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Abstract: Model transformations are among the key concepts of model-driven engineering (MDE), and dedicated model
transformation languages (MTLs) emerged with the popularity of the MDE paradigm about 15 to 20 years
ago. MTLs claim to increase the ease of development of model transformations by abstracting from recur-
ring transformation aspects and hiding complex semantics behind a simple yet intuitive syntax. Nonetheless,
MTLs are rarely adopted in practice, there is still no empirical evidence for this claim, and the argument of
abstraction deserves a fresh look in the light of modern general-purpose languages (GPLs) which have un-
dergone a significant evolution in the last two decades. In this paper, we report about a study in which we
compare the complexity of model transformations written in three different languages, namely (i) the Atlas
Transformation Language (ATL), (ii) Java SE5, and (iii) Java SE14; the Java transformations are derived from
an ATL specification using a translation schema we developed in terms of our study. In a nutshell, we found
that some of the new features in Java SE14 compared to Java SE5 help to significantly reduce the complexity
of transformations written in Java. At the same time, however, the relative amount of complexity that stems
from aspects that ATL can hide from the developer stays about the same. Based on these results, we indicate
potential avenues for future research on the comparison of MTLs and GPLs in a model transformation context.

1 INTRODUCTION

Model transformations are among the key con-
cepts of the model-driven engineering (MDE)
paradigm (Sendall and Kozaczynski, 2003). They
are a particular kind of software which needs to be
developed along with an MDE tool chain or de-
velopment environment. With the aim of support-
ing the development of model transformations, ded-
icated model transformation languages (MTLs) have
been proposed and implemented shortly after the
MDE paradigm gained a foothold in software engi-
neering. In the literature, many advantages are as-
cribed to model transformation languages, such as
better analysability, comprehensibility or expressive-
ness (Götz et al., 2020). Moreover, model transfor-
mation languages aim at abstracting from certain re-
curring aspects of a model transformation, claiming
to hide complex semantics behind a simple yet in-
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tuitive syntax (Jouault et al., 2008; Krikava et al.,
2014; Sendall and Kozaczynski, 2003; Gray and Kar-
sai, 2003).

Nowadays, however, such claims have two main
flaws. First, as discussed by Götz et al., there is a lack
of actual evidence to have confidence in their gen-
uineness (Götz et al., 2020). Second, we argue that
most of these claims emerged together with the first
MTLs around 15 years ago. The Atlas Transforma-
tion Language (ATL) (Jouault et al., 2006), for exam-
ple, was first introduced in 2006, at a time when third
generation general-purpose languages (GPLs) were
still in their infancy. Arguably, these flaws are under-
pinned by the observation that MTLs have been rarely
adopted in practical MDE (Burgueno et al., 2019).

Within our research group as well as in conver-
sations with other researchers, the presumption that
transformations can just as well be written in a GPL
such as Java has been discussed frequently. In fact,
in our own research, we have implemented various
model transformations using a GPL; examples of this
include the meta-tooling facilities of established re-
search tools like SiLift (Kehrer et al., 2012) and
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SERGe (Kehrer et al., 2016; Rindt et al., 2014), or the
implementation of model refactorings and model mu-
tations in experimental setups of more recent empir-
ical evaluations (Schultheiß et al., 2020a; Schultheiß
et al., 2020b). The presumption that model transfor-
mations can just as well be written in a GPL has been
confirmed by a community discussion on the future
of model transformation languages (Burgueno et al.,
2019), and, at least partially, by an empirical study
conducted by Hebig et al. (Hebig et al., 2018). Our
argumentation for specifying model transformations
using a modern GPL is mainly rooted in the idea that
new language features allow developers to heavily re-
duce the boilerplate code that MTLs claim to abstract
away from.

To validate and better understand this argumen-
tation, we elected to compare ATL, one of the most
widely known MTLs, with Java, a widespread GPL.
More specifically, we compare ATL with Java in its
current iteration (Java SE14) as well as at the level
of 2006 (Java SE5) when ATL was introduced1 To
see how much transformation code written in Java
SE5 can be improved using newer language features
released in Java SE14, we also decided to compare
transformations written in these two versions. Based
on these goals, we devised three research questions to
focus our research on:

• RQ1: How much less complex can transforma-
tions be written in Java SE14 compared to Java
SE5?

• RQ2: How is the complexity of transformations
written in Java SE5 distributed over the different
aspects of the transformation process compared
to ATL?

• RQ3: How is the complexity of transformations
written in Java SE14 distributed over the different
aspects of the transformation process compared
to ATL?

To answer these research questions, we devised a
schema to translate 10 existing ATL transformations
taken from the ATL Zoo2 into Java. For comparing
transformations specified in Java SE5 and SE 14, we
use a combination of two metrics for measuring size
and complexity, namely lines of code (LOC) and Mc-
Cabe’s cyclomatic complexity. Our comparison of
complexity distributions is based on these metrics,
and we incorporate the findings of Götz et al. on
how complexity is distributed within ATL transforma-
tions (Götz and Tichy, 2020). For better understand-

1Interestingly, there was no significant evolution of the
ATL language since its initial introduction in 2006 (Bur-
gueno et al., 2019).

2https://www.eclipse.org/atl/atlTransformations

ing the differences revealed by our quantitative com-
parison, we conducted a qualitative analysis of corre-
sponding code fragments written in the three different
languages used in our study.

