptotic limit of the general formulation (5), takes 
on a form like the maximum likelihood method (1): 𝑘ெௌ = 𝑎𝑟𝑔max௞ 𝜚 ቀ𝑋 |�⃗�௞(ெ௅) ቁ == 𝑎𝑟𝑔 maxఏሬሬ⃗ ∈{ఏሬሬ⃗ ೖ(ಾಽ)} 𝜚൫𝑋 |�⃗� ൯ . (11)

with the only exception that maximization is 
performed not over all �⃗� ∈ 𝛩, but only over a finite set 
of estimates �⃗�ଵ(ெ௅), �⃗�ଶ(ெ௅), … , �⃗�௞(ெ௅), … ∈ 𝛩. Note that, 
from a practical point of view, in this case, there is 
also no need to store in full the sets of observations of 
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precedents 𝑋ଵ, 𝑋ଶ, … , 𝑋௞, …, it is enough to save only 
the parameter estimates (statistics) ቄ�⃗�௞(ெ௅)ቅ, obtained 
from observations. 

3 MAXIMUM SIMILARITY 
METHOD IN THE CASE OF 
GAUSSIAN MIXTURES 

In previous works (Antsiperov, 2019а), (Antsiperov, 
2019b) basing on the physical (semi‒classical) 
mechanisms of radiation registration by matter, it was 
shown that the most adequate statistics of 
photocounts in the PCD image data 𝑋 = {�⃗�ଵ, … , �⃗�௡}, 
is given by the Poisson point processes (PPP) model 
(Streit, 2010). It was also shown that for the problems 
of object identification only by the form of intensity, 
regardless of the total brightness, one can restrict 
oneself to the densities of conditional distributions of 
the probabilities of the coordinates of the counts {�⃗�௜} 
factored into the product, provided that their total 
number of registered counts n is given: 𝜚(�⃗�ଵ, … , �⃗�௡|𝑛, 𝐼(�⃗�)) = ∏ 𝜌(�⃗�௜|𝐼(�⃗�))௡௜ୀଵ ,  𝜌൫�⃗�ห𝐼(�⃗�)൯ = 𝐼(�⃗�) ׬ 𝐼(�⃗�)𝑑�⃗�ఆൗ  ,   (12)

where 𝐼(�⃗�) is the intensity of coming from the object 
and recorded on the PCDs surface  𝛺  radiation. 

Let the intensity 𝐼(�⃗�)  be approximated by a 
parametric intensity model 𝐼(�⃗�|�⃗�ை) , �⃗�ை ∈ 𝛩 ⊂ ℝ௉ , 
which we define as a sum, a mixture of 𝐾 overlapping 
components, frames {𝐹௝(�⃗� |�⃗�௝, �⃗�ை)} , 𝑗 = 1, … , 𝐾 , 
located at the nodes ൛�⃗�௝ൟ of some imaginary regular 
lattice, covering 𝛺: 𝐼(�⃗�|�⃗�ை) = ∑ 𝐹௝(�⃗� |�⃗�௝, �⃗�ை)௄௝ୀଵ . (13)

The components 𝐹𝑗(�⃗� |�⃗�𝑗, 𝜃ሬ⃗ 𝑂)  in (13) are 
assumed to be copies of some basic frame 𝐹(�⃗� |�⃗�) ≥0 , �⃗� ∈ ℝ𝑝 , 𝑝 = 𝑃 𝐾⁄ , shifted to the nodes of the 
lattice ൛�⃗�௝ൟ, 𝑝 = 𝑃 𝐾⁄ , specified up to the values of 
the parameters �⃗� . The region 𝛥 ⊂ ℝଶ , in which 𝐹(�⃗� |�⃗�) ≠ 0  will be called the carrier of the base 
frame or the base carrier. This carrier 𝛥 is assumed to 
be symmetric in the sense that it contains the 
coordinates origin �⃗� = 0ሬ⃗  and, together with each �⃗�∈𝛥 , contains −�⃗� . The simplest example of such a 
carrier is some regular polygon, for example, a 
square, placed in coordinates origin. 

