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Abstract: Adductor-type spasmodic dysphonia (ASD) is a task-specific speech disorder characterized by a strangled 
and strained voice. We have previously demonstrated that advanced voice analysis, performed with support 
vector machine, can objectively quantify voice impairment in dysphonic patients, also evidencing results of 
voice improvements due to symptomatic treatment with botulinum neurotoxin type-A injections into the vocal 
cords. Here, we expanded the analysis by means of three different machine learning algorithms (Support 
Vector Machine, Naïve Bayes and Multilayer Percept), on a cohort of 60 ASD patients, some of them also 
treated with botulinum neurotoxin type A therapy, and 60 age and gender-matched healthy subjects. Our 
analysis was based on sounds produced by speakers during the emission of /a/ and /e/ sustained vowels and a 
standardized sentence. As a conclusion, we report the main features with discriminatory capabilities to 
distinguish untreated vs. treated ASD patients vs. healthy subjects, and a comparison of the three classifiers 
with respect to their discriminating accuracy. 

1 INTRODUCTION 

Adductor-type spasmodic dysphonia (ASD) is a task-
specific focal dystonia, characterized by involuntary 
laryngeal muscle spasms during speech production, 
which mainly occurs for females, with a ratio with 
respect to male ranging from 2/1 to 8/1 (Jinnah et al., 
2013). Clinically, ASD manifests with a strained and 
strangled voice, speech arrest and intermittent 
phonatory breaks. 

Among task-specific focal dystonia, ASD is a rare 
and challenging entity (Albert and Knoefel, 2011; 
Casper and Leonard, 2006; Murry, 2014). Patients 
with ASD may manifest a clinically overt voice 
tremor. Currently, the diagnosis of ASD is based on 
neurologic examination and the evaluation of voice 
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impairment, which relies on perceptual assessment, 
according to validated clinical rating scales that are a 
fundamental support, but can be prone to examiner’s 
bias and experience. Conveniently, the sound of the 
voice can be analyzed through technological means 
too, which can help in rating objectification (Saggio 
& Costantini, 2020). 

Recently, we applied voice analysis aimed at 
examining voice impairment in patients with ASD 
(Antonio Suppa et al., 2020).  In particular, the 
cepstral peak prominence (CPP) and its smoothed 
variant (CPPs) were found inversely proportional to 
the degree of patients’ voice impairment, accordingly 
to previous observations (Heman-Ackah et al., 2014; 
Hillenbrand and Houde, 1996; Lowell et al., 2011; 
Peterson et al., 2013; Suppa et al., 2015).  
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In our study, we performed voice analysis by 
means of machine learning algorithms too, comparing 
patients’ vocal tasks with respect to healthy subjects’ 
ones (HS). Specifically, a machine learning model 
applied to a large dataset of vocal samples, was able 
to discriminate patients vs. control by means of 
specific selected features (Asci et al., 2020; Parada-
Cabaleiro et al., 2018; Alessandrini et al., 2017; 
Antonio Suppa et al., 2020). In such a way, we 
demonstrated how, and to what extent, voice analysis 
based on a machine learning approach, by means of 
an artificial neural network (ANN) algorithm, gains 
in accuracy classification with respect to traditional 
means. 

Furthermore, this approach was usefully adopted 
to evidence improvements, in voices of patients 
treated with botulinum neurotoxin type-A (BoNT-A) 
injection into the vocal cords (Benninger et al., 2001; 
Bhattacharyya and Tarsy, 2001; Schlotthauer et al., 
2010; Suppa et al., 2020). 

Here, firstly we aimed at extending the 
aforementioned analysis in ASD by applying 
different machine learning algorithms, such as 
Support Vector Machine (SVM), Naïve Bayes (NB), 
and Multilayer Perceptron (MP), to evidence the best 
performing one in differencing patients before and 
after BoNT-A treatment, vs. healthy control group. 

