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Abstract: This paper proposes the use of several features based on Discrete Wavelet Transform as novel descriptors for 
the application of classifying normal or abnormal phonocardiogram (PCG) signals, using Hidden Markov 
Models (HMM). The feature extraction of the first descriptor called “DWE” consists in converting each PCG 
signal into a sequence of features vectors. Each vector is composed of the energy of the wavelet coefficients 
computed at each decomposition level from an analysis window. The second descriptor “LWE” consists in 
applying the logarithm of DWE features, while the third descriptor “WCC” applies the DCT on the LWE 
features vector. This work aims to find the relevant descriptor using PCG Classification Rate criterion. This 
is achieved by implementing a standard system of classification using the HMM classifier combined with 
MFCC features descriptor. Each class is modeled by HMM model associated to GMM model. Several 
experiences are carried out to find the best configuration of HMM models and to select the optimal mother 
wavelet with its optimal decomposition level. The results obtained from a comparative study, have shown that 
the LWE descriptor using Daubechies wavelets at order 2 at level 7, gives the highest performance 
classification rate, with a more compact features representation than the MFCC descriptor. 

1 INTRODUCTION 

Before the 19th century, physicians used the ear as a 
way to listen to the sound emitted by heartbeats in 
order to identify heart operation state, which can be 
useful for diagnosing heart disease. This method of 
"immediate hearing" on the chest or the back is a very 
rudimentary approach for physicians having led to 
dissatisfaction with it. In 1816 Isaac invented a 
medical instrument called the "stethoscope", which is 
an exciting and practical new method of bedside 
examination. This instrument is widely used to 
diagnose heart disease (Hanna & Silverman, 2002). 
Despite its approval, this requires a long-term 
practice and several years of clinical experience is 
necessary and is difficult to obtain. This led doctors 
and researchers to develop techniques for helping 
cardiac auscultation. This need gave birth to 
electronic stethoscopes, which have the advantage of 
being able to record, store and replay the sounds in 
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better conditions, for diagnostic purposes (Jiang & 
Choi, 2006) (Moukadem, Dieterlena, Hueberb, & 
Brandtc, 2013). 

The heart sound signal of a normal heartbeat has 
two sounds. The first heart sound, a lub of "lub-dub" 
(S1), corresponds to the systolic period. The second 
heart sound, a dub (S2) of "lub-dub", corresponds to 
the diastolic period. These sounds are caused by the 
closing and opening of valves inside the heart 
(Kumar, et al., 2006). A normal heartbeat sound has 
an out of rhythm "lub ... dub...". Doctors can find 
heart additional or abnormal sounds from listening to 
sound with rhythm “lub-lub…dub, lub…dub-dub” 
(Gomes & Pereira, 2012) (Raza , et al., 2019). 

The classification phase usually comprises three 
steps: pre-processing, feature extraction and 
classification model. First, pre-processing is an 
important step in the data mining process for 
eliminating noise and cleaning the heartbeat signal, 
and this is done using a band pass filter. The 
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extraction of characteristics is an essential stage, from 
which the classification system is carried out; this 
step transforms each heartbeat sound signal into to 
sequence of vectors. The choice of characteristics is 
essential and is done by the system designer 
following many considerations: the main motivation 
is to choose features as discriminatory as possible; 
also the greater the number of characteristics, the 
more complex the classification system and the 
longer the learning time, which makes the real-time 
implementation more difficult. Several studies related 
to classification and pattern recognition have been 
introduced in the past using techniques such as 
wavelet transform (WT), Mel-Frequency Cepstral 
Coefficients (MFCC), ensemble empirical mode 
decomposition, multi-fractal decomposition and 
Shannon energy (Chen, et al., S1 and S2 heart sound 
recognition using deep neural networks, 2016) (Chen, 
Yang, & Ho, S1 and S2 Heart Sound Recognition 
Using Deep Neural Networks, 2017) (Gupta, 
Palaniappan, Swaminathan, & Krishnan, 2007) 
(Alajarin, 2007). In many studies, Hidden Markov 
Models (HMM) were used for PCG modelling and 
analysing, in conjunction with short-time Fourier 
transform coefficients (STFT). The mel-scaled WT 
were used to classify signals of heart sounds in 
(Wang, Lim, Chauhan, Foo, & Anantharaman, 2007). 
Conjunction of signal amplitude and MFCC 
coefficients with HMM were used in (Chauhan, 
Wang, Lim, & Anantharaman, 2008) and the same 
idea were also applied using DFT and principal 
component analysis in (Saracoglu, 2012). 

