
A Hybrid Approach to MVC Architectural Layers Analysis

Dragoş Dobrean a and Laura Dioşan b

Computer Science Department, Babes Bolyai University, Cluj Napoca, Romania

Keywords: Mobile Applications Software Architecture Analyser, Automatic Analysis of Software Architectures,
Structural and Lexical Information, Software Clustering, Hybrid Approach.

Abstract: Mobile applications have become one of the most important means of interacting with businesses, getting
information, or accessing entertainment and news for the vast majority of the people, especially for the young
generations. How those applications are being built, heavily influences their lifecycle, costs, and product
roadmap, that is why software architecture plays a very important role as it affects the maintainability and
extensibility of those products.
We are presenting a novel automatic approach for detecting MVC architectural layers from mobile codebases
that combines an unsupervised Machine Learning algorithm and a classic static analysis. Our proposal does
not require any prior training stage or datasets since it does not rely on apriori annotated codebases. As another
key of novelty, it uses the information obtained from the mobile SDKs for enhancing the detection process.
The validation of our proposal is done in eight different sized codebases that operate in various domains and
come from either open-source projects as well as closed-source ones. The performance of the detection quality
is measured by the accuracy of the system, as we compared to a manually constructed ground truth, achieving
an average accuracy of 85% on all the analysed codebases.
Our proposal provides a viable hybrid approach for detecting architectural layers from mobile codebases
achieving good results by providing the accurate detection of the layers using a deterministic step and great
flexibility for being used on other architectural patterns via the non-deterministic step. Furthermore, we con-
sider our approach as being valuable to students or beginners because it could provide insightful information
on how the code should be structured and help them to respect architectural guidelines in real-world projects.

1 INTRODUCTION AND
CONTEXT

Mobile phones have become one of the most personal
devices, they are fully packed with applications that
help people manage their finances, health, exercises,
and social life. Those applications need to be flexi-
ble to change, easily maintainable and they need to
run on a large variety of devices and OSs. With this
study, we are furthering our work (Dobrean, 2019)
towards creating an autonomous system for improv-
ing the architectural health of those projects since a
large number of the mobile codebases do not have a
well defined architectural pattern in place or even if
they do, it is not consistently implemented all over
the codebase (DeLong, 2017).

Furthermore, identifying and examining the im-
plemented software architecture of mobile applica-

a https://orcid.org/0000-0001-7521-7552
b https://orcid.org/0000-0002-6339-1622

tions codebases could help the inexperienced devel-
opers or the students to better grasp or perceive the
architecture importance, an important premise in soft-
ware engineering education. These beginners could
benefit from using an automatic detection system and
to advance in the difficult task of learning architecting
(Galster and Angelov, 2016), (Li, 2020).

Such a system would also provide valuable in-
sights to teachers and mentors regarding the mistake
their students make by examining the history of the
analysis performed by the system on the student’s
codebase.

In (Dobrean and Dioşan, 2019a) we have pre-
sented a deterministic approach for automatically de-
tecting architectural layers. We have furthered our re-
search in (Dobrean and Dioşan, 2020) where we have
approached the same problem from a different per-
spective, we have used Machine Learning algorithms
for detecting those layers by considering the detec-
tion as a clustering problem (each layer representing
a cluster).

36
Dobrean, D. and Dioşan, L.
A Hybrid Approach to MVC Architectural Layers Analysis.
DOI: 10.5220/0010326700360046
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 36-46
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Our newest proposal is a hybrid one, where we use
a combination of deterministic and non-deterministic
(Machine Learning) methods for solving the same
problem. By using this new approach, we are paving
the way for more specialized architecture detection
(such as MVVM, MVP, VIPER, etc.), we call this ap-
proach HyDe (Hybrid Detection).

Analyzing mobile codebases using a purely deter-
ministic approach can not yield great results on a large
variety of codebase, the main reason for this being
the fact that projects have their specific particularities,
such as coding standards, naming conventions, code-
base split (how external libraries and tools are being
integrated), data flows, etc.. When using a Machine
Learning approach, some of the elements might be
wrongly categorized due to the features of the compo-
nents. Besides, there is not a lot of information on the
particularities of the layers that need to be detected.

