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Abstract: In order to replicate the behavior of real world material using computer graphics, accurate material property
maps must be predicted which are used in a pixel-wise multi-variable rendering function. Recent deep learning
techniques use the rendered image to obtain the loss on the material property map predictions. While use of
rendering loss defined this way results in some improvements in the quality of the predicted renderings, it has
problems in recovering the individual property maps accurately. These inaccuracies arise due to the following:
i) different property values can collectively generate the same image for limited light and view directions, ii)
even correctly predicted property maps get changed because the loss backpropagates gradients to all, and iii)
the heuristic chosen for number of light and view samples affects accuracy and computation time. We propose
a new loss function, named disentangled rendering loss which addresses the above issues: each predicted
property map is used with ground truth maps instead of the other predicted maps, and we solve for the integral
of the L1 loss of the specular term over different light and view directions, thus avoiding the need for multiple
light and view samples. We show that using our disentangled rendering loss to train the current state of the art
network leads to a noticeable increase in the accuracy of recovered material property maps.

1 INTRODUCTION

The appearance of a real world object depends on the
view, the light source, and the light interaction be-
havior at the surface of the object. The light interac-
tion of heterogeneous, opaque surfaces are modelled
by a function called the SVBRDF (spatially vary-
ing bi-directional reflectance distribution function).
SVBRDF recovery refers to estimating the values of
the material property parameters from captured im-
ages so that the real world material can be recreated
digitally (Kurt and Edwards, 2009).

The SVBRDF properties are comprised of 3-
channel RGB diffuse albedo and specular albedo
maps, a single channel specular roughness for reflec-
tiveness, and a 3-channel local surface normals map
to account for fine variations in surface geometry.
These parameters are represented per-pixel in a 2D
grid structure.

The rendering function is a pixel-wise multi-
variable function that is parameterized by the mate-
rial property maps, and takes as input the light and
view direction, and outputs a single rendering of the
material. The rendering loss is defined as the error be-
tween rendered images of ground truth and predicted
material property maps summed over several sampled

light and view directions. Recent work on supervised
deep material property recovery makes use of this ren-
dering loss to predict maps that generate renders sim-
ilar to the ground truth renders (Deschaintre et al.,
2018; Gao et al., 2019). While training with this
rendering loss improves the quality of the rendered
outputs of the predictions, it has the following draw-
backs: i) Since the rendering function is many-to-one,
i.e., the same colour could result from different com-
binations of property values, incorrect material prop-
erty maps can generate similar renderings under lim-
ited light and view conditions. Thus models trained
with this loss often tend to predict incorrect individual
maps, ii) When the rendering loss is non-zero, gra-
dients are backpropagated to all property maps, ef-
fecting changes even to correct predictions, and iii) It
needs a heuristic in the number of light and view con-
ditions to sample, which if not chosen correctly, can
affect accuracy and training time.

We propose a new loss function named as disen-
tangled rendering loss which addresses the above is-
sues by making the following modifications: For i)
and ii) it requires input of only one predicted map to
the rendering function at a time, while using ground
truth inputs for the other maps, and for iii) it removes
the dependence on the view sampling heuristic by us-
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ing the integral of the L1 loss of the specular term
(which is highly direction dependant) in the rendering
function over the hemisphere, making network train-
ing independent of view direction.

Our disentangled rendering loss yields map pre-
dictions that are individually more accurate while also
yielding similar high quality renders. Moreover, since
it enables network training to be view independent, it
results in reduced computation as compared to previ-
ous work. We show this by comparing recovered ma-
terial properties qualitatively and quantitatively with
those recovered using the standard rendering loss.

The spatially varying component of the SVBRDF
has always made accurate recovery of these maps a
major challenge. There has been an increase in usage
of deep learning networks to predict the SVBRDF of
a material from one or more casually captured images
of it (Aittala et al., 2016; Li et al., 2018a; Li et al.,
2018b; Gao et al., 2019; Deschaintre et al., 2019).
Even though re-rendering accuracy is high, accuracy
in the recovered property maps is lacking and prevents
the use of these maps in various downstream applica-
tions such as:

1. Material type classification - The matching of
SVBRDFs for applications in remote sensing,
paint industry, food inspection, material science,
recycling, etc (Guo et al., 2018).

