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Abstract: This paper presents an approach for learning-based discriminative 3D point cloud descriptor from RGB-D
images for place recognition purposes in indoor environments. Existing methods, such as such as Point-
NetVLAD, PCAN or LPD-Net, are aimed at outdoor environments and operate on 3D point clouds from
LiDAR. They are based on PointNet architecture and designed to process only the scene geometry and do not
consider appearance (RGB component). In this paper we present a place recognition method based on sparse
volumetric representation and processing scene appearance in addition to the geometry. We also investigate
if using two modalities, appearance (RGB data) and geometry (3D structure), improves discriminativity of a
resultant global descriptor.

1 INTRODUCTION

Depth-aware sensors, such as time-of-flight cameras
or solid state lidars, are becoming more and more af-
fordable and popular. Self-driving cars are frequently
equipped with LiDAR scanner which produces a map
of the observed environment in the form of a sparse
3D point cloud. In indoor environments, inexpensive
time-of-flight cameras, such as the latest generation
of Azure Kinect, can generate a representation of an
observed scene in the form of an RGB point cloud.
Applying deep learning methods to solve 3D com-
puter vision problems based on point cloud represen-
tation is an area of active development. A number of
methods for classification (Qi et al., 2017a; Qi et al.,
2017b), object detection (Qi et al., 2017a; Wang and
Jia, 2019), semantic segmentation (Qi et al., 2017a;
Choy et al., 2019a) and local (Zeng et al., 2017; Choy
et al., 2019b) or global (Angelina Uy and Hee Lee,
2018; Liu et al., 2019) features extraction from 3D
point clouds was recently proposed.

We focus our attention on finding a discriminative,
low-dimensional 3D point cloud descriptor for place
recognition purposes. Such global descriptors are
computed for each processed point cloud and stored
in the database. Localization is performed by an effi-
cient search for descriptors closest (in Euclidean dis-
tance sense) to the query point cloud descriptor. This
allows efficiently retrieving the most similar point

clouds from the database and reason about the local-
ization of the query point cloud.

In this paper we investigate if using two modal-
ities, appearance (RGB data) and geometry (3D
structure), can improve discriminativity of a global
point cloud descriptor for place recognition purposes.
State-of-the-art place recognition methods based on
3D point clouds, such as PointNetVLAD (An-
gelina Uy and Hee Lee, 2018), PCAN (Zhang and
Xiao, 2019) or LPD-Net (Liu et al., 2019), oper-
ate on data acquired in an outdoor environment by
a car-mounted LiDAR. They compute a discrimina-
tive global descriptor from a raw 3D point cloud,
which is then used to find and retrieve the most simi-
lar point clouds from the database. These methods are
based on a single modality only – geometry. Focusing
solely on geometry and neglecting appearance (RGB)
component is justified for place recognition in out-
door environments. An appearance of the observed
scene can vary drastically due to lighting and sea-
sonal changes. Whereas LiDAR acquired geometry
remains relatively constant thorough different times
of the day, seasons and weather conditions. In in-
door environments there’s less variability of appear-
ance component, hence it’s reasonable to use both
modalities for indoor place recognition task.

Data acquired using LiDAR in an outdoor envi-
ronment has a different characteristic than data gath-
ered indoor using RGB-D cameras with time-of-flight
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sensor. The former creates a sparser point cloud. Sur-
faces, such as building facades, are relatively far from
the observer and mapped with less detail. The lat-
ter creates denser point clouds. Observed surfaces are
closer to the camera and captured with greater details.
Fine-grain structures of objects like like furniture are
mapped in detail. Both PointNetVLAD and PCAN
methods use PointNet (Qi et al., 2017a) backbone
as the first stage of the processing pipeline. While
PointNet architecture proved to be successful in many
applications, it was originally used to process point
clouds representing single objects, not large and com-
plex scenes. The drawback of PointNet architecture
is that for the most part each point it processed in iso-
lation. Local features computed separately for each
point are aggregated in the last few fully connected
layers. As such, it’s not well suited to capture lo-
cal geometric structures of the observed scene. Such
structures are more prevalent in indoor scene scans
using RGB-D cameras with time-of-flight sensor than
in outdoor, LiDAR-based scene scans.