The remainder of this paper is structured as fol-
lows: First, Section 2 introduces the relevant aspects
of ATL as well as the relevant differences between
Java 5 and Java 14. In Section 3, we present our
methodology for translating, reviewing and analysing
the translated transformations. Afterwards, in Sec-
tion 4, we give an overview of how ATL transfor-
mations were translated into Java. The results of our
analysis and extensive comparison between the differ-
ent transformation approaches are then presented in
Section 5. Section 6 discusses potential threats to the
validity of our work, while related work is considered
in Section 7. Lastly, Section 8 concludes the paper
and presents potential avenues for future research.

2 BACKGROUND

In this section, we briefly introduce the relevant back-
ground knowledge required for this paper. First, since
model transformations can only be specified precisely
based on some concrete model representation, we
introduce the structural representation of models in
MDE which is typically assumed by all mainstream
model transformation languages, including ATL. Af-
terwards, since our work builds on ATL as well as the
technological advancement of Java, it is necessary to
introduce the relevant background knowledge on ATL
and to present the important differences between Java
SE5 and Java SE14, respectively.

2.1 Models in MDE

In MDE, the conceptual model elements of a
modelling language are typically defined by a
meta-model. The Eclipse Modeling Framework
(EMF) (Steinberg et al., 2008), a Java-based refer-
ence implementation of OMG’s Essential Meta Ob-
ject Facility (EMOF) (OMG, 2016), has evolved into
a de-facto standard technology to define meta-models
that prescribe the valid structures that instance mod-
els of the defined modeling language may exhibit. It
follows an object-oriented approach in which model
elements and their structural relationships are repre-
sented by objects (EObjects) and references whose
types are defined by classes (EClasses) and associa-
tions (EReferences), respectively. Local properties of
model elements are represented and defined by object
attributes (EAttributes). A specific kind of references
are containments. In a valid EMF model, each ob-
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� �
1 module NAME
2 create OUT1:MetaModelB , ...
3 [from|refining] IN1:MetaModelA , ...
4

5 [uses LIBRARY]*
6 [RULEDEF|HELPERDEF]*� �

Listing 1: Structure of an ATL module.

ject must not have more than one container and cy-
cles of containments must not occur. Typically, an
EMF model has a dedicated root object that contains
all other objects of the model directly or transitively.

2.2 ATL

ATL distinguishes among three kinds of so-called
Units, being either a module, a library or a query.
Depending on the type of unit, they consist of rules,
helpers and attributes. For data types and expres-
sions, ATL uses the Object Constraint Language
(OCL) (OMG, 2014).

2.2.1 Units

As illustrated in Listing 1, transformations are defined
in Modules, taking a set of input models (line 3) which
are transformed to a set of output models (line 2) by
rule and helper definitions which make up the trans-
formation (line 6).

Libraries: do not define transformations but only
consist of a set of helper definitions. Libraries can be
imported into modules to enhance their functionality
(line 5).

Queries: are special types of libraries, that are
used to define transformations from model elements
to simple OCL types. They are comprised of a query
element and a set of helper definitions.

2.2.2 Helpers and Attributes

Helpers allow outsourcing of expressions that can be
called from within rules, similar to simple functions
in general purpose languages. Helper definitions can
specify a so-called context which defines the data type
for which the helper is defined as well as parameters
passed to the helper. ATL also allows the definition of
attribute helpers. Attribute helpers differ from helpers
in that they do not accept any parameter and always
require a context data type. They serve as constants
for the specified context. Listing 2 shows the syntax
to define helpers and attribute helpers.

� �
1 helper [context MODELTYPE]? def :

NAME[(PARAMETERS)]? :TYPE =
EXPR;� �

Listing 2: Syntax to define Helpers.

2.2.3 Rules

In ATL, transformations of input models into output
models are defined using rules. There are two main
types of rules: matched rules and called rules.

Matched Rules: The declarative part of an ATL
transformation is comprised by matched rules which
are automatically executed on all matching input
model elements, thus allowing to define type-specific
transformations into output model elements. For this,
the ATL engine traverses the input model in an op-
timized order. Furthermore, matched rules generate
traceability links (trace links for short) between the
source and target elements. These links can be nav-
igated throughout the transformation specification to
access references to elements created from a source
element. Matched rules are comprised of four sec-
tions (see Listing 3):

• The In-Pattern (lines 2 to 3) defines the type of
source model elements that are to be matched and
transformed. An optional filter expression allows
the definition of a condition that must be met for
the rule to be applied.

• An optional Using-Block (lines 4 to 6) allows to
define local variables based on the input element.

• The Out-Pattern (lines 7 to 10) then defines a
number of output model elements that are to be
created from the input element when the rule is
applied. Each output model element is defined us-
ing a set of so-called bindings for assigning values
to attributes of the output model element.

• Lastly, an optional Action-Block (lines 11 to 13)
can be defined which allows the specification of
imperative code that is executed once the target
elements have been created.

Matched rules can also be defined as lazy rules by
adding the keyword lazy to the rule definition (line
1). In contrast to regular matched rules, lazy rules
are only executed when explicitly called for a specific
model element that matches both the rule’s type and
its filter expression. They can be called multiple times
on the same model element to produce multiple dis-
tinct output elements. To change the behaviour of lazy
rules to always produce one and the same output el-
ement for the same source model element, lazy rules
can be declared as unique (line 1).