2. Artist editing - The entertainment industry often
edit SVBRDFs (Ben-Artzi et al., 2006) to change
the rendering results, but editing inaccurate prop-
erty maps would cause significant overheads and
pain.

3. Virtual object insertion in XR environments - Ac-
curate SVBRDFs are essential for virtual object(s)
to appear natural in their environment, which is
only possible if light interaction between the vir-
tual object(s) and the environment is realistically
modelled (Kühtreiber et al., 2011; Guarnera et al.,
2017).

The major problem in recovering SVBRDF prop-
erties from an image comes from the complex re-
flectance function of lighting, view, and the multiple
property values of the surface behavior. As noted ear-
lier, the many parameters in this rendering function
allows for the possibility of the same rendering to be
created from various sets of completely different ma-
terial property values, possibly representing the un-
derlying physical material and surface of the object
with incorrect values.

Careful inspection of many recent works reveals
that these methods make no attempt to fix this prob-
lem, and instead focus on rendering accuracy (De-
schaintre et al., 2018; Gao et al., 2019; Deschaintre

et al., 2019). Predicted maps are often entangled, giv-
ing near identical renders to the ground truth image
while not having similar property map values to the
ground truth. This is particularly true for the diffuse
albedo and specular albedo property maps. In this
work, we therefore focus on property map accuracy,
because more accurate properties will always yield
correct renderings independent of light and view di-
rection.

The problem of entangled material properties
in SVBRDF recovery has been pointed out earlier
(Saryazdi et al., 2020). However, to the best of our
knowledge, this is the first work to present ways to
overcome this problem. Specifically, this includes
defining a new rendering loss formulation (called as
disentangled rendering loss) which is computed with
renders made from separating each predicted map and
a version which additionally solves for the integral of
the rendering loss over the hemisphere of light and
view directions yielding a closed form formulation,
within reasonable approximation.

2 RELATED WORK

Of late, deep learning models have shown a lot of
promise in reflectance modeling from images in the
wild (Li et al., 2017; Deschaintre et al., 2018; Li et al.,
2018a; Deschaintre et al., 2019). For a detailed review
of these approaches, we suggest the excellent recent
survey by (Dong, 2019). Li et al. (Li et al., 2017)
propose a CNN architecture for predicting the re-
flectance properties of a single captured image under
unknown natural illumination. They train a separate
network for each material type (plastic, wood, and
metal) and each output map (diffuse albedo, normal,
specular albedo and roughness) with the traditional
L2 loss over the predicted maps. However, directly
minimizing the error on the maps was later shown to
not lead to predicting very accurate SVBRDFs nor
ground truth render reproductions by Deschaintre et
al. (Deschaintre et al., 2018).

Deschaintre et al. (Deschaintre et al., 2018) in-
stead found that training their SVBRDF recovery net-
work with rendering loss as a better solution for pre-
dicting maps which give sharper and more accurate
renders. While renders are accurate, their approach
fails to recover accurate specular and diffuse maps
compared to ground truth due to entanglement of ma-
terial properties.

Currently, the most accurate SVBRDF map recov-
ery techniques use multi-image deep networks (Gao
et al., 2019; Deschaintre et al., 2019). These networks
use multiple images of the same material under differ-
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ent light and view conditions as their input to provide
more cues on what the SVBRDF should be. Gao et
al. (Gao et al., 2019) propose a deep inverse render-
ing approach which can handle an arbitrary number
of inputs by getting an initial SVBRDF estimate and
then train an auto-encoder to optimize the SVBRDF
in latent space to minimize the rendering loss. Their
method then uses a final refinement stage to optimize
the SVBRDF map directly. However, their approach
requires the light and camera position for every input
image to be known and has to perform an optimiza-
tion process for each of these.

The very recent work by Deschaintre et al. (De-
schaintre et al., 2019) uses an encoder-decoder archi-
tecture to output a 64 channel feature map for each
input image given to the network. Aggregating these
feature maps using max pooling and following it with
a CNN decoder then outputs the SVBRDF prediction.
Similar to previous work by Gao et al. (Gao et al.,
2019), they find that using a combination of L1 loss
on the predicted maps and rendering loss during train-
ing helps stabilize the training procedure. However,
the individual recovered SVBRDF maps still have in-
accuracies and entanglement in the diffuse albedo and
specular albedo maps. In our experiments, we de-
cided to use their expertly designed network architec-
ture, but train the network using our new loss defini-
tion, so that any effect in network training time and
accuracy of predicted maps can be directly attributed
to the new loss function.