Let us denote by �⃗�௝ the values of the parameters 
of the frame / component in the mixture (13), located 

at the node 𝑗 (�⃗�௝ can be considered as related to this 
node 𝑗 as �⃗�௝ ). Taking into account the assumptions 
made, model (1) is refined in the form: 𝐼(�⃗�|�⃗�ை) = ∑ 𝐹൫�⃗� − �⃗�௝ ห𝜂௝)௄௝ୀଵ . (14)

where the complete set of parameters �⃗�ை is now 
represented by the set {�⃗�ଵ, … , �⃗�௄} and it is considered 
that the 𝑗‒th component of the mixture depends only 
on a part of the parameters ‒ on �⃗�௝. 

In model (14), the carriers of the components of 
the mixture ൛𝛥௝ൟ ‒ copies of the base carrier 𝛥 shifted 
by ൛�⃗�௝ൟ, are assumed to be partially overlapping. This 
is provided by the requirement 𝐷 > 𝑑, where 𝐷 is the 
characteristic size of 𝛥, and 𝑑 is the lattice spacing. 
Assuming the last requirement is fulfilled, we obtain 
that the set of carriers ൛𝛥௝ൟ completely covers the area 𝛺  of the image. The simplest example of such a 
covering 𝛺 is the square carriers ൛𝛥௝ൟ, whose centers 
are located at the nodes ൛�⃗�௝ൟ of a rectangular lattice. 

When 𝛺  is completely covered by the carriers ൛𝛥௝ൟ, each point �⃗� ∈ 𝛺 belongs to at least one carrier. 
Therefore, the set of nodes whose carriers contain �⃗� 
is not empty. We denote the set of indices of these 
nodes by 𝛿௫⃗ = {𝑗}  and call it the �⃗� lattice 
environment. Due to the symmetry of the base carrier 𝛥 , the nodes in 𝛿௫⃗  will be those contained in the 
region obtained by displacement to the point �⃗�  of the 
base carrier 𝛥. Lattice environments 𝛿௫⃗ will be used 
intensely in the construction of identification 
procedure. 

The next step in refining model (14) is related to 
the choice of a dependence of the base frame 𝐹(�⃗� |�⃗�) 
on the parameters �⃗� = (𝜂0, 𝜂1, … , 𝜂𝑝−1)𝑇 . The 
simplest form of such dependence could be a linear 
combination with the coefficients �⃗�  of some finite 
functional basis {𝜑଴(�⃗�), 𝜑ଵ(�⃗�), … , 𝜑௣ିଵ(�⃗�)} , for 
example, in the image of the construction of frames 
(Gröchenig, 2001). However, in this case, to ensure 
the positivity of the base frame 𝐹(�⃗� |�⃗�) ≥ 0 , 
significant restrictions would be required both on the 
basis {𝜑௤(�⃗�)} and on the parameters �⃗�. Therefore, it 
seems more appropriate to expand on the functional 
basis of not the frame itself, but its logarithm: 𝐹(�⃗� |�⃗�) = 𝐼ைexp൛∑ 𝜂௤𝜑௤(�⃗�)௣ିଵ௤ୀ଴ ൟ , �⃗� ∈ 𝛥 , (15)

where the multiplier 𝐼ை  is introduced to ensure the 
correct frame dimension. Bearing in mind the 
subsequent normalization of the intensity, it is 
convenient to take as multiplier 𝐼ை  the average 
radiation intensity on the 𝛺 : 
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𝐼ை = ଵఀ೾ ∬ 𝐼ை(�⃗�)𝑑�⃗� ఆ , (16)

where 𝛴ఆ is the surface area of 𝛺. 
It is natural to require that the parametric family 𝐹(�⃗� |�⃗�) (15) contains at least all the constants 𝐼(�⃗�) ≡𝐼 > 0 . For this, one of the basic functions, for 