An alternative is to use voxelized representation
which can be processed using 3D convolutions. Con-
volutions proved to be very successful in processing
2D visual information as they can effectively capture
local structures in the image. However, the naive vox-
elized representation based on a dense grid of voxels
is very inefficient. Most of the voxels are empty and
processing entire grid of voxels is computationally
very expensive. Recently, an interesting alternative
emerged. So called Minkowski convolutional neural
networks (Choy et al., 2019a; Choy et al., 2019b)
are based on a sparse voxelized representation and a
very efficient implementation of sparse 3D and higher
dimensional convolutions The sparse representation
scales linearly with the number of 3D points, with-
out the need to store and process dense 3D voxel grid.
The approach proved to be very successful, achieving
state-of-the-art methods in different 3D vision tasks,
such as semantic segmentation (Choy et al., 2019a)
and local features extraction (Choy et al., 2019b). In
this paper we compare performance of sparse vox-
elized point cloud representation and sparse 3D con-
volutions against unordered point cloud representa-
tion and PointNet architecture for place recognition
task.

In summary, main contributions of this work are as
follows. First, we examined if using two modalities,
geometry (3D structure) and appearance (RGB data),
can improve place recognition precision in an indoor
environment. Are there any advantages from fusing
two modalities, or does one dominates the other and
there’s no gain from using both of them? Second, we
experimentally verify if using sparse voxelized repre-

sentation is advantageous over the popular PointNet
architecture based on ’set of unordered points’ repre-
sentation, for place recognition purposes.

2 RELATED WORK

Point Cloud Representation for Deep Learning.
Early deep learning methods operating on 3D point
clouds use volumetrically discretized representa-
tions (Maturana and Scherer, 2015) in the form of a
dense grid of voxels. It’s a natural extension of 2D
image representation as a grid of pixels and 3D convo-
lutions can be applied to process such data. However,
such representation is very inefficient. The memory
requirements grow cubically as spatial resolution in-
creases, making it inappropriate for processing larger
point clouds. Most of the voxels are empty and pro-
cessing entire grid of voxels is very inefficient and
computationally expensive.

(Su et al., 2015) proposed so called multi-view ap-
proach, multiple 2D images of a 3D model are first
rendered by virtual cameras placed around the ob-
ject of interest. Each virtually rendered image is pro-
cessed by 2D convolutional network. Feature maps
produced by 2D networks are concatenated and fed
into the final classification network.

PointNet (Qi et al., 2017a) was the first deep learn-
ing method operating directly on a raw 3D point
cloud. An input is organized as an unordered set
of points, where each point is described by its X,
Y, Z coordinates and optional features, such as nor-
mal or RGB. Each point is processed separately by
multi-layer perceptrons and point features are aggre-
gated using a symmetric function, such as max pool-
ing. This makes the architecture independent from
input points ordering. PointNet learns a set of func-
tions that select interesting and informative key points
from a subset of input points, encoding this informa-
tion in each layers feature vector. The drawback of
the architecture is that most of the processing is done
separately for each point and the architecture is not
well suited to capture local geometric structures. The
advantage is it’s efficiency, as there’s no need to build
a costly voxelized representation nor render multiple
virtual images.

An alternative approach was recently proposed
in (Choy et al., 2019a). So called Minkowski con-
volutional neural networks are based on a sparse
voxelized representation and an efficient implemen-
tation of sparse 3D and higher dimensional convolu-
tions. This representation joins advantages of both
voxelized and ’unordered set of points’ representa-
tions. As with voxelized representation, 3D convolu-
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tions can be used to capture local structures, similarly
as 2D convolutions in 2D images. And sparsity allows
compact representation and efficient computation.

Place Recognition using Learning-based Global
Features. PointNetVLAD (Angelina Uy and
Hee Lee, 2018) was the first deep network for
large-scale 3D point cloud retrieval. It combines
PointNet (Qi et al., 2017a) architecture to extract
local features and NetVLAD (Arandjelovic et al.,
2016) to aggregate local features and produce a
discriminative global descriptor.

PCAN (Zhang and Xiao, 2019) enhances Point-
NetVLAD architecture by adding an attention mech-
anism to predict significance of each local point fea-
ture based on a local context. Local features are ex-
tracted using PointNet architecture. Then, features
fed to NetVLAD aggregation layer are weighted by
their significance. More attention is paid to the local-
ization task-relevant features, while non-informative
features are ignored.