To this purpose, we asked subjects to perform 
sustained /a/ and /e/ vowels, and to say a standardized 
sentence. In this way, as a second aim, we determined 
whether the performances of adopted algorithms 
could be affected or depended by the specific vocal 
task.  

Finally, our third aim was to evidence which were 
the families of low-level descriptors (LLDs) and 
functionalities with the most relevant information 
content with respect to our purposes.  

2 MATERIALS AND METHODS 

2.1 Subjects 

Our patients’ cohort included 60 subjects with ASD 
(9 men, 60.44yo±10.73SD; 51 women, 
64.69yo±13.37SD), and a group of age- and gender-
matched healthy subjects (15 men, 
60.73yo±12.79SD; 45 women, 57.76yo±11.9SD), for 
comparison purposes. They were enrolled in the 
Movement Disorders Clinic at the Department of 
Human Neurosciences, Sapienza University of Rome 
(Italy) (Antonio Suppa et al., 2020). 

Patients were diagnosed with ASD according to 
standard criteria (Johnson et al., 1997; Ludlow et al., 

2018; Schindler et al., 2010). All participants were 
native Italian speakers, non-smokers, not suffering 
from bilateral / unilateral hearing loss or any 
respiratory disorders. 

A patient’s subgroup of 35 subjects (8 men; 
61.75yo±10.67SD; 27 women, 65.93yo±11.29SD) 
was treated with BoNT-A injections. For them, voices 
were recorded at starting time (e.g. before BoNT-A 
injections) and one month after BoNT-A injections 
(Antonio Suppa et al., 2020). 

Patients’ groups were differentiated in order to 
both evidence the vocal features that can discriminate 
the pathological status (with respect to the healthy 
subjects), and assess the effectiveness of the therapy 
by means of data comparisons. 

All participants gave their written informed 
consent to the study, which was approved by the 
institutional review board in accordance with the 
Declaration of Helsinki. 

2.2 Voice Recordings and Analysis 

Details regarding the experimental setting and voice 
recording procedures were already reported (Suppa et 
al., 2020). In particular, all participants were upright 
seated while three times repeated vocal tasks in a 
sound-proof room. The voices were acquired by 
means of a Shure WH20 dynamic headset 
microphone (Shure Incorporated, USA), 5 cm from 
the mouth, and recorded in “.wav” format by means 
of a high definition audio-recorder Zoom H4n (Zoom 
Corporation, Tokyo, Japan), sampled at 44.1 kHz, 
with 16-bit resolution. 

Vocal tasks were sustained emission of the vowels 
/a/ and /e/, and the Italian-sound standardized 
sentence “Nella casa in riva al mare maria vide tre 
cani bianchi e neri”, at subject’s normal voice 
intensity and pitch (Lowell et al., 2013; Peterson et 
al., 2013). 

The analysis included the extraction of more than 
6000 voice features, by means of OpenSMILE 
(software by audEERING GmbH, Germany) (Eyben 
et al., 2010), in accordance to the INTERSPEECH 
2016 Computational Paralinguistics Challenge 
(ComParE) feature set (Schuller et al., 2016). We 
added CPPs, extracted via SpeechTool software 
(Heman-Ackah et al., 2014; Antonio Suppa et al., 
2020) to the feature set too, being CPPs relevant in 
ASD. 

Each one of the extracted features is characterized 
by its low-level descriptor (LLD), LLD family, and 
LLD functional. 

All features were imported in the Weka software 
(Waikato Environment for Knowledge Analysis, 
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University of Waikato, New Zealand) (Hall et al., 
2009) in order to perform selection and ranking, as 
detailed in the following. 

Again, the Weka software was adopted for 
classifying purposes too. 

2.3 Data Pre-processing 

Data pre-processing consisted of extraction and 
selection of features.  

Feature extraction is aimed at determining the 
most relevant features in differentiating classes of 
untreated patients, BoNT-A treated patients, and HS 
(Barandas et al., 2020). 