In this study, we propose to apply a feature 
extraction method based on Discrete wavelet 
Transform (DWT), mostly inspired by research in 
speech processing (Didiot, Illina, Fohr, & Mella, 
2010) and in electrical appliances identification 
(Hacine-Gharbi & Ravier, 2018). This method can 
extract three descriptors called respectively DWE 
(Discrete Wavelet Energy), LWE (Log Wavelet 
Energy) and WCC (Wavelet Cepstral Coefficients). 
The DWE descriptor extraction consists to convert 
each PCG signal into a sequence of features vectors 
obtained each one by computing the energy at each 
level of dyadic wavelet decomposition from an 
overlapping analysis window. The LWE descriptor 
applies the logarithm on the features of DWE 
descriptor, while the WCC descriptor applies DCT 
transform on the features of LWE descriptor. The aim 
of this work is to investigate the relevance of these 
descriptors by comparing them with the traditional 
MFCC descriptor for the task of PCG signals 
classification, in terms of classification rate and 
complexity. 

The remainder of this paper is organized as 
follows. In Section 2, we discuss sound classification, 
features extraction approaches and we introduce the 
proposed approach and detail each algorithm step. 
Experimental results and discussion are presented in 
Section 3. We end up by a conclusion and 
perspectives concerning future work. 

2 CLASSIFICATION OF PCG 
SIGNAL 

2.1 Dataset 

In order to test our methods, we used the PASCAL 
Classifying Heart Sounds Challenge database 
(Bentley, Nordehn, Coimbra, Mannor, & Getz, 2011). 
Database comprises 176 recordings for heart sound 
segmentation. More details about the challenge 
dataset can be found in (Liu, et al., 2016). During 
evaluation, we use only 621 cardiac cycles (beat) 
including 204 pathological cardiac cycles. This 
extraction and recording is carried out using the 
PRAAT software. For each version of the signal, a 
labelling file is created in text format, containing the 
transcription of the signal in a sequence of labels. 
These labels are the normal and abnormal classes 
Each beat belongs either to the normal class (label 
‘N’) or to the pathological class (label ‘AN’). Each 
PCG signal was then resampled to 16000Hz. 

Table 1 summarizes the distribution of the 
training and testing sets composing the PASCAL 
database. 

Table 1: Distribution of the testing and training record 
numbers of the PASCAL database. 

Classes  Normal Abnormal 

Number 417 204 
Test/Train 121/296 58/146

2.2 Proposed Feature Extraction 
Method 

In order to classify the heart sound components, many 
authors have proposed the use of the MFCC descriptor 
(Rahmandani, Nugroho, & Setiawan, 2018) (Nilanon, 
Yao, Hao, & Purushotham, 2016) (Numan, et al., 
2019). This last descriptor is a perceptual 
representation of the power spectrum of a sound 
signal. It is obtained by taking the Discrete Cosine 
Transform (DCT) of the logarithmic power spectrum 
on a nonlinear mel-scale of frequency by using the 
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following frequency transformation (Wu, Kim, & 
Bae, 2010): 

𝑀𝑒𝑙ሺ𝑓ሻ ൌ 2595𝑙𝑜𝑔ଵ଴ ൬1 ൅
𝑓

700
൰ (1)

The features extraction operation from PCG 
signals requires the computation of 39 dimension 
vectors per frame including static features and energy 
with their dynamic features. When MFCC is used, 
acceptable results for clean heart sounds are obtained. 
However, the results are sensitive to the recording 
frequency and the performance is not as good in a 
noisy environment. This is based on the results of 
many studies (Numan, et al., 2019) (YaseenSonG & 
Kwon, 2018) (Li, et al., 2019), whereby the latter 
indicates that the new extracted feature is more 
suitable and shows stronger anti-interference ability 
for heart sound signals representation than that of the 
MFCC. The results show a remarkable classification 
performance in detecting the noisy class accurately. At 
least, the MFCC feature vectors require high 
dimensionality computation. 

To overcome this limitation P. Wang et al. have 
proposed to replace the MFCC by the mel-scaled WT. 
This method applies the wavelet transform to the mel-
spectrum of the phonocardiogram (Wang, Kim, & 
Soh,2005). Their suggested method has produced 
encouraging results compared with those obtained 
achieved using the MFCC. 

Many other wavelet features can be further 
computed from discrete wavelet coefficients, namely 
Discrete Wavelet Energy (DWE), Log Wavelet 
Energy (LWE) and Wavelet Cepstral Coefficients 
(WCC), as depicted in Figure 1. 