example 𝜑଴(�⃗�) , should be admitted as a constant: 𝜑଴(�⃗�) ≡ 1. The corresponding parameter 𝜂଴ will set 
the normalization of the components by means of the 
factor exp{𝜂଴} in (15). In view of the subsequent 
transition to the normalized version of the intensity, it 
is convenient to introduce instead of the parameter 𝜂଴ 
another parameter 𝑤 = 𝑤(�⃗�), which is a function of �⃗�  and has the meaning of the energy fraction per 
frame (15) for the given �⃗� of a total (falling per unit 
time on 𝛺) energy 𝑊ை = 𝐼ை𝛴ఆ: 𝑤(�⃗�) = 1𝑊ை ඵ 𝐹(�⃗� |�⃗�)𝑑�⃗�௱ =
= exp{𝜂଴} 1𝛴ఆ ඵ exp ቊ෍ 𝜂௤𝜑௤(�⃗�)௣ିଵ௤ୀଵ ቋ 𝑑�⃗�௱ == exp{𝜂଴} exp൛𝐴(𝜂ଵ, … , 𝜂௣ିଵ)ൟ

(17)

where an auxiliary (cumulant-generating function) 
function related to the basis {𝜑௤(�⃗�)} is introduced: 𝐴(𝜂1, … , 𝜂𝑝−1) == ln ቄ 1𝛴𝛺 ∬ exp൛∑ 𝜂𝑞𝜑𝑞(𝑥)𝑝−1𝑞=1 ൟ 𝑑𝑥𝛥 ቅ . (18)

Replacing the parameters �⃗� → (𝑤, 𝜂ଵ, … , 𝜂௣ିଵ) 
in accordance with (17), we arrive at the following 
representation of the base frame (15): 𝐹(𝑥 |𝑤, 𝜂) == 𝐼𝑂𝑤 exp{𝜂 ∙ 𝜑ሬ⃗ (𝑥) − 𝐴(𝜂)} 𝛱𝛥(𝑥) . (19)

where the shortened notations �⃗� = (𝜂1, … , 𝜂𝑝−1)𝑇 
and 𝜑ሬ⃗ (�⃗�) = (𝜑ଵ(�⃗�), … , 𝜑௣ିଵ(�⃗�))்  are introduced, 
symbol of dot product “ ∙ ” is used and the 
characteristic function 𝛱௱(�⃗�) of the base carrier 𝛥 is 
introduced to automatically take into account the 
constraint �⃗� ∈ 𝛥. 

Considering the chosen structure of the base 
frame 𝐹(�⃗� |𝑤, �⃗�)  (19), the parametric model of 
intensity 𝐼(�⃗�|�⃗�ை) (14) takes the following final form: 

× 𝐼(�⃗�|�⃗�ை) = 𝐼ை ∑ 𝑤௝௄௝ୀଵ ×exp൛𝜂௝𝜑ሬ⃗ ൫�⃗� − �⃗�௝൯ − 𝐴൫�⃗�௝൯ൟ ×× 𝛱௱(�⃗� − �⃗�௝)  . (20)

where {𝑤௝} and {�⃗�௝} ‒ are weights and sets of normal 
parameters of 𝑗‒th components, 𝜑ሬ⃗ (�⃗�) is a functional 
basis of the parametric model common for all 
components, 𝐼ை  and 𝐴൫𝜂௝൯ are defined, respectively, 
by expressions (16) and (18). Note that, if we 
formally calculate the integral over 𝛺  of the right-
hand side of (20), taking into account (18), the will 
get the value 𝐼ை𝛴ఆ ∑ 𝑤௝௄௝ୀଵ , which implies the 
property that the weights {𝑤௝}  are normalized to 
unity, which coincides with their interpretation as the 
distribution of the total radiation energy 𝑊ை = 𝐼ை𝛴ఆ 
over individual components. 