Various fields of research have shown that disen-
tangling parameters in complex tasks helps to train
the network to better understand the problem, which
then leads to the network learning more accurate so-
lutions for unseen data. Some examples of disentan-
gled tasks include learning from videos (Denton et al.,
2017; Hsieh et al., 2018), sentence generation (Chen
et al., 2019), face image editing (Shu et al., 2017),
deblurring of images (Lu et al., 2019), and facial ex-
pression recognition (Liu et al., 2019).

3 DISENTANGLED RENDERING
LOSS

Rendering loss has been effectively used in all recent
state-of-the-art networks which estimate the appear-
ance properties of a casually-captured material (De-
schaintre et al., 2018; Li et al., 2018a; Li et al., 2018b;
Gao et al., 2019; Deschaintre et al., 2019). Using this
loss as opposed to the traditional L1 or L2 loss on pre-
dicted maps lets the physical meanings of each map
and the interplay between them to be relegated to the
update steps. Rendering loss is typically defined as

the L1 loss between an image rendered with the pre-
dicted material maps in comparison to ground truth
material using the same light and view angles. For-
mally, we can write:

LR(l,v) = |RN,D,R,S(l,v)−RN̂,D̂,R̂,Ŝ(l,v)| (1)

Where LR(l,v) is the rendering loss under some
lighting direction l and view direction v, RN,D,R,S(l,v)
is the rendering function parameterized by the 4 ma-
terial maps N, D, R and S which are the predicted nor-
mal, diffuse albedo, specular roughness and specular
albedo maps respectively, and N̂, D̂, R̂ and Ŝ are the
ground truths for those maps respectively. Since the
rendering loss is light and view dependent, in practice
the average of the rendering loss over multiple ran-
domly sampled light and view directions is used for
training. We note that this is the Monte Carlo method
for approximating El,v[LR(l,v)]. This definition of the
rendering loss has several major drawbacks.

Firstly, the rendering loss under limited light and
view directions has multiple global minima (Saryazdi
et al., 2020). This is because, under limited light and
view directions, two very different combinations of
SVBRDF maps can generate the same rendering. As
a direct implication of this, models trained with this
form of rendering loss tend to compensate for the in-
correctness in a predicted map by modifying another
map in a way that would give a similar render.

Secondly, the many-to-one nature of the render-
ing function implies that the gradient is either zero
or non-zero with respect to all 4 property maps. For
example, if during training, the network has already
learned to predict three of the four maps correctly and
has errors in one of them which causes the render to
look different, the rendering loss will have non-zero
gradients with respect to all 4 maps, causing changes
to those correct maps as well.

Thirdly, the number of light and view directions is
a heuristic that needs to be selected empirically. Sam-
pling more light and view directions would make the
approximation of El,v[LR(l,v)] more accurate, albeit
at the cost of more computation. Using a single ren-
der to compute loss presents problems with many loss
minima being possible (Saryazdi et al., 2020). So,
most recent works use multiple renders (Deschain-
tre et al., 2018; Gao et al., 2019; Deschaintre et al.,
2019), like 9 (a heuristic) to compute the loss with,
as they find that it provides the best trade-off between
computation and test render accuracy.

We address the first two problems by simply pa-
rameterizing the rendering function with only one of
the predicted maps at the time, while using ground
truth maps for the rest of the maps. This change in
rendering loss can be expressed as:
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LDR =|RN,D̂,R̂,Ŝ(l,v)−RN̂,D̂,R̂,Ŝ(l,v)|
+ |RN̂,D,R̂,Ŝ−RN̂,D̂,R̂,Ŝ|
+ |RN̂,D̂,R,Ŝ(l,v)−RN̂,D̂,R̂,Ŝ(l,v)|
+ |RN̂,D̂,R̂,S(l,v)−RN̂,D̂,R̂,Ŝ(l,v)|.

(2)

Note that the error on the diffuse map is not a func-
tion of light and view directions. With this change, the
error of each map can correctly be backtraced to that
map while also considering the contribution of each
map in the final rendering. We call this loss the disen-
tangled rendering loss.