To mitigate limitations of PointNet-based archi-
tecture in local feature extraction, LPD-Net (Liu et al.,
2019) relies on handcrafted features and uses graph
neural networks to extract local contextual informa-
tion. Ten handcrafted features, such as point den-
sity or local curvature, are computed for each point.
Then, 3D points enhanced with handcrafted features
are processed using Point Net architecture and fed to
a graph neural network to aggregate neighbourhood
features. Finally, global descriptor is computed using
NetVLAD (Arandjelovic et al., 2016) layer.

A recent MinkLoc3D (Komorowski, 2020) net-
work has a fully convolutional architecture based on a
sparse voxelized representation. The local feature ex-
traction part of the network is modelled after Feature
Pyramid Network (Lin et al., 2017) design pattern.
Generalized Mean Pooling layer is used to aggregate
local features into a global descriptor. Despite its sim-
plicity, the method achieves state-of-the-art results in
the outdoor place recognition benchmarks.

Deep Metric Learning. Distance metric learning
aims at learning a distance function to measure se-
mantic similarity between data points (Lu et al.,
2017). This approach is widely used in many recogni-
tion tasks in computer vision domain, such as pedes-
trian re-identification (Hermans et al., 2017) and im-
age retrieval (Lee et al., 2008). Deep metric learning
uses deep neural networks to compute a non-linear
mapping from a high dimensional data point space to
a low-dimensional Euclidean space, known as a repre-
sentation or embedding space. The learned mapping
preserves semantic similarity between objects. Em-

beddings of similar data points are closer to each other
in a representation space than embeddings of dis-
similar objects. Early deep metric learning methods
use a Siamese architecture trained with a contrastive
loss (Bromley et al., 1994). Latter methods propose
more complex loss functions, such as triplet (Her-
mans et al., 2017) or quadruplet (Chen et al., 2017)
loss. Significant attention is put to a selection of an ef-
fective sampling scheme to select informative training
samples (so called hard negatives mining) (Wu et al.,
2017). One of the most popular scheme is batch hard
negative mining proposed in (Hermans et al., 2017).

3 GLOBAL POINT CLOUD
FEATURE DESCRIPTOR FOR
PLACE RECOGNITION

In this section we describe our approach for compu-
tation of a discriminative, global 3D point cloud de-
scriptor based on two modalities: appearance (RGB
data) and geometry (3D structure). We use a deep
metric learning approach illustrated in Fig. 2. The
embedding network fw, parametrized by weights vec-
tor w, is trained to produce a discriminative, low di-
mensional descriptor (embedding) of the input point
cloud. The network is trained using a triplet loss (Her-
mans et al., 2017). The aim is to make embeddings of
dissimilar point clouds (representing different places)
to be further away by a predefined margin than em-
beddings of the similar point clouds (representing the
same place).

We evaluate two architectures of an embedding
network, each using a different point cloud repre-
sentation. One is PointNetVLAD (Angelina Uy and
Hee Lee, 2018) method using an unordered set of
points representation. It consists of a PointNet-
based (Qi et al., 2017a) backbone followed by
NetVLAD (Arandjelovic et al., 2016) feature aggre-
gation layer. For details, please refer to (Angelina Uy
and Hee Lee, 2018). We modified the original ar-
chitecture to accept input points clouds with optional
RGB features in addition to XYZ coordinates. The
network produces a 256 dimensional global descrip-
tor.

The other approach is based on a sparse voxelized
representation. Inspired by (Komorowski, 2020),
we designed a 3D convolutional network (called
MinkNetVLAD) based on a sparse voxelized repre-
sentation, shown in Fig. 1. It consists of a fully
convolutional local feature extraction block followed
by NetVLAD (Arandjelovic et al., 2016) feature ag-
gregation block. Local feature extraction network is
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Figure 1: MinkNetVLAD network architecture. The input
point cloud is quantized into a sparse 3D tensor. Local fea-
tures are extracted using a sparse 3D convolutional network.
NetVLAD pooling layer is used to pool the resultant 3D
feature map and produce a global point cloud descriptor.
Numbers in local feature extraction module (1/32, 2/32, . . .)
show a stride and number of channels of a sparse feature
map produced by each block.

modelled after Feature Pyramid Network (Lin et al.,
2017) architecture. Bottom-up part part consists of
3D convolutions producing 3D feature maps with de-
creasing spatial resolution and increasing receptive
field. Downsampling of the feature map is achieved
using stride 2 convolutions. The top-down part con-
sists of transposed convolutions. Lateral connections
(convolutions with 1x1x1 filter) are used to merge fea-
tures produced by the bottom-up part of the network
with the corresponding features from top-down pass.
The rationale of using this design, instead of a sim-
ple convolutional network, is to increase the receptive
field of each feature map element to allow capturing
high-level semantic of the input point cloud. Archi-
tecture details are given in Tab. 1. Local features are
aggregated using NetVLAD layer, producing a com-
pact 256-dimensional global descriptor. The network
is implemented using MinkowskiEngine (Choy et al.,
2019a) auto-differentiation library for sparse tensors.