Using the worked out parametric model of the 
recorded radiation intensity (20), we write down the 
probability distribution density (12) of an individual 
observation count from the sample 𝑋௡ = {�⃗�ଵ, … , �⃗�௡}, 
representing the of the object 𝑂  image, also in the 
parametric form: 𝜌൫�⃗�ห𝐼(�⃗�)൯ = 𝐼(𝑥ሬሬ⃗ |𝜃ሬሬ⃗ 𝑂) ׬ 𝐼(𝑥ሬሬ⃗ |𝜃ሬሬ⃗ 𝑂)𝑑�⃗�ఆൗ ==  1𝛴𝛺 ∑ 𝑤𝑗 exp ቄ𝜂ሬሬ⃗ 𝑗𝜑ሬሬ⃗ ቀ𝑥ሬሬ⃗ − 𝜇ሬሬ⃗ 𝑗ቁ − 𝐴 ቀ𝜂ሬሬ⃗ 𝑗ቁቅ ×𝑗∈𝛿𝑥ሬሬ⃗ × 𝛱𝛥(𝑥ሬሬ⃗ − 𝜇ሬሬ⃗ 𝑗) , (21)

where it is considered that for a given count �⃗�  the 
formal summation over all components 𝑗 from 1 to 𝐾 
in (20) is actually reduced to summation over the 
nonzero components at the point �⃗� ‒ over the lattice 
environment 𝛿௫⃗.  

Even though all subsequent conclusions can be 
made in the most general case of mixtures of 
distributions of an exponential family, for simplicity 
of presentation and to avoid cumbersome formulas, 
we restrict ourselves to the case of a simple model of 
Gaussian mixtures (GMM) (Murphy, 2012).  

Namely, we assume that the functional basis 𝜑ሬ⃗ (�⃗�)  contains only two linear basis functions 𝜑ଵ(�⃗�) = 𝑥ଵ 𝐷⁄  and 𝜑ଶ(�⃗�) = 𝑥ଶ 𝐷⁄  (so the number of �⃗� components is also two:  𝜂 = (𝜂1, 𝜂2) ). In addition, 
we approximate the characteristic function 𝛱௱(�⃗�) by 
a Gaussian bell-shaped distribution exp{− �⃗�ଶ 2𝐷ଶ⁄ }. 
Replacing the integration in (18) with 𝛱௱(�⃗�)  by 
integrating with Gaussian approximation, we find that 
an auxiliary function 𝐴(�⃗�) has a quite simple form: 𝐴(�⃗�) = ଵଶ �⃗�ଶ+ln ቂଶగ஽మఀ೾ ቃ . (22)

Substituting 𝐴(�⃗�) from (22) into the expression 
for 𝜌൫�⃗�ห𝐼(�⃗�)൯ (21) we finally obtain a representation 
of the classical model of a Gaussian mixture (GMM) 
mixtures (Murphy, 2012) for the probability 
distributions of individual counts from the sample 𝑋௡: 
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൫�⃗�ห𝐼(�⃗�)൯ = 12𝜋𝐷2 ∑ 𝑤𝑗 exp ቊ− ቀ𝑥ሬሬ⃗ −𝜇ሬሬ⃗ 𝑗−𝐷𝜂ሬሬ⃗ 𝑗ቁ2𝐷2 ቋ𝑗∈𝛿𝑥ሬሬ⃗   (23)

In the chosen model (23), corresponding n-model 
of the observations 𝑋௡ = {�⃗�ଵ, … , �⃗�௡}  (2) after 
opening all n brackets in the product takes the form: 

𝜚൫𝑋௡ | 𝜃ை൯ = ෑ ቎ ෍ 𝑤௝2𝜋𝐷ଶ exp ቊ− ൫�⃗�௜ − 𝜇௝ − 𝐷𝜂௝൯2𝐷ଶ ቋ௝∈ఋሬೣሬ⃗ ೔
቏௡௜ୀଵ= ෍ … ෍ ෑ ቂ 𝑤௝೔2𝜋𝐷ଶ ×௡௜ୀଵ𝑗𝑛∈𝛿𝑛𝑗1∈𝛿𝑥ሬሬ⃗ 1× exp ቊ− ൫�⃗�௜ − 𝜇௝೔ − 𝐷𝜂௝೔൯2𝐷ଶ ቋ቉

(24)

where the indices 𝑗௜ ∈ 𝛿௫⃗೔  associate the samples �⃗�௜ 
with nodes 𝑗  of the lattice environment 𝛿௫⃗೔ , the 
summation is performed over all possible 𝑛–tuples {𝑗ଵ, … , 𝑗௡} ∈ 𝛿௫⃗భ × … × 𝛿௫⃗೙ = 𝛿𝑋𝑛. 