 

Figure 1: block diagram describing the process of wavelet 
cepstral coefficient (WCCs), discrete wavelet energy 
(DWE) decomposition-based calculus and log wavelet 
decomposition-based energy (LWE) features extraction 
with Hamming windowing. 

The idea of using DWE, LWE and WCC as the 
feature set for a PCG classification system comes from 
the success of wavelet cepstral coefficients for speaker 
identification (Lei & Kun, 2016) and also because 
PCG and speech are both acoustic signals. Our 
acoustic analysis approach consists in extracting the 
DWE, LWE and WCC descriptors for short-term 

feature extraction with low dimensionality of the 
features vectors. The LWE descriptor consists in 
calculating the log of the energy of the wavelet 
coefficients at each decomposition level without DCT 
transform in order to keep the interpretation of a 
descriptor representing energies in frequency bands. 
The flowchart of DWE, LWE and WCC extraction 
method used in this paper is shown in Figure 1. The 
whole procedure was carried out in the four steps 
given as follows: 

Step 1: Preprocessing: this step goes through the 
following operations (Nabih-Ali, EL-Sayed, 
El-Dahshan, Ashraf, & Yahia, 2017): 

 The PCG data is segmented into 20ms-
overlapping frames, with 10ms overlap 
between them. 

 Hamming window is applied on these 
20ms portions. 

Step 2: CWT is the continuous version of WT 
which principle remains similar when going 
to the DWT discrete version. However, the 
application of DWT requires that the scales 
used by the wavelet and their positions are 
sampled down by a factor of two (or up for the 
inverse DWT). This is called the dyadic scale. 
In practice, DWT is simply computed by 
using a filter bank for constructing the multi 
resolution time-frequency plane. The filter 
bank is achieved using a half-band low pass 
filter and a half-band high pass filter. In the 
iterative wavelet decomposition procedure, 
the low-frequency coefficients are called the 
approximations (𝑎௝), while the high-
frequency coefficients are called the details 
(𝑑௝). 

The DWT coefficients 𝑎௝ሾ𝑛ሿ and 𝑑௝ሾ𝑛ሿ are 
calculated, at each level 𝑗, by the following formula: 

𝑎௝ሾ𝑛ሿ ൌ ෍ 𝑎௝ିଵሾ𝑙 െ 2𝑛ሿ
௟

𝐿ሺ𝑙ሻ   for  𝑗 ൌ 1, … , 𝑝 (2)

𝑑௝ሾ𝑛ሿ ൌ ෍ 𝑎௝ିଵሾ𝑙 െ 2𝑛ሿ
௟

𝐻ሺ𝑙ሻ (3)

where the analyzed signal is of length N ൌ 2௣. The 
notations 𝐿 and 𝐻 represent the low-pass and high-
pass filters, respectively. 

As a result of this step, we obtain a feature vector, 
which is called Discrete Wavelet decomposition-
based calculus Energy (DWE) and which is evaluated 
as: 

𝐷𝑊𝐸ሾ𝑑௝ሿ ൌ ෍ ห𝑑௝ሾ𝑛ሿห
ଶ

 for 𝑗 ൌ 1, … , 𝑝
ேೕିଵ

௡ୀ଴
 (4)
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𝐷𝑊𝐸ൣ𝑎௣൧ ൌ ෍ ห𝑎௣ሾ𝑛ሿห
ଶே೛ିଵ

௡ୀ଴
 (5)

The number of samples is 𝑁௝ ൌ 𝑁/2௝ at each 
level 𝑗, which means that this number is reduced by a 
factor 2 at each iteration from (1 to 𝑝ሻ. 

Step 3: The previous step allows the calculation of 
another descriptor called LWE. This last is the 
log of energy at each level of dyadic 
decomposition. It writes: 

𝐿𝑊𝐸ൣ𝑑௝൧ ൌ 𝑙𝑜𝑔 ෍ ห𝑑௝ሾ𝑛ሿห
ଶ

for 𝑗 ൌ 1, … , 𝑝
ேೕିଵ

௡ୀ଴
(6)

𝐿𝑊𝐸ൣ𝑎௣൧ ൌ 𝑙𝑜𝑔 ෍ ห𝑎௣ሾ𝑛ሿห
ଶே೛ିଵ

௡ୀ଴
  (7)

Step 4: The previous step finally allows further 
computation of WCCs, which are the results of 
the application of the inverse discrete cosine 
transform (DCT) on the logarithmic values of 
energies. This homomorphic analysis has the 
effect of making the obtained coefficients less 
correlated with each other. 