To asses impact of each modality on the discrim-
inative power of the resulting global point cloud de-
scriptor, we train the networks using three types of
input: geometry (XYZ coordinates) and appearance
(RGB component); geometry only; appearance only.
When training using geometry only, all points, instead
of RGB values, are assigned a dummy one dimen-
sional feature set to 1. When training using appear-
ance only, depth of all 3D points is set to the same
dummy value.

Table 1: Details of the local feature extraction block in
MinkNetVLAD network. All convolutional layers are fol-
lowed by BatchNorm and ReLU non-linearity (not listed in
the table for brevity).

Block Layers
Conv0 32 filters 5x5x5
Conv1 32 filters 2x2x2 stride 2

32 filters 3x3x3 stride 1
32 filters 3x3x3 stride 1

Conv2 64 filters 2x2x2 stride 2
64 filters 3x3x3 stride 1
64 filters 3x3x3 stride 1

Conv3 64 filters 2x2x2 stride 2
64 filters 3x3x3 stride 1
64 filters 3x3x3 stride 1

Conv4 128 filters 2x2x2 stride 2
128 filters 3x3x3 stride 1
128 filters 3x3x3 stride 1

Conv5 128 filters 2x2x2 stride 2
128 filters 3x3x3 stride 1
128 filters 3x3x3 stride 1

1x1x1Conv4 128 filters 1x1x1 stride 1
1x1x1Conv4 128 filters 1x1x1 stride 1
1x1x1Conv4 128 filters 1x1x1 stride 1

Transposed convolutions
TConv4 128 filters 2x2x2 stride 2
TConv5 128 filters 2x2x2 stride 2

Figure 2: Learning a global point cloud descriptor using a
deep metric learning technique with a triplet loss.

Dataset. We conduct our experiments using Scan-
Net (Dai et al., 2017) dataset. ScanNet is a large,
richly-annotated dataset with 3D reconstructions of
indoor scenes. It contains 2.5 million views (RGB-D
images) in more than 1500 locations, annotated with
3D camera poses and surface reconstructions.

We split the dataset into three separate parts: train-
ing set, validation set to choose training hyperparame-
ters and test set for final performance evaluation. The
training set contains 993 thousand point clouds recon-
structed from RGB-D images taken at 616 distinct lo-
cations. The validation set contains 65 thousand point
clouds and 45 locations. The test set contains 253
thousand point clouds and 176 locations. Fig. 3 shows
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Figure 3: Exemplary RGB-D images from one location in
ScanNet dataset. RGB images on the top and corresponding
depth maps at the bottom.

exemplary RGB-D images from one location. On the
top, there are RGB images and on the bottom, cor-
responding depth maps. Point clouds are constructed
from RGB-D images in the dataset by backproject-
ing each pixel in the RGB image using known camera
intrinsics and depth. An example of a reconstructed
point clouds is shown in Fig. 4. The point clouds are
fed into an embedding network to compute a global
descriptor.

Deep distance metric learning methods, such as
methods based on triplet networks, require infor-
mation on semantically similar and dissimilar data
points. In our case, similar elements are point clouds
representing largely overlapping parts of the scene,
and dissimilar elements are point clouds represent-
ing different places. Such information is not avail-
able in the ScanNet dataset and needs to be computed
to prepare sufficiently large training dataset. Using
solely camera pose ground truth to asses visible scene
overlap of two RGB-D images is problematic. Spa-
tially distant cameras may show the same place from
different angles, and the corresponding point clouds

Figure 4: An exemplary point cloud generated from one
RGB-D image.

should be considered similar. To solve this problem
we developed] an efficient method to compute a view
overlap between two point clouds. It is based on cal-
culating a percentage of points co-visible on RGB-D
images that are used to construct point clouds.