Note that each of the 𝑛–tuples {𝑗ଵ, … , 𝑗௡} ∈ 𝛿𝑋𝑛 
defines a partition of the sample 𝑋௡ = {�⃗�ଵ, … , �⃗�௡} 
into 𝐾 disjoint subsets of counts ൛𝜋௝ൟ associated with 
nodes 𝑗 : 𝜋௝ = {�⃗�௜|𝑗௜ = 𝑗} , 𝑋௡ = ⋃ 𝜋௝௄௝ୀଵ . If in the 
product terms of the sum (24) we combine the 
exponents and give similar terms with respect to the 
parameters 𝑤௝  and �⃗�௝ , then the density 𝜚൫𝑋௡ | �⃗�ை൯ 
can be rewritten as a sum over all partitions: 𝜚൫𝑋௡ | �⃗�ை൯ = ෍ ቈexp ቊ෍ �̅�௝௄௝ୀଵ ln 𝑤௝ቋ቉௡

{௝భ,…,௝೙}∈ఋ೉೙× ቎exp ቐ− ∑ �̅�௝௄௝ୀଵ ቀ𝛷ሬሬ⃗ గೕ − 𝐷𝜂௝ቁଶ2𝐷ଶ ቑ቏௡ ×
× ቎𝑒𝑥𝑝 ቄ− 12𝐷ଶ ∑ �̅�௝௄௝ୀଵ 𝐶గೕቅ2𝜋𝐷ଶ ቏௡

(25)

where �̅�௝ = 𝑛௝ 𝑛⁄  are the partition weights of nodes, 𝑛௝ = |𝜋௝| is the number of samples �⃗�௜  in the subset 𝜋௝, corresponding node 𝑗,  ∑ 𝑛௝௄௝ୀଵ = 𝑛, ∑ �̅�௝௄௝ୀଵ = 1 
and {𝛷ሬሬ⃗ గೕ}, {𝐶గೕ} are defined by the partition ൛𝜋௝ൟ as 
follows: 

𝛷ሬሬ⃗ గೕ = ∑ ൫�⃗�௜ − 𝜇௝൯௫⃗೔∈గೕ 𝑛௝ ,
𝐶గೕ = ∑ ቀ�⃗�௜ − 𝜇௝ − 𝛷ሬሬ⃗ గೕቁଶ௫⃗೔∈గೕ 𝑛௝  . (26)

Obviously, when the total number of counts n is 
large, the calculation of all ห𝛿௑೙ห~𝑘௡ terms in (24) / 
(25), where 𝑘 > 1 is the average size of the lattice 
environment 𝛿௫⃗ , �⃗� ∈ 𝛺, becomes a difficult problem. 

For example, in the case when the size of the base 
carrier 𝐷  noticeably exceeds the lattice spacing 𝑑 , 𝑘 ≈ (𝐷 𝑑⁄ )ଶ ≫ 1 , the number of terms becomes 
extremely large, and the problem becomes an EXP‒
complete problem (Du, 2014). 

Therefore, the problem of approximating 𝜚൫𝑋௡ | �⃗�ை൯  (24) / (25), with something simpler is 
urgent. One of the possibilities here is, obviously, the 
approximation of this big sum with its only term. A 
remarkable fact is that if the chosen term is maximal 
compared to others in some neighbourhood of some �⃗�(∗), then as the number of counts n grows, the term 
becomes the asymptotic approximation of the 
distribution 𝜚൫𝑋௡ | �⃗�൯  (25) in �⃗�(∗) . Indeed, if we 
denote the terms in (25), corresponding to the 
partitions as [𝑠൛గೕൟ(�⃗�)]௡, and by {𝜋௝(∗)} we denote the 
partition corresponding to the maximal in �⃗�(∗) term, 
then (25) can be rewritten as: 𝜚 ቀ𝑋௡ | 𝜃ሬሬ⃗ ቁ [𝑠{గೕ(∗)}(�⃗�)]௡ൗ == 1 + ෍ [𝑠൛గೕൟ(�⃗�) 𝑠{గೕ(∗)}(�⃗�)ൗ ]௡൛గೕൟஷቄగೕ(∗)ቅ   (27)