In order to avoid sampling the view multiple
times, we derive an analytical approximation for
El,v[LDR(l,v)]. The complete derivation can be found
in the Appendix. The following simplifications were
made to be able to derive a closed form solution for
the integral:
1. The log of the specular term was used (as opposed

to the specular term itself).
2. Light and view were assumed to have the same

direction (l = v) with a uniform spread over the
hemisphere.

3. log(1 + x) was simplified to x in order to get a
simple solution to the integral.

4. Since computing the expectation on the error of
the normal map is not straight forward, we use an
L1 loss on the normal map instead.

5. To make the implementation of the solution sim-
pler, we use the upper bound of the error on the
specular roughness map.

Using these simplifications, we obtain the following
solution:

LIR =|N− N̂|+ |D− D̂|
π

+2| 1
R̂2
− 1

R2 |

+
2
3
|R̂4−R4|+ |log(S)− log(Ŝ)|

(3)

We denote this by LIR, the integrated rendering
loss. In addition to view independence, defining the
loss this way gives us the following advantages:
• The major problem of not being able to correctly

identify which map the error comes from is im-
mediately fixed.

• The problem of the network predicting maps that
have the same rendering but look different indi-
vidually is also fixed.

• At the same time, the gradients for each map (ex-
cept the normal map) continue to be computed
through the rendering equation to express the role
each map plays in the final rendered output, thus
still providing us with nice sharp looking renders
for the prediction map.

4 EXPERIMENTAL RESULTS

4.1 Quality of Individual Predicted
Maps

The primary goal of our experiments is to show that
changing the loss function to our disentangled ren-
dering loss enables us to recover more accurate ma-
terial property maps. Hence we adopt the same net-
work architecture and training methodology as pre-
sented in the state-of-the-art multi-image SVBRDF
recovery work (Deschaintre et al., 2019). After train-
ing the network for 300K iterations with each of the
different rendering losses, we find that using our pro-
posed rendering losses gives test set predictions with
a higher Structural Similarity Index Measure (SSIM)
due to better disentanglement of properties.

We test each trained network’s ability to recover
SVBRDF maps by inputting 10 renders using test set
maps and then evaluating their predictions. Compar-
ing the average SSIM error on the 200 sets of held-out
property maps, presented in Table 1, shows that LIR is
able to recover better specular maps since the number
of renders heuristic is not needed. In fact LDR also
produces more accurate property map results on av-
erage than the original render loss, even though each
property has only one render to use for its loss per
backward pass compared to the 9 used for traditional
rendering loss.

4.2 Overfitting Loss to One Sample

To better visualize and understand the implications
of training with each of the losses, we trained the
model to overfit to images rendered based on a sin-
gle SVBRDF map set while using the different loss
functions. We then look at the predicted maps and
their renderings for the same image that the model
was overfitted to. This is shown in Figure 1.

As can be seen, training the model on the render-
ing loss alone will cause the model to predict very in-
accurate maps, although the renderings of these maps
looks similar to the ground truth renderings. It can
also be seen that much of the entanglement is between
the predictions for the diffuse and specular albedo
maps since these have the most error. The predictions

Table 1: Average SSIM on test set map predictions.
Higher is better.

Property Maps
Normal Diffuse Roughness Specular Avg.

LR 0.948 0.861 0.780 0.873 0.866
LDR 0.95 0.839 0.836 0.887 0.878
LIR 0.917 0.811 0.836 0.908 0.868
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Figure 1: We overfit the model using the 3 different losses on renderings generated from the single property maps shown in
the ground truth row. Both the disentangled and integrated rendering loss predict maps extremely close to ground truth, while
traditional rendering loss predicts incorrect maps due to entanglement.

from both LIR and LDR show far more accurate re-
covery of SVBRDF maps. This can be credited to the
fact that when optimizing these new losses, the search
would consistently move in a direction that would im-
prove both the individual maps and their renderings.

4.3 Map Recovery

To reiterate, SVBRDF property maps recovered with
the earlier defined rendering loss are very different
from ground truth because the focus is on creating
similar renders to the input images, without any re-
gard to the accuracy of individual maps. Figure 2.
shows some examples wherein using rendering loss
recovers inaccurate maps, whereas training with dis-
entangled render loss or integrated loss recovers more
accurate maps.