Called Rules: As opposed to matched rules,
called rules enable an explicit generation of target
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� �
1 [lazy| unique lazy]? rule NAME {
2 from
3 INVAR : MODELATYPE [(CONDITION)]*
4 [using {
5 [VAR : VARTYPE = EXPR;]+
6 }]?
7 to
8 [OUTVAR : MODELBTYPE {
9 [ATR <- EXPR ,]+

10 },]+
11 [do {
12 [STATEMENT;]*
13 }]?
14 }� �

Listing 3: Syntax to define matched rules.

model elements in an imperative way. Called rules
can be called from within the imperative code defined
in the Action-Block of rules. They are defined sim-
ilarly to matched rules. The main difference is that
they do not contain an In-Pattern but instead allow the
definition of required parameters. These parameters
can then be used in the Out-Pattern and Action-Block
to produce output model elements.

2.2.4 Refining Mode

The refining mode is a special execution mode for
ATL modules which aims at supporting an easy def-
inition of in-place transformations (Czarnecki and
Helsen, 2006; Strüber et al., 2017). Normally, the
ATL engine only creates new output model elements
from input model elements matched by the rules de-
fined in a module. However, in the refining mode, the
ATL engine instead executes all rules on matching in-
put elements and produces a copy of all unmatched
input elements automatically. This aims to allow de-
velopers to focus solely on local modifications such
as model refactorings rather than also having to man-
ually produce copies of all other model elements.

2.3 Technological Advancements in
Java14 Compared to Java5

Since the release of J2SE 5 in September of 2004,
there have been a lot of improvements made to the
Java language. In this section, however, we will only
cover the ones relevant in the context of this paper.
All the relevant features relate to a more functional
programming style as they allow developers to ex-
press some key aspects of a transformation specifi-
cation more concisely.

� �
1 Function <Integer , Integer >

doubleIt = (value) -> value *
2;� �

Listing 5: Lambda expression definition based on Function.

2.3.1 Functional Interfaces

With the introduction of the functional interfaces
in Java SE8, Java made an important step towards
embracing the functional programming paradigm,
paving the way to define lambda expressions in ar-
bitrary Java code. Lambda expressions, also called
anonymous functions, are functions that are defined
without being bound to an identifier. This allows de-
velopers to pass them as arguments.

In essence, a functional interface is an interface
containing only a single abstract method. This ab-
stract method can then be implemented by means of
a Java lambda expression (see Listing 5). One exam-
ple of this is the interface called Function<T,R> (see
Listing 4). It represents a function which takes a sin-
gle parameter and returns a value.� �
1 public interface Function <T,R> {
2 public R apply(T par);
3 }� �

Listing 4: Definition of the Function interface.

Lambdas defined with the interface Function<T,R>
as their type are then nothing more than objects with
their definition as the implementation of the apply
method wrapped in a more functional syntax (see
Listing 5).

Java provides a number of predefined func-
tional interfaces, such as the aforementioned
Function<T,R>, or Consumer<T> which takes one
argument and has void as its return value.

2.3.2 Streams

Streams represent a sequence of elements and allow
a number of different operations to be performed on
the elements within the sequence. Stream operations
can either be intermediate or terminal. This means
that the operations can either produce another stream
as their result or a non-stream result which therefore
terminates the computation on the stream. This also
means that intermediate operations work with all ele-
ments within the stream without the developer having
to define a loop over it.

The example in Listing 6 shows how one can find
and print all even numbers in a list using streams.
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� �
1 List <String > myList =

Arrays.asList(1,2,3,4,5,6);
2 myList.stream().filter(i -> i % 2

== 0).forEach(
System.out::println);� �

Listing 6: Finding and printing all even numbers in a list.

Table 1: Meta-Data about the selected transformation mod-
ules.

Data minimum average maximum total

LOC 42 329 1125 13455
Rules 2 8 20 78
Helpers 0 9 74 82

3 METHODOLOGY

Our research methodology consists of three main sub-
sequent steps. First, we selected transformation mod-
ules to translate and analyse. Afterwards, we devel-
oped a translation schema for translating ATL trans-
formations into Java and translated the selected ones
into both Java SE5 and Java SE14. Lastly, we se-
lected and applied complexity measures on the Java
and ATL code. The results were then analysed and
compared in accordance with our research questions
from Section 1.

3.1 Module Selection

The selection of ATL modules was done with several
goals in mind. First we wanted to include transfor-
mations of different size and purpose. We also aimed
to include both transformations using ATLs refining
mode and normal transformations. Lastly, due to the
fact that our translations would be done manually, we
decided to limit the total number of transformations
to 10 and the maximum size of a transformation to
around 1000 LOC.

Since our work is, in part, based on the work pre-
sented in (Götz and Tichy, 2020) and their selection
criteria align with ours, we opted to make the selec-
tion of modules from the set of transformations anal-
ysed by them.

This selection process resulted in a total of 10 ATL
transformations 3, each of which stems from the well-
known ATL Zoo. Basic meta-data about the transfor-
mations can be found in Table 1, while further details
can be found in the ATL Zoo.