Since by assumption in some neighbourhood of �⃗�(∗) all ratios in the right-hand sum (27) are less than 
unity, so if we denote the average of degree 𝑛 of all ~ 𝑘௡ ratios by 𝜀௡ , then we also get 𝜀௡ < 1. So far as 
the sum in (27) can be estimated from above by [𝑘𝜀௡]௡, for  𝑘𝜀௡ < 1, as the number of counts 𝑛 in the 
sample 𝑋௡  grows, this sum will tend to zero and, 
therefore, the asymptotic 𝜚 ቀ𝑋௡ | 𝜃ሬሬ⃗ ቁ [𝑠{గೕ(∗)}(�⃗�)]௡ൗ → 1 
will take place. The latter means that the maximal 
term for 𝑛 ≫ 1  acquires a dominant value in the 
vicinity of �⃗�(∗). 

Considering the above reasoning, the problem of 
approximation 𝜚 ቀ𝑋௡ | 𝜃ሬሬ⃗ ቁ is thus reduced to the 
question of how to find the partition {𝜋௝(∗)} for which 
the corresponding term in (25) will be maximal in the 
neighbourhood of its most probable, optimal 
parameter �⃗�(∗) = ቄ൛𝑤௝ൟ, {𝜂௝}ቅ . It is clear, that the 
problem of finding such partition {𝜋௝(∗)} / optimal �⃗�(∗) 
as direct comparison of the maxima of all ~𝑘௡ terms 
of sum (25) is not suitable, since it is also an EXP‒
complete problem (Du, 2014). Fortunately, there are 
quite effective procedures for solving optimization 
problems like (25). Below we propose one of such 
procedures ‒ recurrent segmentation / partition of 
sample 𝑋௡ = {�⃗�ଵ, … , �⃗�௡} , analogous to the well‒
known 𝐾 ‒means segmentation method (Barber, 
2012), (Wu, 2007). This procedure consists of 
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sequential (recurrent) iterations of two main steps ‒ 
step P for refining the target partition ቄ𝜋௝(ఔ)ቅ and step 
M ‒ for calculating the corresponding ቄ𝜋௝(ఔ)ቅ optimal 
parameters �⃗�(ఔ).  

Refinement at step P of the partition ቄ𝜋௝(ఔ)ቅ with 
the parameters �⃗�(ఔିଵ) found at the previous iteration 
is carried out as a solution for each sample �⃗�௜ ∈ 𝑋௡ of 
the following maximization problem: 𝑗௜ = 𝑎𝑟𝑔 max௝∈ఋሬೣሬ⃗ ೔ ቈ𝑤௝(ఔିଵ) exp ቊ− ቀ௫⃗೔ିఓሬሬ⃗ ೕ೔ି஽ఎሬሬ⃗ ೕ೔ቁଶ஽మ ቋ቉ , (28)

where the set of nodes 𝑗  tested for maximum is 
limited by the �⃗�௜‒th lattice environment 𝛿௫⃗೔. 

The solution 𝑗௜  of each of the problems (28) 
selects in the sum (25) a subset of those terms for 
which the 𝑖‒th factor is greater than that of the others. 
After the indices are found for all counts {�⃗�ଵ, … , �⃗�௡}, 
the the 𝑛 –tuples {𝑗ଵ, … , 𝑗௡} ∈ 𝛿𝑋𝑛  will define some 
refined partition ቄ𝜋௝(ఔ)ቅ  the corresponding term of 
which for the values parameters �⃗�(ఔିଵ)  will be 
maximum in the sum (24) / (25). 