Feature selection is aimed at identifying the 
optimal subset of features that maximizes information 
content. Through feature selection, highly 
intercorrelated or irrelevant features were removed to 
improve classification performances, reducing data 
storage, computational time and classifier’s 
complexity. To perform feature selection, we adopted 
a supervised filter made of an evaluator, which 
measures the significance of a subset of features and 
returns a numerical value of merit that guides the 
search for the optimal subset, and a searching method, 
that explores the features space, considering different 
combinations of features in the dataset, in order to 
find the feature subset with maximum information 
content. As an evaluator, we adopted the correlation-
based feature selection (CFS) algorithm (Hall, 2000), 
that prefers subsets of features with low 
intercorrelation and high correlation with the target 
class (i.e. untreated patients, BoNT-A treated patients 
and HS), whilst as a searching method we adopted the 
Greedy Stepwise algorithm. Furthermore, we ranked 
the selected features on the basis of their Information 
Gain with respect to the target class. This was 
particularly aimed at determining the more relevant 
features in evaluating the BoNT-A therapy 
effectiveness. 

2.4 Statistical Analysis 

Kolmogorov-Smirnov test was used to demonstrate 
the normality of the demographic and anthropometric 
parameters of the subjects, in terms of age, gender, 
height and weight, obtaining result of p > 0.05. 

Mann-Whitney U test was used to compare the 
demographic and clinical scores of ASD patients and 
HS. Results obtained guaranteed the possibility of a 
demographic and clinical scores comparison between 
the patients vs. healthy groups (p > 0.05).  

 The assessed comparative statistical analysis 
included the sensitivity, specificity, positive and 

negative predictive values, as well as the accuracy 
and the Youden’s index of the classification.  

ROC analysis was also performed and the Area 
Under Curve (AUC) value was calculated for all the 
ROC curves. Classification’s performances obtained 
for different vocal tasks were compared by 
considering the differences among ROC curves 
(DeLong et al., 1988). 

2.5 Classification 

For classification purposes, we adopted three 
different machine learning models, such as Support 
Vector Machine (SVM) with linear kernel, Naïve 
Bayes (NB) and Multilayer Perceptron (MP). This 
was to evidence the best performing classifier. 

SVM model allows building a linear, binary and 
non-probabilistic classifier, which considers training 
examples as points in an N-dimensional space (where 
N is the number of the features) and aims at separating 
the two classes of subjects with a hyperplane in the 
N-dimensional space. We trained the SVM using the 
sequential minimal optimization (SMO) method 
(Platt, 1999).  

Naïve Bayes model allows building a supervised 
probabilistic classifier based on Bayes’ theorem, with 
the assumption of the independence between the 
features (John and Langley, 1995). 

Multilayer Perceptron is a class of artificial neural 
network with at least three layers of neurons, that use 
supervised backpropagation techniques for training 
(Van Der Malsburg, 1986). We used a network with 
N-neuron input layer, where N is equal to the number 
of selected features, (N/2+1)-neuron hidden layer and 
two-neuron output layer, trained through 500 epochs.  

All three classifiers were trained through Weka 
software using the features selected by CFS. All the 
classification were made using a 10-folds cross-
validation. The three classifiers were used to perform 
three different classification tests: HS vs. untreated 
ASD, HS vs. ASD after treatment, untreated vs. the 
same group of patients after subjected to BoNT-A 
treatment. 

3 RESULTS 

3.1 HS vs. Untreated ASD 

Table 1 shows comparison results of HS vs. untreated 
ASD patients. 

Among all the vocal tasks, we achieved the 
highest accuracy (95%) for the vowel /e/, regardless 
the adoption of Multilayer Perceptron or SVM.  
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The vowel /a/, the vowel /e/ and the sentence 
achieved similar performances according to the ROC 
curves comparison (Figure 1 A, B).  