5 CONCLUSIONS, LIMITATIONS
AND FUTURE WORK

In this work we have addressed the problem of re-
covering more accurate, disentangled material prop-
erty maps from images. We define two versions of
a new loss function, the disentangled rendering loss
and the integrated rendering loss, to train a network.

Figure 2: Example of material property map recovery of
models trained with different losses.

By separating out the rendering of maps and analyti-
cally integrating the specular albedo term of the ren-
dering equation, we are able to recover more accurate
SVBRDF maps than before. Our solutions are unique
and require less computational resources while still
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producing better results than previous work without
any network modifications .

Through intentional overfitting of the same model
with each of the different losses, we show property
entanglement and inaccuracy in SVBRDF predictions
when using traditional rendering loss, emphasizing
the need for our kind of loss formulations in SVBRDF
recovery. However, more can be done to improve pre-
dictions further, such as exploring other network ar-
chitectures, implementing the use of appropriate pri-
ors, and to increase generalization capabilioty of the
model through further data augmentation.

6 BROADER IMPACT

While the work presented is specific to material prop-
erties, such entanglement of component parameters
would be present in other areas of deep learning
research focused on recovering many parameters at
once. Transferring our strategy of defining a dis-
entangled loss function by selectively learning these
parameters could potentially be transferred to these
problems. Thus the broader impact of this work can
be stated as follows:

1. Potential for this methodology of defining a dis-
entangled loss function to be applied to analogous
problems.

2. Potential for this methodology of computing the
expectation of a stochastic loss function with re-
spect to some external parameters, as opposed to
Monte Carlo sampling those parameters to be ap-
plied to analogous problems.

3. More accurate material property recovery will re-
sult in more correct results for downstream appli-
cations like material matching, SVBRDF editing,
and AR/VR environments.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. (2016). Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementa-
tion ({OSDI} 16), pages 265–283.

Aittala, M., Aila, T., and Lehtinen, J. (2016). Reflectance
modeling by neural texture synthesis. ACM Trans.
Graph., 35(4).

Ben-Artzi, A., Overbeck, R. S., and Ramamoorthi, R.
(2006). Real-time BRDF editing in complex lighting.
ACM Trans. Graph., 25(3):945–954.

Chen, M., Tang, Q., Wiseman, S., and Gimpel, K. (2019). A
multi-task approach for disentangling syntax and se-
mantics in sentence representations. arXiv preprint
arXiv:1904.01173.

Denton, E. L. et al. (2017). Unsupervised learning of dis-
entangled representations from video. In Advances in
neural information processing systems, pages 4414–
4423.

Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., and
Bousseau, A. (2018). Single-image svbrdf capture
with a rendering-aware deep network. ACM Trans-
actions on Graphics (TOG), 37(4):128.

Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., and
Bousseau, A. (2019). Flexible svbrdf capture with a
multi-image deep network. In Computer Graphics Fo-
rum, volume 38, pages 1–13. Wiley Online Library.

Dong, Y. (2019). Deep appearance modeling: A survey.
Visual Informatics, 3(2):59 – 68.

Gao, D., Li, X., Dong, Y., Peers, P., Xu, K., and Tong,
X. (2019). Deep inverse rendering for high-resolution
svbrdf estimation from an arbitrary number of images.
ACM Transactions on Graphics (TOG), 38(4):134.

Guarnera, G. C., Ghosh, A., Hall, I., Glencross, M., and
Guarnera, D. (2017). Material capture and representa-
tion with applications in virtual reality. In ACM SIG-
GRAPH 2017 Courses, SIGGRAPH ’17, New York,
NY, USA. Association for Computing Machinery.

Guo, J., Guo, Y., Pan, J., and Lu, W. (2018). Brdf analysis
with directional statistics and its applications. IEEE
transactions on visualization and computer graphics,
PP.

Hsieh, J.-T., Liu, B., Huang, D.-A., Fei-Fei, L. F., and
Niebles, J. C. (2018). Learning to decompose and
disentangle representations for video prediction. In
Advances in Neural Information Processing Systems,
pages 517–526.
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APPENDIX

Network Architecture

The primary goal of our experiments is to show that
changing the loss function to our disentangled render-
ing loss enables us to recover more accurate material
property maps. Hence we wish to emphasize that we
have not deviated from state of the art work in terms
of architecture, training/test data, and training cycles.