With the partition ቄ𝜋௝(ఔ)ቅ found at step P, finding 
at step M the corresponding optimal parameters �⃗�(ఔ) 
is the quite simple problem. First, the weights ൛𝑤௝ൟ are 
included in each term of (25) only in the expression 
for the cross-entropy − ∑ 𝑝ത𝑗𝐾𝑗=1 ln 𝑤𝑗 in first factor and 
give it a maximum at 𝑤௝ = �̅�௝  for all 𝑗. Second, the 
maximum of each term with respect to 𝜂௝ is obvious 
from the form of second factor in (25) and is achieved 
at 𝜂௝ = 𝛷ሬሬ⃗ గೕ 𝐷⁄ . Collecting these facts into a system, we 
find that at step M the following calculations should be 
performed: 𝑤௝(ఔ) = �̅�௝(ఔ) = |𝜋௝(ఔ)| 𝑛⁄ ,𝜂௝(ఔ) = 𝛷ሬሬ⃗ గೕ(ഌ) 𝐷⁄ = 1|𝜋௝(ఔ)|𝐷 ෍ ൫�⃗�௜ − 𝜇௝൯௫⃗೔∈గೕ(ഌ)  (29)

The question of stopping the recurrent procedure 
(28)‒(29) is solved in the same way as in the case of 𝐾 ‒means segmentation, i.e. is determined by the 
criterion for stabilization of partitions: ቄ𝜋௝(ఔ)ቅ =ቄ𝜋௝(ఔ)ቅ = ቄ𝜋𝑗(∗)ቅ . Note that the convergence of the 
partitions ቄ𝜋௝(ఔ)ቅ → ቄ𝜋𝑗(∗)ቅ  is accompanied by the 
convergence of the parameters �⃗�(ఔ) → �⃗�(∗) ), but it 
does not follow from this that in the limit we obtain 
the maximum likelihood estimate �⃗�(ெ௅) (1). 

As a result, calculating �⃗�(∗)  (or, equivalently {𝜋௝(∗)}) and approximating the density 𝜚൫𝑋௡ | �⃗�ை൯ (25) 
with the corresponding term, we obtain, according to 

(10), the following approximation for the similarity 
measure: 𝜇(𝑋௡, 𝑋௞ ) = 𝑄(�⃗�(∗))ൣexp൛−𝐷𝐾𝐿൫൛𝑤𝑗∗ൟ, ൛𝑤𝑗𝑘ൟ൯ൟ൧௡

× ቈexp ቊ− 12 ෍ 𝑤𝑗(∗)௄௝ୀଵ ቀ𝜂௝(∗) − 𝜂௝௞ቁଶቋ቉௡  (30)

where �⃗�௞(ெ௅) = ቄ൛𝑤𝑗𝑘ൟ, {𝜂௝௞}ቅ  are parameters of the 
precedent 𝑋௞  and ቄ𝑤𝑗(∗)ቅ  and {𝜂௝(∗)}  are the optimal 
parameters of the tested sample 𝑋௡. In (30) the model 
parameters �̅�௝  and 𝛷ሬሬ⃗ గೕ  (26), dependent on the 
partition, were replaced in accordance with (29) with 
the optimal parameters calculated during the PM 
procedure. For the convenience, the cross-entropy − ∑ 𝑝ത𝑗𝐾𝑗=1 ln 𝑤𝑗 in (25) is replaced by the sum of the 
Kullback–Leibler divergence 𝐷௄௅൫൛𝑤௝∗ൟ, ൛𝑤௝ൟ൯ 
(Murphy, 2012) and the Shannon’s entropy 𝐻൫൛𝑤௝∗ൟ൯:  𝐷௄௅൫൛𝑤௝∗ൟ, ൛𝑤௝ൟ൯ = − ෍ 𝑤௝∗ ln 𝑤௝ 𝑤௝∗⁄௄௝ୀଵ ,𝐻൫൛𝑤௝∗ൟ൯ = − ෍ 𝑤௝∗ ln 𝑤௝∗ ௄௝ୀଵ .  (31)

Finally, all independent of the precedent 𝑋௞ 
factors in 𝜚൫𝑋௡ | �⃗�ை൯ are combined in (30) into one 
common 𝑄(�⃗�(∗)): 

𝑄൫�⃗�(∗)൯ = ቈ𝑒𝑥𝑝൛𝐻൫൛𝑤௝∗ൟ൯ൟ2𝜋𝐷ଶ ቉௡ ×
× ቈexp ቊ− 12𝐷ଶ ෍ 𝑤𝑗(∗)௄௝ୀଵ 𝐶𝜋𝑗(∗)ቋ቉௡ (32)