Tables 2 and 3 evidence the top 10 most relevant 
features, when ranked through the Information Gain 
algorithm. In particular, for both vowels the most 
relevant ranked features are the ones related to the 
fundamental frequency, to the Mel-Frequency 
Cepstral Coefficients (MFCC) and to the RASTA 
coefficients (Hermansky and Morgan, 1994). 

Conversely, for the sentence the most relevant 
features are CPPs, and those related to jitter and 
RASTA coefficients. 

3.2 HS vs. Treated ASD 

Table 4 shows comparison results related to HSs vs. 
BoNT-A treated patients. 

Among all the vocal tasks, we achieved the 
highest accuracy (98.57%) for the vowel /e/, 
regardless of the adoption of Multilayer Perceptron or 
SVM.  

Both vowel /e/ and the sentence achieved similar 
performances according to comparisons of the ROC 
curves (Figure 1 C).  We found that the top 10 most 
relevant features, when ranked through the 
Information Gain algorithm, are similar to those 
found in comparison of the previous section 3.1. In 
particular, the LLDs’ families are the same for the 
two cases.  

3.3 ASD before and after BoNT-A 

Table 4 shows comparison results related to untreated 
patients vs. BoNT-A treated ones. 

Among all the vocal tasks, we achieved the 
highest accuracy (81.43%) for the sentence and SVM.  

Both vowel /e/ and the sentence achieved similar 
performances according to their ROC curves (Figure 
1 D). 

Table 5 evidences the top 10 most relevant 
features, when ranked through the Information Gain 
algorithm. In particular, for all the vocal tasks the 
most relevant ranked features are the ones related to 
the spectrum, to the Mel-Frequency Cepstral 
Coefficients (MFCC) and to the RASTA coefficients.  

3.4 The Most Relevant Features 

Vocal features with high discriminatory power can be 
found directly from comparing vocal samples of 
treated and untreated patients from those of HS. 

We examined the most relevant features (Tables 
2, 3, 5) and found those capable of better 
differentiating ASD patients from HS, and better 
discriminating the clinical effects of BoNT-A therapy 
on patients’ voice.  

Figure 2 shows the distributions of the values of 
HS and ASD patients, treated and untreated, for two 
of those vocal features, found for the sentence by 
means of ranking algorithms, compared to CPPs 
distribution. Features found through our analysis are 
comparable to CPPs, in terms of discriminatory 
capabilities.  

Figure 3 shows the mean values of that 
parameters where the values of treated ASD patients 
are more near to that of the HS rather than that of 
untreated ASD. Those features could be biological 
markers useful to evaluate the improvement in 
patients’ voices after the treatment.  

Table 1: Machine learning’s performance in discriminating HS from untreated ASD patients for all the vocal tasks with 10-
folds cross-validation. Sens: Sensitivity; Spec: Specificity; PPV: Positive Predictive Value; NPV: Negative Predictive Value; 
Acc: Accuracy; AUC: Area Under the (ROC) Curve. 

 
 

Classifier Vocal 
Tasks 

Features’ 
Number

Youden 
Index

Sens 
(%)

Spec 
(%)

PPV 
(%)

NPV 
(%) 

Acc 
(%) 

AUC 

Healthy 
vs. 