To evaluate our disentangled rendering loss, we
adopt the state-of-the-art multi-image SVBRDF re-
covery network proposed by (Deschaintre et al.,
2019). We use the popular U-Net encoder-decoder
architecture (Ronneberger et al., 2015) in parallel to a
fully-connected track which transmits global informa-
tion in the network, shown in Figure 3. This network
then outputs 64 channels of feature maps for each in-
put image view with the same spatial dimensions as
the input. We then aggregate these feature maps by
using max pooling so that we will have 64 channels of
features of the same spatial dimensions as the input.
As is the case in (Deschaintre et al., 2019), we use

the max-pooling operator which enables our model to
handle any arbitrary number of views as inputs. Fi-
nally, the features are fed into 3 layers of convolutions
with non-linearities to output the 4 material property
maps.

Implementation Details

Training. We train our model for 300K iterations
using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 2e-5. We use a batch size of 2
and the number of views for each input sample during
training is randomly chosen between 1 and 5. Train-
ing took 3 days on an Nvidia GTX 1080 Ti.

Dataset. We use the publicly available dataset
proposed by (Deschaintre et al., 2019)1. This dataset
contains 1,850 property maps of common material
types such as wood, metal, leather, plastic, etc. Dur-
ing training, input property maps are rendered in Ten-
sorflow (Abadi et al., 2016) with a randomly chosen
light and view direction, and then fed to the network.

Data augmentation. We use data augmentation to
make our trained network more generalized. We use
the same randomized linear interpolation of material
property maps as done by (Deschaintre et al., 2019),
which was shown to greatly improve accuracy.

Integrated Loss

Rendering Equation

The rendering equation is composed of a specular
term ( fr) and a diffuse term ( fd):

RN,D,R,S(~l,~v) = fr(~N,S,R,~l,~v)+ fd(D) (4)

Where RN,D,R,S(~l,~v) is the rendering function under
some light direction ~l and view direction ~v parame-
terized by the 4 material maps N, D, R and S which
are the normal, diffuse albedo, specular roughness
and specular albedo maps respectively. The Cook-
Torrance microfacet specular BRDF is expressed as:

fr(~N,S,R,~l,~v,~h) =
F(S,~v,~h)G(~N,R,~v,~l)D(~N,R,~h)

4(~N ·~l)(~N ·~v)
(5)

Where ~h is the half vector, F(S,~v,~h) is the Fres-
nel function, G(~N,R,~v,~l) is the geometric shadowing
term, and D(~N,R,~h) is the Normal Distribution Func-
tion (NDF). For the Fresnel function F , we use an

1https://repo-sam.inria.fr/fungraph/multi image
materials/supplemental multi images/materialsData multi
image.zip
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Figure 3: Network architecture.

approximation by Schlick(Schlick, 1994):

F(S,~v,~h) = S+(1−S)2−5.5(~v·~h)2−6.98(~v·~h) (6)

For the geometric shadowing term G, we use Smith’s
method (Smith, 1967) which breaks G into light and
view components, and uses the same Gl function for
both:

G(~l,~v) = Gl(~l)Gl(~v) (7)

We use the Schlick-Beckmann approximation for Gl
(Schlick, 1994; Walter et al., 2007):

G(~N,R,~l,~v) =
~N ·~l

(~N ·~l)(1−0.5R2)+0.5R2

×
~N ·~v

(~N ·~v)(1−0.5R2)+0.5R2

(8)

For the NDF term D, we use Trowbridge-Reitz GGX
(Walter et al., 2007):

D(~N,R,~h) =
R4

π

[
(~N ·~h)2(R4−1)+1

]2 (9)

For the diffuse term, we assume a uniform diffuse
response over the microfacets hemisphere and use a
simple Lambertian model:

fd(D) =
D
π

(10)

Putting the above formulations together, our final ren-
dering equation is:

RN,D,R,S(~l,~v) = fd(D)+ fr(~N,S,R,~l,~v,~h)

=
D
π

+0.25

[(
S+(1−S)2−5.5(~v·~h)2−6.98(~v·~h)