Previous results described in (Hacine-Gharbi & 
Ravier, 2018), in the field of electrical appliances 
identification, showed that the WCC performed good 
results, in terms of appliance identification rate. 

2.3 Hidden Markov-based 
Classification System 

The classification system design of heartbeat sound is 
divided into two phases, the training and testing 
phases as shown in Figure 2. Therefore, we split the 
dataset (Bentley, Nordehn, Coimbra, Mannor, & Getz, 
2011) into two sets with a proportion of 70% for 
training and 30 % for testing data. The two phases 
require feature extraction step, which consists in 
dividing each signal in overlapped windows and 
converting each window into features vector. 

 

Figure 2: Flow chart outlining the procedure of the 
proposed classification system. 

Hence, this step converts each signal into a sequence 
of features vectors. 

In the training phase, the data are learned by 
modelling the signals of each class by a HMM model 
associated with GMM (Gaussian Mixture Model) 
model. The feature extraction techniques are applied 
in order to produce input data to the system for class 
learning. 

In the testing phase, the temporal signal is 
transformed into a sequence of feature vectors which 
are used as input data for the HMM classifier. 

Finally, the evaluation of the implemented system 
is done by using the decision results given by the 
classifier knowing the ground truth given by the 
expert notations. Appropriate statistics will be used 
for this performance evaluation task. 

2.4 Performance Evaluation 

The overall performance of the PCG signal 
classification was evaluated by the computation of 
classification rate (CR) given by the Accuracy value 
ሺ𝐴𝑐𝑐ு்௄ሻ provided by the HMM Toolkit library 
software (HTK) (Young, Kershaw, Odell, & Ollason, 
1999) and is calculated as follows (Young, Kershaw, 
Odell, & Ollason, 1999): 

𝐴𝑐𝑐ு்௄ ൌ
𝐻
𝑁

  (8)

where N is the total number of PCG signals given 
at the input of the classifier, and H is the number of 
the PCG signals correctly classified. 

3 EXPERIMENTAL RESULTS 

3.1 Experiments 

Each heartbeat is modeled by a Nୗ୲ୟ୲ୣୱ HMM. Each 
state is modeled by a GMM with Nୋୟ୳ୱୱ୧ୟ୬ୱ Gaussians 
of frame size of 20ms. The implementation of the 
system is carried out using the HTK library (Young, 
Kershaw, Odell, & Ollason, 1999). The performance 
of this classification is performed in terms of CR. 

The following section, which is structured in two 
parts, presents the experimental results. In the first 
part, we compare the performance of the new features 
to that of other features. In a second part, we carry out 
an experiment to select the optimal mother wavelet 
for the best previous descriptor and decomposition 
level. 
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3.2 Results and Discussion 

3.2.1 Comparative Study between Different 
Features 

Table 2 shows the best possible classification results 
with optimal number of states and optimal number of 
Gaussian components Nୋୟ୳ୱୱ୧ୟ୬ୱ when varying the 
States from 2 to 12 and varying the Nୋୟ୳ୱୱ୧ୟ୬ୱ from 1 
to 96 (taking 8 values of Nୋୟ୳ୱୱ୧ୟ୬ୱ: 
1,2,3,6,12,24,48,96). The features vector was 
computed with sliding Hamming windows of 20ms 
and 50% of overlapping (Nabih-Ali, EL-Sayed, El-
Dahshan, Ashraf, & Yahia, 2017). 

By observing the results of each column, we can 
find that the best performance is achieved when the 
optimal number of states is set to 10 for the feature 
descriptor (LWE) with CR of 92.74%. Using the 
MFCC features, the baseline algorithm yielded the 
poorest CR of 87.71 % with the configuration of 39 
dimensional feature vector. In the light of these 
results, we can conclude that the model, which uses 
LWE features, obtained higher CR with respect to the 
other wavelet features and the MFCC descriptors. 

Table 2: Comparison of ACC_HTK(%) for different features 
extractions descriptors techniques using Daubechies (db2) 
at level 7 for the hmm optimal number of states (Lekram & 
Abhishek, 2014). The features number is given for each 
descriptor. 

MFCC 
(39) 

DWE 
(8) 

LWE 
(8) 

WCC 
(8) 

𝐍𝐒𝐭𝐚𝐭𝐞𝐬 9 8 10 8 
𝐍𝐆𝐚𝐮𝐬𝐬𝐢𝐚𝐧𝐬 2 2 3 3 

𝐀𝐜𝐜𝐇𝐓𝐊 ሺ%ሻ 87.71 88.27 92.74 89.94 

3.2.2 Optimal LWE Parameterization 

Window Duration. Table 3 shows the CR results for 
different window duration values. The Db 2 wavelet 
and a decomposition level 7 are considered in this 
experiment for the classification system (Lekram & 
Abhishek, 2014). By analyzing the results in Table 3, 
we can find that the maximum CR (AccHTK) in each 
column is achieved when the window size equals 
20ms, the best CR of 92.74% was reached in this 
table. Therefore, it is desirable to select a window 
duration of 20ms. 