ASD 
before 

BoNT-A 

Naïve 
Bayes 

Vowel /a/ 93 0.85 94.74 90.48 90.00 95.00 92.5 0.955 

Vowel /e/ 131 0.86 98.11 88.06 86.67 98.33 92.5 0.978 

Sentence 85 0.77 95.91 81.69 78.3 96.67 87.5 0.975 

Multilayer 
Perceptron 

Vowel /a/ 93 0.88 93.44 94.91 95 93.3 94.17 0.972 

Vowel /e/ 131 0.9 95 95 95 95 95 0.985 

Sentence 85 0.82 94.55 87.69 86.67 95.00 90.83 0.975 

SVM 

Vowel /a/ 93 0.87 93.33 93.33 93.33 93.33 93.33 0.971 

Vowel /e/ 131 0.9 95 95 95 95 95 0.948 

Sentence 85 0.82 94.55 87.69 86.67 95.00 90.83 0.908 
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Table 2: Ranking of the first 10 selected features for the vowels, obtained by means of Information Gain algorithm, when 
discriminating HS from untreated ASD; LLD: Low Level Descriptor; MFCC: Mel Frequency Cepstral Coefficient. The suffix 
“de” indicates that the current feature is a 1st order delta coefficient (differential) of the smoothed low-level descriptor (delta 
regression coefficients computed from the feature). 

 HS vs. untreated ASD 
 Vowel /a/ Vowel /e/ 

№ 
Families of 

LLDs 
LLDs Functionals 

Families of 
LLDs

LLDs Functionals 

1 
RASTA 

coefficients 
Coefficient of 
band 10 (de) 

3rd Quartile MFCC 
6th Mel 

Coefficient (de) 
Inter-quartile 1-3

2 
Voicing 
Related 

Fundamental 
Frequency (fo) 

Inter-quartile 1-2 MFCC 
1st Mel  

Coefficient (de) 
3rd Quartile 

3 
Voicing 
Related 

Fundamental 
Frequency (fo) 

Inter-quartile 1-3
Voicing 
Related

Fundamental 
Frequency (fo) 

Inter-quartile 1-2

4 
RASTA 

coefficients 
Coefficient of 

band 2 (de) 
Inter-quartile 1-3

Voicing 
Related

Fundamental 
Frequency (fo) 

3rd Quartile 

5 MFCC 
1st Mel 

Coefficient (de) 
3rd Quartile MFCC 

5th Mel 

Coefficient (de) 
Position of 

arithmetic mean 

6 
RASTA 

coefficients 
Coefficient of 

band 3 (de) 
3rd Quartile 

RASTA 
coefficients

Coefficient of  
band 6 (de) 

Inter-quartile 1-3

7 
Voicing 
Related 

Fundamental 
Frequency (fo) 

Inter-quartile 2-3
Voicing 
Related

Fundamental 
Frequency (fo) 

Inter-quartile 2-3

8 
RASTA 

coefficients 
Coefficient of 

band 2 (de) 
3rd Quartile MFCC 

5th Mel 

Coefficient (de) 
Inter-quartile 2-3

9 MFCC 
3rd  Mel 

Coefficient (de) 
3rd Quartile MFCC 

6th Mel 

Coefficient (de) 
Inter-quartile 2-3

10 MFCC 
6th Mel 

Coefficient (de) 
1st Quartile 

RASTA 
coefficients 

Coefficient of  
band 5 (de) 

3rd Quartile 

Table 3: Ranking of the first 10 selected features for the sentence, obtained by means of Information Gain algorithm, when 
discriminating HS from untreated ASD; CPPs: Cepstral Peak Prominence smoothed; LLD: Low Level Descriptor; MFCC: 
Mel Frequency Cepstral Coefficient. The suffix “de” indicates that the current feature is a 1st order delta coefficient 
(differential) of the smoothed low-level descriptor (delta regression coefficients computed from the feature). 

 HS vs. untreated ASD 
 Sentence 

№ Families of LLDs LLDs Functionals 

1 Cepstral LLD CPPs Pure Value 

2 Sound Quality  Jitter Arithmetic mean 

3 Sound Quality  Jitter Inter-quartile 2-3 

4 Sound Quality  Jitter 3rd Quartile 

5 Sound Quality  Jitter Inter-quartile 1-3 

6 Sound Quality  Jitter Root quadratic mean 

7 Sound Quality  Shimmer 1% Percentile 

8  Energy Related  RMS Energy Relative peak mean 

9 Sound Quality  Jitter Standard deviation 

10 Sound Quality  Jitter 2nd coefficient of the linear regression 
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Table 4: Machine learning’s performance in discriminating treated ASD patients from HS and from ASD patients before 
BoNT-A therapy, for the sentence and the vowel /e/, with 10-folds cross-validation. Sens: Sensitivity; Spec: Specificity; PPV: 
Positive Predictive Value; NPV: Negative Predictive Value; Acc: Accuracy; AUC: Area Under the (ROC) Curve. Please note 
that for these comparisons, since the vowels got comparable performance, we reported, for simplicity, only results related to 
the vowel /e/. 