3A list with the names of the used transformations can
be found under https://spgit.informatik.uni-ulm.de/stefan.
goetz/javatransformationsv4/-/blob/master/resources/
toCompare

3.2 Translation Schema Development
and Application

To develop the translation schema, we followed
the design science research methodology (Wieringa,
2014). We used the ATL solution found in the
ATL Zoo for the families2persons case from the
TTC’17 (Anjorin et al., 2017) as our initial test input
for the translation scheme and focused on developing
the schema for Java SE14.

The development process followed a simple, itera-
tive pattern. A translation schema was developed and
applied to the families2persons case. The resulting
transformation was then reviewed, focusing on com-
pleteness and meaningfulness. Afterwards, the results
of the review were used as input for reiterating the
process.

In a final evolution step, the preliminary transfor-
mation schema was applied to all 10 selected ATL
transformations. Afterwards, two researchers re-
viewed the resulting transformations separately based
on a predefined code review protocol. In a joint meet-
ing, the results of the reviews were discussed and final
adjustments to the transformation schema were de-
cided. These were then used to create a final trans-
lation of all 10 ATL transformations.

Lastly we ported the developed transformations to
Java SE5 by forking the project, reducing the com-
piler compliance level and re-implementing the parts
that were not compatible with older compiler ver-
sions.

To validate the correctness of the translated trans-
formations, we used the input and output models
that were provided within the ATL transformation
projects. The input models were used as input for the
Java transformations and the output models were then
compared with the output of the transformations. If
no output models were provided in the projects, we
applied the ATL transformations to the input models
and compared the Java results with the results gener-
ated by ATL. If no input model and output model were
provided, we relied on the results of our code reviews.
This validation approach is similar to how (Sanchez
Cuadrado et al., 2020) validate their generated code.

3.3 Measure Selection and Analysis

Our analysis of the transformation specifications is
guided by the research questions introduced in Sec-
tion 1.
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3.3.1 RQ1: How Much Less Complex Can
Transformations be Written in Java SE14
Compared to Java SE5?

To compare the transformations written in Java SE14
and Java SE5, we decided to use code metrics fo-
cused on code complexity and size. For this reason,
we chose McCabe’s cyclomatic complexity as well as
LOC which are shown to correlate with the complex-
ity and size of software (Jabangwe et al., 2015). To
keep the LOC count as fair as possible, we used the
same standard code formatter for all Java code.

We applied the Java code metrics calculator
(CK) (Aniche, 2015) on all 20 transformations to cal-
culate both metrics. CK calculates metrics on the
level of classes, methods, fields and variables. We
opted to use the values calculated on the level of
methods, i.e., the LOC and McCabe complexity of
the method bodies because neither the fields level nor
the variables level contained values for them and the
class level would be too coarse-grained for our analy-
sis. The metric values calculated by CK were then
analysed and compared based on maximum, mini-
mum, mean and average values.

3.3.2 RQ2,3: How Is the Complexity of
Transformations Written in Java SE5/14
Distributed over the Different Aspects of
the Transformation Process Compared to
ATL?

The approach for these research questions is twofold
and follows a top down methodology. First we com-
pare the distribution of complexity within the Java
code with regards to the different steps within the
transformation process. In particular, we want to see
how much effort needs to be put into writing those as-
pects that ATL can abstract away from. Afterwards,
we focus on the actual code. Here we compare how
code written in ATL compares to the Java code that
represents the same aspect within a transformation.

To be able to analyse the complexity distribution
in Java transformations, it is necessary to differentiate
the different steps within the Java code. We therefore
labelled each method in all transformations based on
which aspects within the transformation process they
represent. The relevant transformation aspects that
were explicitly present in our Java implementations
were:

• Model Traversal:, i.e., code that is associated
with traversing the input model and selecting
which ‘rules‘ to apply to which element.

• Element Creation and Tracing:, i.e., code in-
volved in creating output elements and trace links

� �
1 rule SimpleBinding {
2 from s : Member
3 to t : Female (
4 name <- s.firstName
5 )
6 }� �

Listing 7: A rule with a simple binding.� �
1 rule Trace {
2 from s : Member
3 to t : Male (
4 father <- s.familyFather
5 )
6 }� �

Listing 8: A rule with a binding using traces.

between source and target model elements.

• Transformation:, i.e., code that uses given data
to populate the attributes of the output model ele-
ments.

• Helper:, i.e., code representing outsourced helper
facilities.

• Setup:, i.e., code required to read/write models
and to execute transformations on them.

We then used the metrics that were calculated for
RQ1 to create plots of the complexity distribution.
The resulting plots were then compared with the re-
sults presented in (Götz and Tichy, 2020).

As for the code level comparison, we take a qual-
itative approach. We use a selection of three ATL
fragments representing code which is often written in
ATL transformations. The first fragment (see List-
ing 7) represents code that copies the value of an
input attribute to an attribute of the resulting out-
put model element, an action which constitutes 56%
of all bindings in the set analysed by (Götz and
Tichy, 2020). The second fragment (see Listing 8)
represents code that requires ATL to use traceability
links, which (Götz and Tichy, 2020) found to con-
stitute 15% of all bindings. Because the attribute
s.familyFather does not contain a primitive data
type but a reference to another element within the
source model, the contained value can not simply be
copied to the output element. Instead ATL needs to
follow the traceability link created for the referenced
input element to find its corresponding output element
which can then be referenced in the model element
created from s. The last code fragment (see Listing 9)
is a helper definition of typical size and complexity.