Table 3: AccHTK (%) for different combinations of the 
window size. 

Wind. size 60ms 50ms 40ms 30ms 20ms
𝑨𝒄𝒄𝑯𝑻𝑲 ሺ%ሻ 87.71 88.27 88.83 89.39 92.74 

Wavelet Family and Decomposition Depth. In this 
part, the smoothness and the impact of the wavelet 
family on the CR is evaluated. This study intended to 
define the optimal mother wavelet with its optimal 
decomposition level. In the present work, the 
following wavelet families are considered: 

 the Daubechies family with orders going 
from 1 to 8: Db1, Db2, ..., Db8; 

 the Coiflets family with orders going from 1 
to 5: Coif1, Coif2..., Coif5; 

 the Symlets family with orders going from 1 
to 8: Sym1, Sym2, ..., Sym8. 

We used the optimal system configuration 
identified in the previous studies, which is composed 
of ten HMM states, where each state is represented by 
a three Gaussian mixture. 

The results are given in Table 4, where the highest 
CR value of 92.74% was achieved when using 
Daubechies wavelet of order 2 and a decomposition 
level of 7. 

Table 4: Comparative results between different kinds of 
wavelet families. The table shows the AccHTK values for the 
optimal decomposition level as well as the optimal order for 
each wavelet family. 

Daubechies Symlet Coiflets 

level 7 2 6 

order 2 2 1 

𝐀𝐜𝐜𝐇𝐓𝐊 ሺ%ሻ 92.74 89.94 89.39 

Table 5 also gives the detailed results of AccHTK 
for the best Daubechies wavelet family when 
changing levels and orders. The Table gives some 
credit to our study because of the high variability 
observed in AccHTK values between the lowest of 
72.07% and highest value of 92.74%. 

Table 5: AccHTK (%) of LWE for different Daubechies 
orders and different decomposition levels. 

1 2 3 4 5 6 7 8
db1 86.03 86.03 86.59 85.47 81.01 87.15 85.47 87.15
db2 87.15 89.94 86.03 85.47 86.03 87.71 92.74 90.50
db3 84.36 85.47 86.03 77.65 78.77  83.80 87.71
db4 79.89 82.68 82.12 77.09 81.56 81.56 85.47 
db5 72.07 79.89 80.45 77.65 79.89 79.33  
db6 76.54 78.77 85.47 82.12 83.80 86.03  
db7 79.89 83.80 85.47 82.68 84.92 84.92  
db8 78.77 83.24 87.15 83.24 87.71 82.68  

Moreover, results were obtained with the Coiflets 
and Symlets wavelet families by following the same 
experimental protocol. The order 2 at level 2 showed 
the best performance within the Symlet family with 
CR of 89.94%. Finally, the order 1 at level 6 showed 
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the highest performance within the Coiflets family 
with CR of 89.39%. 

As a conclusion, from the experiments carried out, 
the LWE descriptors, obtained using Daubechies and 
Symlets wavelets at low orders and high 
decomposition levels (order 2 with level 7 and order2 
with level 2, respectively), gave the best CR values. 
On the other hand, taking Coiflets wavelets, the best 
results were obtained at order 1 with level 6 and the 
performance dropped of about 0.99%. 

4 CONCLUSIONS 

In this study, three features descriptors called DWE, 
LWE and WCC, based on discrete wavelet transform 
are proposed for the classification of normal and 
abnormal PCG signals using HMM classifier. 
Different experiments have been carried out to find 
the best configuration of the HMM classifier and to 
select the optimal wavelet mother with its 
decomposition level. The results have shown that the 
combination of HMM model of 10 states associated 
to GMM of 3 Gaussian components, with LWE 
descriptor computed on analysis window of 20 ms 
duration using the mother wavelet Db2 with 
decomposition level 7 presented the highest 
performance level with CR of 92.74%.  The results 
demonstrate the relevance and the efficiency of LWE 
descriptor compared to the MFCC, WCC and DWE 
in terms of CR and compact feature representation.   

In future works, we are planning to evaluate the 
reference system on a larger database. The LWEs will 
also be tested under different noise conditions in 
order to observe their robustness towards noisy PCG. 
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