Theoretically, the similarity measure (30) 
explicitly sets the required expression for finding the 
most similar precedent to the tested object (11). 
However, the computational characteristics of the 
method can be noticeably improved if any equivalent 
similarity measure 𝜇෤(𝑋௡, 𝑋௞ ) ‒ monotonic function 
of 𝜇(𝑋௡, 𝑋௞ )  will be used. Namely, discarding the 
first factor 𝑄(�⃗�(∗)) in (30), which does not depend at 
all on the parameters �⃗�௞(ெ௅) , and taking the natural 
logarithm of the second factor, up to a factor 𝑛 we 
obtain the following similarity measure: 𝜇෤(𝑋௡, 𝑋௞ ) = −𝐷𝐾𝐿൫൛𝑤𝑗∗ൟ, ൛𝑤𝑗𝑘ൟ൯ −− 12 𝐷𝑀𝐸 ቀቄ𝜂௝(∗)ቅ , ൛𝜂௝௞ൟቁ  (33)

where we have introduced the notation 𝐷ொ  for the 
average over the distribution of ൛𝑤௝∗ൟ Euclidean 
distance between the corresponding parameters of ቄ𝜂ሬ⃗ 𝑗(∗)ቅ and ቄ𝜂ሬ⃗ 𝑗𝑘ቅ: 
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𝐷ொ ቀቄ𝜂௝(∗)ቅ , ൛𝜂௝௞ൟቁ = ෍ 𝑤௝(∗)௄௝ୀଵ ቀ𝜂௝(∗) − 𝜂௝௞ቁଶ
 (34)

Thus, in the case of modeling the intensities of the 
registered radiation by a simple model of Gaussian 
mixture (24) / (25), the maximum similarity method 
is reduced to the choice of the minimum sum of 
divergence between the optimal parameters of the 
tested object �⃗�(∗)  and the maximum likelihood 
parameters of the precedents �⃗�௞(ெ௅). Denoting the sum 
of divergences (31), (33) by �̅�(𝑋, 𝑋௞ ) = −𝜇෤(𝑋, 𝑋௞ ), 
we can reformulate the maximum similarity method 
(11) for this case as follows: 𝑘ெௌ = 𝑎𝑟𝑔min௞ �̅�(𝑋௡, 𝑋௞ ) == 𝑎𝑟𝑔min௞ ൤𝐷௄௅൫൛𝑤௝∗ൟ, ൛𝑤௝௞ൟ൯ + 12 𝐷ொ൫൛𝜂௝(∗)ൟ, ൛𝜂௝௞ൟ൯൨ (35)

which in the above entry is literally the criterion of 
minimum difference. 

4 CONCLUSIONS 

The considered case of approximating the shape of 
the intensity of objects by mixtures of Gaussian 
components and the results of the corresponding 
numerical simulation showed the adequacy of the 
method of maximum similarity to the problems of 
analyzing PCD images. Even in low-quality images 
(~ 1000 samples), the algorithm corresponding to the 
proposed method gives the correct identification of 
objects. Note that the implementation of the 
algorithm, like the method of 𝐾‒means segmentation, 
is very efficient computationally ‒ for mixtures with 
~ 1000 components in the common computation 
environment, processing of images with a size of 
500×500 pixels by PM algorithm (28) ‒ (29) takes ~ 
1 sec on a standard PC and it is already clear that these 
characteristics can be improved if desired. 
As for the maximum similarity method itself, the 
simplicity of its interpretation, to which the section 2 
is devoted, and the straightforwardness of its 
algorithmic implementation, what is the main content 
of the section 3, makes it attractive both in theoretical 
and practical terms, especially in the context of 
modern, oriented to machine learning approaches. In 
a sense, for machine learning problems, the proposed 
method is an adaptation of the R. Fisher's maximum 
likelihood method widely used in traditional statistics 
(Efron, 1982). The fruitful use of the latter, as is 
known, has led to a huge number of important 
statistical results. In this regard, it is hoped that the 
proposed maximum similarity method will also be 

useful in solving a wide range of modern problems of 
statistical (machine) learning. 
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