We use those code fragments and compare them
with the Java code that they are translated to in order
to highlight differences between the languages.
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� �
1 helper context Class def:

associations:
Sequence(Association) =
Association.allInstances() ->
select(asso | asso.value = 1);� �

Listing 9: A typical helper in ATL.

4 TRANSLATION SCHEMA

Our translation schema allows us to translate any ATL
module into corresponding Java code. The only as-
sumption we make is that all the meta-models of in-
put and output models are explicitly available. The
reason for this is that we work with EMF models in
so-called static mode, which means that all model el-
ement types defined by a meta-model are translated
into corresponding Java classes using the EMF built-
in code generator.

As for the actual transformation, an ATL module
is represented by a Java class which contains a single
point of entry method that takes the root element of
the input model as its input and returns an object of
the root element of the output model. Additionally,
some setup code is needed for extracting a model and
its root element from a given source file, calling the
entry point of the actual transformation class, and se-
rializing the resulting output model.

Because traceability links need to be created be-
fore they can be used, we split the transformation
process into two separate runs. The first run creates
all target elements as well as all traceability links be-
tween them and their source elements, while the sec-
ond run can safely traverse over model references and
populate the created elements by utilizing the trace-
ability links when needed. Consequently, the cor-
responding Java transformation class comprises two
separate methods, dedicated to each run and being
called by the entry point method. Listings 10 and 11
show an example of this translation.

For both model traversal as well as trace genera-
tion and resolving, we were able to develop generic
libraries which can be reused across all transforma-
tion classes. The remainder of this section will first
describe these two libraries in more detail, before we
explain how the different types of rules and helpers of
an ATL module are translated into the corresponding
Java transformation class.

4.1 Traversal Library

The traversal library allows us to outsource the traver-
sal of the source model and thus reduce the amount of
boilerplate code written for each translated transfor-

� �
1 module Example
2 create OUT: MetaModelB from IN :

MetaModelA
3 ...� �

Listing 10: Example ATL transformation.� �
1 public class MMA2MMB {
2 public B transform(A root) {
3 preTransform(root);
4 return actualTransform(root);
5 }
6 private void preTransform(A

root) {...}
7 private void actualTransform(A

root) {...}
8 }� �

Listing 11: Example translated Class.

mation. The traversal library builds upon a HashMap
that maps a Class<T> to a Consumer<EObject>. The
Consumer<EObject> interface represents a function
that takes an input of type EObject and has a return
type of void. During traversal, which is encapsulated
within the library, each EObject can be matched with
the key classes in the HashMap and the corresponding
Consumer function can be executed.

This way, we only have to write code adding the
required key-value-pairs to the traverser, while the
code for traversing the input model as well as resolv-
ing the correct method which is to be called can be
completely outsourced. Note that this is only neces-
sary for matched rules since lazy and called rules are
called within the transformation code and not auto-
matically executed based on element type matching.

Since this setup relies on functional interfaces to
work, it is only applicable in Java SE8 and greater.
Therefore, in our transformations written in Java SE5,
this whole process has to be reimplemented manually
for each transformation module.

4.2 Trace Library

The trace library emulates the management of trace-
ability links. Similar to the traversal library, the trace
library is built based on a HashMap. In this case, how-
ever, the HashMap maps source EObjects to target
EObjects and thus can be used both in Java SE5 and
Java SE14.

In essence, the trace library exposes two methods.
One for adding a trace, thus requiring the source and
target objects to be passed as parameters. And one for
resolving a trace based on a source object.
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� �
1 rule A2B {
2 from
3 a : A
4 to
5 b : B (bindings...)
6 }� �

Listing 12: Example ATL matched rule.� �
1 public class Example {
2 //...
3 private void preTransform(A

root) {
4 //...
5 preTraverser.add(A.class , a

-> A2BPre(a));
6 }
7 private void actualTransform(A

root) {
8 //...
9 traverser.add(A.class , a ->

A2B(a));
10 }
11

12 private void A2BPre(A a) {
13 TRACER.addTrace(a, new B());
14 }
15 private void A2B(A a) {
16 B b = TRACER.resolve(a);
17 //...bindings code
18 }
19 }� �

Listing 13: Example translated Class.

4.3 Matched Rule Translation

Matched rules are translated into two methods within
the transformation class. One method is responsi-
ble for creating a target object and its corresponding
trace link, and one method is responsible for popu-
lating the created target object in accordance with the
bindings in its corresponding ATL rule. The second
method will also incorporate all code corresponding
to the imperative code written in the Action-Block of
the translated rule. As already indicated in the be-
ginning of this section when introducing our two-step
transformation process, the main idea behind this sep-
aration is that all traces and referenced objects can
be safely resolved within the second method (called
during the second traversal) because they are created
within the first method (called during the first traver-
sal). That is, calls for the object and trace creation are
then put into the body of the preTransform method,
while calls for the second method are put into the
body of the actualTransform method. This is illus-
trated by Listings 12 and 13. In Listing 13 the rule
A2B from Listing 12 is translated into the methods

A2BPre and A2B. A2BPre creates an empty B object
as well as a trace between the input A and method A2B
fills the corresponding B object with data as defined
through the bindings from the A2B rule. To actually
perform the transformation on all A objects the meth-
ods preTransform and actualTransform define for
which type of object which method should be exe-
cuted.