 Classifier Vocal 
Tasks 

Features’ 
Number 

Youden 
Index 

Sens 
(%) 

Spec 
(%) 

PPV 
(%) 

NPV 
(%) 

Acc 
(%) 

AUC 

Healthy 
vs. 

treated 
ASD 

Naïve Bayes 
Vowel /e/ 84 0.84 96.77 87.18 85.71 97.14 91.43 0.964 

Sentence 65 0.89 96.97 91.89 91.43 97.14 94.28 0.964 

Multilayer 
Perceptron 

Vowel /e/ 84 0.97 100.0 97.22 97.14 100.0 98.57 1 

Sentence 65 0.86 94.12 91.67 91.43 94.29 92.85 0.988 

SVM 
Vowel /e/ 84 0.97 100.0 97.22 97.14 100.0 98.57 0.986 

Sentence 65 0.80 91.18 88.89 88.57 91.43 90 0.976 

ASD 
before 

BoNT-A 
vs. 

after 
BoNT-A 

Naïve Bayes 
Vowel /e/ 21 0.49 74.29 74.29 74.29 74.29 74.28 0.793 

Sentence 23 0.67 75.00 92.31 94.29 68.57 80 0.865 

Multilayer 
Perceptron 

Vowel /e/ 21 0.54 78.79 75.68 74.29 80.00 77.14 0.802 

Sentence 23 0.58 76.32 81.25 82.86 74.29 78.57 0.824 

SVM 
Vowel /e/ 21 0.46 73.53 72.22 71.43 74.29 72.86 0.767 

Sentence 23 0.60 81.82 78.38 77.14 82.86 81.43 0.931 

Table 5: Ranking of the first 10 selected features for the vowel /e/ and for the sentence, obtained by means of Information 
Gain algorithm, when discriminating ASD before and after BoNT-A therapy; LLD: Low Level Descriptor; MFCC: Mel 
Frequency Cepstral Coefficient. The suffix “de” indicates that the current feature is a 1st order delta coefficient (differential) 
of the smoothed low-level descriptor (delta regression coefficients computed from the feature). Please note that since for the 
vowels were selected similar features we reported, for simplicity, only those related to the vowel /e/. 

 ASD before vs. after BoNT-A 
 Vowel /e/ Sentence 

№ 
Families of 

LLDs 
LLDs Functionals 

Families of 
LLDs

LLDs Functionals 

1 Spectral LLD 
Spectral  

Variance (de) 
Relative duration 

LLD is above 75%
Spectral LLD

Spectral Flux 
(de) 

1st  coefficient of 
linear prediction

2 
RASTA 

coefficients 
Coefficient of 
band 19 (de) 

Position of 
minimum

Spectral LLD
Spectral 

Variance (de) 
Relative duration 

left curvature

3 Spectral LLD 
Spectral  

Skewness (de) 
Mean segment 

length 
Spectral LLD Spectral Slope 

Position of 
maximum 

4 
RASTA 

coefficients 
Coefficient of 
band 20 (de) 

Standard segment 
length 

Prosodic 
LLD 

Sum of auditory 
spectrum  

Coefficient 0 of 
linear prediction 

5 MFCC 
3rd Mel 

Coefficient (de) 
3rd Quartile 

Sound 
Quality 

Jitter 
2nd  coefficient of 
linear regression

6 MFCC 
3rd Mel 

Coefficient (de) 
Inter-quartile 2-3 

RASTA 
coefficients 

Coefficient of 
band 23 (de) 