To find pairs of similar and dissimilar point clouds
for network training, we randomly sample 500 RGB-
D images from each location. For each sampled im-
age, we compute its view overlap with a different set
of 500 images sampled from the same location. This
generates view overlap information for 500 · 500 =
250 thousand pairs in each location. To construct the
validation and test set, we sample 100 RGB-D im-
ages from each scene and compute view overlap be-
tween each pair of sampled images. This produces
view overlap data for 100 ·100/2 = 5 thousand pairs.
View overlap between two RGB-D images is calcu-
lated as a percentage of points co-visible on both im-
ages. This is done as follows. We sample a set of 500
random points in the first image. Using depth data,
camera intrinsics and relative pose between two im-
ages (given in the dataset groundtruth) we re-project
a point p in the first image onto the second image, ob-
taining a point p′. If the point falls outside the second
image area then it’s not co-visible on both images.
Otherwise, we re-projected point p′ back onto the first
image, obtaining a point p′′. If the Euclidean distance
between an original point p and its re-projection p′′ is
below a given threshold (4 pixels in our implementa-
tion) we consider the point p co-visible on both im-
ages. To make our view overlap measure symmetric,
we compute it in two directions: first by projecting
points from the first image into the second and from
the second to the first; and then by projecting points
from the second image to the first and back to the sec-
ond. The final overlap measure between two RGB-D
images, is taken as a minimum of these two results.
Such overlap measure can be effectively computed us-
ing a vectorized implementation operating on an array
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of points sampled in one image. Results on the view
overlap calculations can bee seen in Fig. 6.

For network training and evaluation purposes we
consider two point clouds similar, if they are con-
structed from two RGB-D images taken at the same
location and having a view overlap above the thresh-
old (30% in our implementation). Otherwise, two
point clouds are considered dissimilar.

Network Training. The embedding network is
trained using a stochastic gradient descent approach
with a triplet loss (Hermans et al., 2017). Mini-
batches contain triplets consisting of an anchor, a pos-
itive and a negative element. A positive element is a
point cloud similar to the anchor cloud, with the view
overlap above the threshold (30% in our implemen-
tation). A negative element is a point cloud showing
a different place than an anchor. A randomly cho-
sen negative element would often depict a scene that
is very different, both in appearance and geometry,
from an anchor element. In the presence of such easy
cases, the network will quickly learn how to produce
sufficiently different embeddings and the training will
stagnate. To improve effectiveness of the training
process we use batch hard negative mining scheme
to construct triplets, as proposed in (Hermans et al.,
2017). Each triplet is constructed using the hardest
negative example found within a batch. The hardest
negative example for each anchor is a dissimilar point
cloud that has the closest embedding to the anchor
embedding, computed using current network weights.

We use a popular triplet loss formulation as de-
fined in (Hermans et al., 2017):

L(ai, pi,ni) = max{d(ai, pi)−d(ai,ni)+margin,0} ,

where d(x,y) = ||x−y||2 is an Euclidean distance be-
tween embeddings x and y; ai, pi,ni are embeddings
of an anchor, a positive and a negative point cloud in
i-th triplet and margin is set to 0.4. The loss func-
tion is minimized using a stochastic gradient descent
approach with Adam optimizer. We train the the net-
work for 16 epochs with an initial learning rate set
to 0.001, which is decreased to 0.0001 after eight
epochs.

To increase variability of the training data and de-
crease overfitting, we apply on-the-fly data augmen-
tation. It includes photometric distortions, random ro-
tation, translation and resizing of the point cloud. Ad-
ditionally we adapted a random erasing augmentation
(Zhong et al., 2017) to operate on 3D point clouds.
A fronto-parallel cuboid with a random size and posi-
tion is randomly generated, and all points lying within
the cuboid are removed.

4 EXPERIMENTAL RESULTS

This section describes experimental evaluation re-
sults of global point cloud descriptors performance
for place recognition purposes in indoor environment.
Evaluation is done on a subset of ScanNet dataset
contains 253 thousand point clouds gathered at 176
locations that are different from locations used for
training. The evaluation is done using the follow-
ing procedure. First, the test set is split randomly
into the query set, containing 10% of elements, and
the database containing remaining 90%. Then, global
descriptors of all point clouds are computed using a
trained embedding network. Finally, for each point
cloud in the query set, we search for k = 20 most
similar point clouds in the database. This is done
by finding point clouds in the database with the clos-
est, in Euclidean distance sense, descriptor to the de-
scriptor of the query point cloud. If the view over-
lap, calculated using a procedure detailed in the pre-
vious section, between the query point cloud and re-
trieved point cloud is above the threshold (we set
threshold to 30%) we declare a match (true posi-
tive). Otherwise we declare a false positive. We use
Precision@k as the evaluation metric, averaged over
all query set elements. Precision@k is defined as the
percentage of correctly retrieved elements (true pos-
itives) within the first k elements. Fig. 6 visualizes
point cloud retrieval results using descriptors calcu-
lated with MinkNetVLAD network trained with ge-
ometry and appearance modality.