Lazy rules and unique lazy rules do not require
this much overhead since they are called directly from
within other rules/methods and thus do not need to
be integrated into the traversal order. However, they
do require traces to be crated and added to the global
tracer. Additionally, methods translated from these
types of rules have the target object as their return
value rather than the return type being void.

4.4 Called Rule Translation

Called rules, much like lazy rules, can be translated
into a single method that creates the output object
and populates it in accordance with the bindings of
the rule. Other than the methods created for matched
rules, the methods for called rules can take more than
one parameter as input since called rules in ATL can
define an arbitrary amount of parameters of varying
types.

4.5 Helper and OCL Expression
Translation

Helpers can be translated into methods much like
called rules. The contained OCL expressions can
easily be translated into semantically equivalent Java
code. One distinction that can be made here is again
between the different Java versions used in terms of
our study. Streams can be used to simulate the syntax
of OCL, in particular the arrow symbol for implicitly
navigating over collections), while older Java versions
need to use loops instead. Table 2 shows a number
of typical OCL expressions and their Java counterpart
using streams.

Table 2: OCL expressions translated to Java streams.

OCL Java

collection→select(e) collection.stream().filter(e)
collection→collect(e) collection.stream().map(e)
collection→includes(x) collection.stream().anyMatch(

a → x == a)
element.attribute element.getAttribute()
i | i > 5 i → i > 5
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5 RESULTS SUMMARY AND
ANALYSIS

In this section, we present the results of our analysis
in accordance with the research questions from Sec-
tion 1.

5.1 RQ1: How Much Less Complex
Can Transformations be Written in
Java SE14 Compared to Java SE5?

Tables 3 and 4 summarise the calculated size (LOC)
and complexity (McCabe) measurements on the
method level for both the Java SE5 and Java SE14
transformation code.

Table 3: Size of the Java transformations in LOC.

Java minimum average median maximum

SE 5 3 10.4 7 135
SE 14 3 7.5 5 105

Table 4: McCabe’s cyclomatic complexity of the Java trans-
formations.

Java minimum average median maximum

SE 5 1 2.7 2 44
SE 14 1 1.5 1 11

As expected, the LOC required to write transforma-
tions in a newer Java version is less than in an older
version. However, a reduction of about 30% on aver-
age is more than expected. This is confirmed by the
median LOC which also shows about 30% reduction
of Java SE14 compared to Java SE5.

The reduction in complexity is even more appar-
ent for the cyclomatic complexity. On average, trans-
formations written in Java SE14 are 45% less com-
plex. The median again reflects this result. Further-
more, the maximum McCabe complexity is reduced
from 44 to 11, which is a significant decrease.

Overall, the results reflect what was expected. Com-
pared to Java SE5, new language features in Java
SE14 help to reduce both the size and complexity of
transformation specifications written in Java. How-
ever, the fact that the maximum cyclomatic complex-
ity could be reduced by 75% is a surprising result.

5.2 RQ2: How Is the Complexity of
Transformations Written in Java
SE5 Distributed over the Different
Aspects of the Transformation
Process Compared to ATL?

Figure 1 shows a plot over the distribution of McCabe
complexity split up into the different transformation
aspects involved in a transformation written in Java
SE5. It shows that about 73% of the complexity in-
volved in writing a transformation in Java stems from
the actual code representing the transformations and
helpers. The other 27% are distributed among the
model traversal, tracing and setup code. In ATL, it
is these three aspects which do not have to be written
explicitly but which are hidden behind ATL’s syntax.
In other words, this means that 27% of what is writ-
ten in the Java transformation can be considered as
overhead.

Moreover, a significant portion of the complexity
of the transformation-related code stems from the im-
plementation of helpers. About 44% of the transfor-
mation and helper complexity comes from the helper
implementations. While this does not pose a prob-
lem directly, when comparing this with the results
of (Götz and Tichy, 2020) where helpers only con-
stitute about 16% of the complexity of an ATL mod-
ule, it does raise some concern. The focus shifts away
from the actual transformation code towards the out-
sourced helpers.

Figure 1: Distribution of McCabe complexity over transfor-
mation aspects in Java SE5.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

130



Overall, the results support the consensus from back
when ATL was introduced that a significant portion
of complexity can be avoided when using a dedicated
MTL for writing model transformations.

When comparing a simple binding (see Listing 7)
written in ATL with its translation in Java SE5 (see
Listing 14), there is not much difference. Both re-
quire nothing more than their language constructs for
accessing attribute values and assigning them to a dif-
ferent attribute.� �
1 private void simpleBinding(Member

s) {
2 ...
3 t.setName(s.getFirstName());
4 }� �

Listing 14: A rule with a simple binding in Java SE5.

This is not the case when traces are involved. While
ATL allows developers to treat source elements as if
they were their translated target element (see List-
ing 8), some explicit code needs to be written in Java
(see Listing 15). As a result, the transformation spec-
ification gets more complex since it is not only re-
quired to call the trace resolution functionality, but it
is also necessary to put some additional type informa-
tion in so the Java compiler can handle the resulting
object correctly. The type information is necessary
since, as described in Section 4.2, the trace library
holds EObjects which have to be converted to the
correct type after they have been retrieved based on
the source object.� �
1 private void simpleBinding(Member

s) {
2 ...
3 t.setName(TRACER.resolve(

s.familyFather , Male.class));
4 }� �
Listing 15: A rule with a binding using traces in Java SE5.