Mean of falling 
slope 

7 Spectral LLD 
Spectral 

Harmonicity 
Mean of peak 

distances 
MFCC 

9th Mel 
Coefficient (de) 

Relative peak 
mean 

8 
RASTA 

coefficients 
Coefficient of 

band 6 (de) 
Mean segment 

length 
MFCC 

2nd Mel 
Coefficient (de) 

4th  coefficient of 
linear prediction 

9 
Voicing Related 

LLD 
Fundamental 

Frequency (fo) 
2nd Quartile 

Energy 
Related LLD 

RMS Energy 
Position of 
minimum 

10 Spectral LLD Spectral Slope 
3rd coefficient of the 

linear prediction
MFCC 

7th Mel 
Coefficient (de) 

Relative duration 
left curvature
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Figure 1: ROC curves comparison for the results obtained when differentiating untreated ASD patients from HS with two 
different vowels (panels A) and with a sentence and a vowel (panel B), when differentiating treated ASD patients from HS 
with a sentence and a vowel (panel C) and when differentiating ASD patients after and before BoNT-A with a sentence and 
a vowel (panel D). Please note that since all the classifiers achieve similar results, we reported, for simplicity, only the ROC 
curves related to SVM classifier. ROC analysis evidences that through a machine learning-based analysis is possible to 
accurately discriminate between HS and ASD, both treated and untreated. Moreover, performances obtained with different 
vocal tasks are comparable. Lowest results are obtained for panel D, suggesting that, although BoNT-A partially rehabilitates 
the voices of treated patients, those does not result as the ones of the healthy counterpart. 
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Figure 2: Comparison between the distributions of the 
values of some of the most relevant vocal features for the 
sentence, found by means of ranking algorithms, and CPPs’ 
distribution. Features found through our analysis are 
comparable to CPPs, in terms of discriminatory 
capabilities.  

4 DISCUSSION 

In our study we analyzed three different vocal tasks, 
including the vowel /a/ and /e/ and an Italian-sound 
sentence, by means of three different machine 
learning algorithms. All the algorithms distinguished 
ASD patients, both treated and untreated, from HS, 
and also patients before and after BoNT-A. 
Generally, we obtained slightly better performance 
through SVM classifier according to the results 
showed in Table 1.  

Moreover, comparable performances were 
obtained by means of all the vocal tasks. To better 
quantify the symptomatic effects of BoNT-A, we 
analyzed the most relevant features by means of the 
Information Gain ranking algorithm.  

We obtained several features that could be useful 
to objectively evaluate the effects of BoNT-A therapy 
through all the vocal tests. 

Wolfe et al. (1995) reported that the sound 
analysis of sustained vowels may not be adequate to 
evidence ASD or vocal disorders in general, 
preferring a speech-based analysis. Differently, 
Maryn & Roy (2012) reported that both sounds of 
sustained vowels and speech should be considered in 
rating ASD severity. Furthermore, studies involving 
cepstral analysis considered only sentences for vocal 
tasks (Heman-Ackah et al., 2014; Lowell et al., 2013), 
finding only a moderate correlation  between the 
CPPs values calculated from sustained vowels and 
clinical parameters (Hernández et al., 2018). 

Because of this discrepancy, here we preferred to 
analyze the information content both of vowels /a/ 
and /e/ and of an Italian-sound standardized sentence, 
by means of a machine learning approach, to evidence 
differences among groups of untreated ASD patients, 
BoNT-A treated ASD patients, and age- and gender-
matched healthy subjects. 

According to our results, the subject under vocal 
tasks can be correctly assigned to the belonging 
group, with comparable accuracy, sensitivity and 
specificity scores (Table 1), regardless the adopted 
vocal tasks, involving sustained vowels or sentence. 