Fig. 5 shows performance of PointNetVLAD (An-
gelina Uy and Hee Lee, 2018) and MinkNetVLAD
network architectures trained using three different
modalities: both geometry (XYZ) and appearance
(RGB); only appearance; and only geometry. Numer-
ical results are shown in Tab. 2.

Table 2: Evaluation of MinkNetVLAD and PointNet net-
work architectures and different modalities on point cloud
retrieval task.

Base network Modality Precision
@1 @10

PointNetVLAD geometry 0.855 0.383
PointNetVLAD RGB 0.979 0.666
PointNetVLAD RGB+geom. 0.986 0.681
MinkNetVLAD geometry 0.939 0.542
MinkNetVLAD RGB 0.976 0.662
MinkNetVLAD RGB+geom. 0.992 0.670

When using only geometry modality,
MinkNetVLAD outperforms PointNetVLAD by
a large margin. The former has 0.939 (0.542) and
the latter 0.855 (0.383) precision@1 (precision@10).
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Figure 5: Point cloud retrieval results using PointNetVLAD
architectures and different modalities.

As mentioned earlier, PointNet-based architecture is
not well suited to capture local geometric structures
which adversely affects the quality of the resultant
descriptor. MinkNetVLAD network can extract
more discriminative features using 3D convolutions
and sparse voxelized representation. When using
RGB modality, both architectures show similar
performance: PointNetVLAD achieves 0.979 (0.666)
precision@1 (precision@10) and MinkNetVLAD
0.976 (0.662). The results using solely scene ap-
pearance (RGB modality) are significantly better,
compared to geometry. This can be understood, as ap-
pearance of scenes in our evaluation dataset exhibits
limited variability. Image acquisition conditions are
not affected by environmental factors, lighting is
usually constant, and only differences are to a view-
point change. Fusing two modalities, appearance and
geometry, improves discriminability of the resultant
global descriptor. For MinkNetVLAD architecture,
precision@1 increases from 0.976 (RGB only) to
0.992 (RGB+geometry). For PointNetVLAD, it
improves from 0.979 to 0.986. However, it must be

noted that the improvement is moderate, 1.6 p.p. in
the first case, and 0.7 p.p. in the second case.

MinkNetVLAD architecture consistently outper-
forms PointNetVLAD (Angelina Uy and Hee Lee,
2018) method. It performs significantly better using
geometry only (0.939 vs 0.855 precision@1); com-
parable using scene appearance only (0.976 vs 0.979
prevision@1) and slightly better using both modali-
ties (0.992 vs 0.986).

5 CONCLUSIONS

Our experiments show, that in indoor environments,
scene appearance is much more informative that scene
geometry for place recognition purposes. Both evalu-
ated architectures trained with RGB data yielded sig-
nificantly better results compared to training using
solely scene geometry modality. Fusing two modal-
ities, scene appearance and geometry, improved dis-
criminativity of the resultant global descriptor by a
small factor (0.6-1.2 p.p.). RGB component domi-
nates over geometry, and there’s little gain from using
both of them in indoor environment. When using only
scene geometry, MinkNetVLAD architecture, based
on sparse voxelized representation and using 3D con-
volutions, yields significantly better results compared
to PointNetVLAD (Angelina Uy and Hee Lee, 2018)
method, based on PointNet (Qi et al., 2017a) architec-
ture.

For future work, we plan to examine more so-
phisticated approaches for fusing scene appearance
and geometry modalities. One idea is to use a pre-
trained 2D convolutional network to extract features
from RGB image and link them with 3D points, be-
fore feeding to the global descriptor extraction net-
work.
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Figure 6: Visualization of point cloud retrieval results using embeddings calculated with MinkNetVLAD architecture and
RGB+geometry modality. Each row shows a query RGB point cloud (on the left) and its five nearest neighbours retrieved
from the database (on the right). Distance is an Euclidean distance between a query and a database point cloud embedding.
Different scene names correspond to different locations.
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