The increase in complexity is even more prevalent
when looking at the translation of a typical helper.
The helper in Listing 9 requires OCL code that works
with collections which, thanks to OCL’s “→ syntax”,
can be expressed in a concise manner. In Java SE5,
however, as seen in Listing 16, the code gets a lot
more complex and bloated. This is due to the fact that
the only way to implement the selection is to iterate
over the collection through an explicit loop (lines 3 to
9) and to use an if-condition within the loop (lines 4
to 6).

� �
1 private List <Association >

associations(Class self) {
2 List <Association > list = new

LinkedList <Association >();
3 for (Association asso :

ALLASSOCIATIONS) {
4 if (asso.getValue() == 1) {
5 list.add(asso);
6 }
7 }
8 return list;
9 }� �

Listing 16: A typical helper in Java SE5.

Overall, the examples show that simple bindings
can be expressed easily in both ATL and Java SE5.
Bindings involving trace resolution require some
additional effort in Java SE5 while ATL can han-
dle those like any other binding. The most signif-
icant difference, however, comes from expressions
involving collections. Due to the required usage of
explicit loops, the Java SE5 code blows up in size
and complexity compared to the more compact ATL
notation.

5.3 RQ3: How Is the Complexity of
Transformations Written in Java
SE14 Distributed over the Different
Aspects of the Transformation
Process Compared to ATL?

Given the observations from RQ1 combined with the
the general improvements that Java SE14 brings to
the translation scheme, one would expect better re-
sults for the complexity distribution of transforma-
tions written in that Java version. However, when
looking at Figure 2 which again shows a plot over the
distribution of McCabe complexity split up into the
different transformation aspects involved in a trans-
formation written in Java, there is still a signifi-
cant portion of complexity associated with the model
traversal, tracing and setup code.

While the complexity associated with model
traversal is greatly reduced by the use of the traver-
sal library, the overall distribution between the actual
code representing the transformations and helpers and
the model traversal, tracing and setup code does not
change much. About 24% of the overall transforma-
tion specification can still be considered as overhead
code. Moreover, not only did this ratio stay similar
compared to Java SE5, also the ratio between helper
code complexity and transformation code complex-
ity stayed about the same. Helper code makes up
about 45% of the transformation and helper complex-
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Figure 2: Distribution of McCabe complexity over transfor-
mation aspects in Java SE14.

ity. One potential reason for this is that while newer
Java features help to reduce complexity, they do so for
all aspects of the transformation, thus the distribution
stays about the same.

The reason that the code related to trace manage-
ment experiences an increase in its complexity ratio
compared to other parts of the transformation can be
explained by the fact that this code stayed the same
between the different Java versions. Thus, while the
complexity of all other components shrank, the com-
plexity of trace management stayed the same, leading
to higher relative complexity.

Overall, the results point towards even newer ver-
sions of Java still having to deal with the complex-
ity overhead that ATL is able to hide. Specifically,
while the traversal complexity could be greatly re-
duced through the use of newer language features,
handling traces still entails a large overhead.

When comparing the code snippets for writing simple
bindings and bindings involving traces in Java SE14
with ATL, there is no difference to the findings from
comparing Java SE5 to ATL. This is due to the fact
that no Java features introduced since SE5 help in re-
ducing the complexity of code that needs to be written
here.

Comparing the helper code snippets, however,
does show some improvements of Java SE14 over
Java SE5. Because of the introduction of the streams

� �
1 private List <Association >

associations(Class self) {
2 return ALLASSOCIATIONS.stream()
3 .filter(asso ->

asso.getValue()==1)
4 .collect(Collectors.toList());
5 }� �

Listing 17: A typical helper in Java SE14.

API, Java SE14 (see Listing 17) can now handle ex-
pressions involving collections nearly as seamless as
ATL (see Listing 9). Only one key difference re-
mains. Since collections in Java have to first be
converted into streams and later reverted back into
the collection type, some overhead still exists. In
our example, these are the calls to stream() and
.collect(Collectors.toList()). In principle,
however, this difference could be eliminated by us-
ing an alternative GPL. The Scala programming lan-
guage, for example, does not require a conversion be-
tween streams and collections.

Overall, the examples show that code for both sim-
ple bindings and bindings involving traces in Java
SE14 stays just as complex in comparison to ATL as
in Java SE5. Code involving collections, however,
can now be expressed nearly as seamless as in ATL
due to the introduction of the streams API in Java
which offers a notation that is close to OCL nota-
tion.

6 THREATS TO VALIDITY

This section addresses potential threats to the validity
of the presented work.

The transformations chosen for evaluation in our
work were subject to a number of constraints. While
we aimed to select a variety of transformation mod-
ules w.r.t. scope and size, the limitation of LOC and
the source from which we selected the transforma-
tions may introduce a threat to the external valid-
ity of our work. The range of the domains involved
in the transformations is diverse and should thus not
threaten the external validity.

The next threat concerns the appropriateness and
correctness of our translation schema and the result-
ing transformations. We tried to mitigate this threat by
following the design science research method and us-
ing two separate reviewers for the proposed transfor-
mation schema. We also tested the correctness of the
resulting transformations to the extent that was possi-
ble based on available resources.