Moreover, we compared the performances of 
three different classifiers, with the result that in 
general SVM slightly outperform with respect Naïve 
Bayes (NB) and Multilayer Perceptron (MP), as in 
general it occurs for classifying complex variables 
obtained from large audio and medical datasets (G. 
Costantini, D. Casali, M. Todisco, 2010; Giovanni 
Costantini et al., 2010; Saggio et al., 2011). 

The adopted procedure successfully performed in 
discriminating HS vs. untreated vs. treated ASD 
patients (Table 4). The latter discrimination confirms 
how, although BoNT-A therapy meaningfully 
improves ASD symptoms, the voice of treated 
patients does not result as the one of the healthy 
counterpart (A. Suppa et al., 2015; Antonio Suppa et 
al., 2020). 

The Information Gain ranking algorithm allowed 
identifying the most relevant features among those 
selected by CFS. Those features were almost the same 
from analysis of sounds from both /a/ and /e/ vowels, 
but different from the extracted one from the sentence 
(Tables 2 and 3). As a result, sustained vowels and 
sentence have a different information content, so that 
it can be convenient to consider both of them to get a 
complete view of patient’s voice conditions. 
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Figure 3: Mean values of the selected features that can 
discriminate more effectively vocal samples of ASD 
patients after BoNT-A therapy from samples of the same 
patients before the therapy. For each feature the mean value 
is normalized to the mean value of the HS, that represents a 
reference of the normal vocal behavior (yellow circle). 
Features’ labels are relative to the LLDs of the features, two 
features with the same LLD are reported with the same label 
but with a different subscript, indicating they are related to 
a different functional applied to the same LLD. Please note 
that since the features of the vowels are similar, we 
reported, for simplicity, only the radar charts of the 
sentence and vowel /e/. 

As depicted in Figure 2, showing a comparative 
boxplot between CPPs and a pair of the selected 
features, these features are able to differentiate 

between HS and ASD (treated and untreated) 
populations, also more effectively than CPPs. 

Figure 3 shows two radar charts representing the 
mean value of the distributions of the features we 
considered the most effective in discriminating ASD 
after BoNT-A from ASD before BoNT-A. These 
plots highlight that the mean values of the parameters 
of treated ASD patients are more near to that of the 
HS rather than that of untreated ASD, and could be 
useful to objectively evaluate the clinical effects of 
BoNT-A therapy on patients’ voices.  

5 CONCLUSIONS 

Previous studies recognized CPPs as the most 
relevant feature to identify and quantify ASD  
(Heman-Ackah et al., 2014; Hillenbrand & Houde, 
1996) and found low CPPs values in dysphonic 
patients while speaking (Heman-Ackah et al., 2014; 
Hillenbrand & Houde, 1996; A. Suppa et al., 2015) or 
sustaining a vowel (Hernández et al., 2018).  

Here, we performed a voice sound analysis, 
extracting a large set of vocal features, selecting the 
most relevant features with respect to the class, and 
training three classifiers through machine learning 
techniques. 

In a previous study, we demonstrated the 
possibility of discriminating ASD patients from HS, 
by adopting a machine learning approach to a selected 
group of vocal features, which better performed with 
respect considering CPPs only (Antonio Suppa et al., 
2020). 

In this study, we compared three machine learning 
algorithms, obtaining high accuracy performances 
with all of them, SVM slightly better outperforming 
with respect to NB and MP. 

In addition, according to our results, both the 
emission of a vowel or the continuous speech allow 
achieving comparable results in terms of accuracy, 
sensitivity and specificity, even if analyzing the LLDs 
related to sustained vowels and sentence present a 
different information content. Through the analysis of 
LLDs, it is possible to find new parameters that could 
objectively evaluate ASD symptoms and the effects 
of BoNT-A therapy. 

According to the obtained results, this work can 
represent a step towards future research aimed at 
classifying other voice disorders due to neurologic or 
non-neurologic disorders. 
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