)
× 1

(~N ·~l)(1−0.5R2)+0.5R2

× 1
(~N ·~v)(1−0.5R2)+0.5R2

× R4

π

[
(~N ·~h)2(R4−1)+1

]2

]
(11)

Solving the Integral

We start by making the simplifying assumption that
our light and view direction are the same for our
renderings (~l = ~v =~h). By creating a new variable
t = ~N ·~v, the simplified rendering equation will be:

RN,D,R,S(t)≈
D
π
+

0.25S
π

[
1(

t(1−0.5R2)+0.5R2
)2

× R4(
t2(R4−1)+1

)2

]
(12)

The optimization goal is to minimize the L1 error be-
tween ground truth renderings (RN,D,R,S(t)) and pre-
diction renderings (RN̂,D̂,R̂,Ŝ(t̂)) over a variety of light
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and view directions. If we sample infinite light and
view directions, we are effectively looking to com-
pute Et,t̂ [LDR(t, t̂)]:

LIR =Et,t̂ [LDR(t, t̂)] (13)

=
∫∫
|RN,D̂,R̂,Ŝ(t)−RN̂,D̂,R̂,Ŝ(t̂)| f (t, t̂)dtdt̂ (14)

+ |RN̂,D,R̂,Ŝ−RN̂,D̂,R̂,Ŝ| (15)

+
∫
|RN̂,D̂,R,Ŝ(t̂)−RN̂,D̂,R̂,Ŝ(t̂)| f (t̂)dt̂ (16)

+
∫
|RN̂,D̂,R̂,S(t̂)−RN̂,D̂,R̂,Ŝ(t̂)| f (t̂)dt̂ (17)

We assume the distribution of the view direction such
that we have the marginal probability density func-
tions t̂ ∼ U(0,1). This assumes that our views are
being sampled from directions which have a positive
dot product with the ground truth normal. Since com-
puting the expectation on the error of the normal map
(Eq. (11)) is not straight forward, we use an L1 loss
on the normal map instead:

LIR = |N− N̂| (18)

+
|D− D̂|

π
(19)

+
∫ 1

0
|RN̂,D̂,R,Ŝ(t̂)−RN̂,D̂,R̂,Ŝ(t̂)|dt̂ (20)

+
∫ 1

0
|RN̂,D̂,R̂,S(t̂)−RN̂,D̂,R̂,Ŝ(t̂)|dt̂ (21)

To simplify the integration of Eq. (17) and Eq.
(18), we take the error on the log of the specular term
instead. This will not change the optimal solution that
will minimize this loss:∫ 1

0

∣∣∣∣∣log(
Â(

Bt +1
)2(

Ct2 +1
)2 )

− log(
Â(

B̂t +1
)2(

Ĉt2 +1
)2 )

∣∣∣∣∣dt

+
∫ 1

0

∣∣∣∣∣log(
A(

B̂t +1
)2(

Ĉt2 +1
)2 )

− log(
Â(

B̂t +1
)2(

Ĉt2 +1
)2 )

∣∣∣∣∣dt

(22)

where:
A =

0.25SR4

π(0.5R2)2 =
S
π
, Â =

Ŝ
π

B =
1−0.5R2

0.5R2 =
2

R2 −1, B̂ =
2

R̂2
−1

C = R4−1, Ĉ = R̂4−1
(23)

We simplify log(1+ x) to x in order to get a much
simpler solution to the integral, as a complex solu-
tion is less likely to be adopted by the community
and will require more computation. Moreover, since
limx→∞

∂log(x+1)
∂x = 0, for large values of x we will

have a gradient vanishing problem, which would not
be the case when simplifying log(1+ x) to x. Thus,
Eq. (19) will be reduced to:

2
∫ 1

0

∣∣∣( 1
R̂2
− 1

R2 )t +(R̂4−R4)t2
∣∣∣dt

+ |log(S)− log(Ŝ)|
(24)

To make the implementation of the solution simpler,
we use the upper bound of the error on Eq. (21):

2| 1
R̂2
− 1

R2 |+
2
3
|R̂4−R4|+ |log(S)− log(Ŝ)| (25)

Thus the upper bound on the integrated rendering loss
LIR would be:

LIR =|N− N̂|+ |D− D̂|
π

+2| 1
R̂2
− 1

R2 |

+
2
3
|R̂4−R4|+ |log(S)− log(Ŝ)|

(26)
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