Another threat related to the translation schema
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is that more than one way of translating ATL con-
structs into Java constructs and thus multiple trans-
lation schemas are possible. This impacts the con-
clusion validity of our study because different design
decisions for the translation schema may impact the
reproducibility of our results.

Lastly, the used metrics for measuring complexity
should also be discussed. To prevent a bias due to
the usage of a wrong measure, we opted to using two
metrics for measuring complexity. Their suitability is
supported by numerous publications in the literature
as shown in (Jabangwe et al., 2015).

7 RELATED WORK

To the best of our knowledge, there exists no research
that relates the complexity of transformations writ-
ten in a MTL with that of transformations written in
a GPL. However, there do exist several publications
that provide relevant context for our work.

Hebig et al. investigate the benefit of using spe-
cialized model transformation languages compared to
general purpose languages by means of a controlled
experiment where participants had to complete a com-
prehension task, a change task, and they had to write
one transformation from scratch (Hebig et al., 2018).
They compare ATL, QVT-O and the GPL Xtend, and
they found no clear evidence for an advantage when
using MTLs. In comparison to their setup, we focus
on a larger number of transformations. Furthermore,
examples shown in the publication also suggest that
they did not consider ATLs refining mode for their
refactoring task nor did their examples focus on ad-
vanced transformation aspects such as tracing.

The authors of (Sanchez Cuadrado et al., 2020)
propose A2L, a compiler for parallel execution of
ATL model transformations. A2L takes ATL trans-
formations as input and generates Java code that
can be run from within their self-developed engine.
Their data-oriented ATL algorithm describes how
ATL transformations are executed in their code and
closely resembles the structure that our translation
schema follows.

The Simple Transformation Library in Java
(SiTra) introduced in (Akehurst et al., 2006) provides
a simple set of interfaces for defining transformations
in Java. Their interfaces abstract rules and traversal in
which they follow an approach similar to ours. How-
ever, they do not provide ways for trace management.

As previously described, parts of our research
build upon the work presented in (Götz and Tichy,
2020). Here, the authors use a complexity measure
for ATL proposed in literature to investigate how the

complexity of ATL transformations is distributed over
different ATL constructs such as matched rules and
helpers. Their results provide a relevant data set to
compare our complexity distributions in Java trans-
formations to.

The authors of (van Amstel and van den Brand,
2011) use McCabe complexity to measure the com-
plexity of ATL helpers. Among others, this is also
done in (Vignaga, 2009). Similar to this, we use Mc-
Cabe complexity on transformations written in Java,
which includes translated helpers, to measure the
complexity of the code.

The Model Transformation Tool Contest (TTC)4

aims to evaluate and compare various quality at-
tributes of model transformation tools. While some of
these quality attributes (e.g., readability of a transfor-
mation specification) are related to the MTL used by
the tool, most of the attributes are related to tooling
issues (such as usability or performance) which are
out of the scope of our study. Moreover, the contest
is about comparing different MTLs with each other
rather than comparing them with a GPL. Nonethe-
less, some cases have been presented along with a
reference implementation in Java (Getir et al., 2017;
Beurer-Kellner et al., 2020), which could serve as an-
other source for comparing MTLs and GPLs more
widely, including tooling- and execution-related as-
pects.

8 CONCLUSION

In this work, we presented how we developed and
applied a translation schema to translate ATL trans-
formations into Java. We also described our results
of analysing the complexity and complexity distri-
bution of these transformations. For this purpose,
we used McCabe complexity as well as LOC met-
rics to measure the complexity of 10 transformations
translated into Java SE5 and Java SE14, respectively.
We analysed how the complexity between transfor-
mations written in those two Java versions differs as
well as how the distribution of complexity compares
to that in transformations written in ATL.

We found that new features introduced into Java
since 2006 help to significantly reduce the complexity
of transformations written in Java. However, we also
showed that while the overall complexity of trans-
formations is reduced, the distribution of how much
of that complexity stems from code that implements
functionality that ATL and other model transforma-
tion languages can hide from the developer stays

4https://www.transformation-tool-contest.eu
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about the same. Thus, while the overall complexity
is reduced with newer Java versions, the overhead en-
tailed by using a general purpose language for writing
model transformations still seems to be present.

For future work, we propose to also look at the
transformation development process as a whole, in-
stead of only at the resulting transformations. In
particular, we are interested in investigating how the
maintenance effort differs between transformations
written in a GPL and those written in a MTL. For this
purpose, the presented artefacts can be reused. Sim-
ple modifications to the ATL transformations can be
compared to what needs to be adjusted in the corre-
sponding Java code. Furthermore, because develop-
ers are the first to be impacted by the languages, it is
also important to include users into such studies. For
this reason, we propose to focus on user-centric study
setups to be able to better study the impact of the lan-
guage choice on developers.

Another potential avenue to explore is the compar-
ison with a general purpose language that has a more
complete support for functional programming such as
e.g. Scala. Additional features such as pattern match-
ing and easier use of functional syntax for translating
OCL expressions into could potentially help to further
reduce the complexity of the resulting transformation
code.
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Götz, S. and Tichy, M. (2020). Investigating the Origins of
Complexity and Expressiveness in ATL Transforma-
tions. Journal of Object Technology, 19(2):12:1–21.
The 16th European Conference on Modelling Foun-
dations and Applications (ECMFA 2020).
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