Both developed detection systems have strong
points as well: the deterministic one is able to accu-
rately detect codebase elements and place them in the
right architectural layers, while the non-deterministic
one allows more flexibility for the analysis part and
it can recognize clusters in more types of codebases.
With these thoughts in mind, we joined both ideas into
a hybrid one (HyDe) and we have used it to separate
the architectural layers from a codebase using a com-
bined approach. In this study, we are searching for
a viable way of combining the deterministic methods
(such as SDK inheritance) with the non-deterministic
ones (such as clustering) into a hybrid approach for
processing mobile codebases.
Research Challenges. The main challenges of these
research topics are:

• architecture detection using a combined approach
(deterministic + non-deterministic);

• a clustering process that works while combined
with the information obtained from the determin-
istic process;

• automatically inferring the architectural layers of
an MVC codebase that uses an SDK for building
the user interfaces — as those SDKs usually con-
tain more types of items than web SDKs.

Contributions. The main contributions of this study
are listed below:

• a new workflow for automatic detection of archi-
tectural layers using a hybrid system;

• a novel approach at combining a deterministic
method that uses SDK and lexical information for
detecting architectural layers in a codebase with
a non-deterministic one that uses a wide range
of features extracted from the codebase (such as
the number of common methods and properties

and components name similarities) for solving the
same problem;

• an innovative way of leveraging the informa-
tion from the deterministic step to aid the non-
deterministic one to increase the accuracy.

The paper is structed as follows. The next section in-
troduces the formalisation of the scientific problem
and presents details about other related work. Section
3 introduces our approach HyDe. The numerical ex-
periments and analysis of the method are presented in
sections 4 and 5. The end of the paper is composed
by Section 6 which presents the threats to validity, fol-
lowed by conclusions and some directions for further
work in Section 7.

2 SCIENTIFIC PROBLEM

A mobile codebase is made of components (classes,
structures, protocols, and extensions); we represent
a codebase in a formal matter by using the fol-
lowing notation A = {a1,a2, . . . ,an} where ai, i ∈
{1,2, . . . ,n} denotes a component.

The purpose of this study is to find a way for split-
ting the codebase into architectural layers. An archi-
tectural layer is represented by a partition P of the
components P = {P1,P2, . . . ,Pm} in the codebase that
satisfies the following conditions:

• 1≤ m≤ n;

• Pj is a non-empty subset of A, ∀ j ∈ {1,2, . . . ,m};
• A = ∪m

j=1Pj, Pj1 ∩Pj2 = /0, ∀ j1, j2 ∈ {1,2, . . . ,m}
with j1 6= j2.

In this formulation, a Pj (j ∈ {1,2, . . . ,m}) subset of
A represents an architectural layer.

Since we are using a hybrid approach, the detected
architectural layers (partitions) P1, P2, ... Pm are de-
termined by applying a set of deterministic rules and
a clusterization process on some of the output parti-
tions.

In order to apply a clustering algorithm, each com-
ponent ai (i ∈ {1,2, . . . ,n}) has to be represented by
one or more features or characteristics. We suppose
to have k features and we denote them by F(ai) =
[F1

i ,F
2
i , . . . ,F

k
i].

The purpose of the hybrid approach is to output
partitions of components that match as best as possi-
ble the ground truth (the partitions provided by human
experts).

The Model View Controller is one of the most
widespread presentational architectural patterns. It
is used extensively in all sorts of client applications,

A Hybrid Approach to MVC Architectural Layers Analysis

37

web, desktop and mobile. It provides a simple sepa-
ration of concerns between the components of a code-
base in 3 layers:

• Model: responsible for business logic.

• View: responsible for the user’s input and the out-
put of the application.

• Controller: keeps the state of the application, acts
like a mediator between the Model and the View
layer.

There are many flavours of MVC in which the data-
flow is different, but they all share the same model
of separation. MVC is also the precursor of more
specialised presentational architectural patterns such
as Model View View Model (MVVM) or Model
View Presenter (MVP) (Dobrean and Dioşan, 2019b),
(Daoudi et al., 2019).

In this study, the focus is on analyzing MVC ar-
chitectures, therefore, the number of partitions m =
3. For a better understanding of the concepts, we
are going to substitute the notation of partitions P =
{P1,P2,P3}, with P = {M,V,C}, as this notation bet-
ter reflects the partition and the output layers we are
interested in finding, M representing the Model layer,
V representing the View layer, and C being the Con-
troller layer. For the rest of the paper, this notation
will be used to refer to the partitions for architectural
layers.

Other studies have focused on architecture recov-
ery by clusterization. For instance, Mancoridi (Man-
coridis et al., 1999), Mitchell (Mitchell and Man-
coridis, 2008) or Lutellier (Lutellier et al., 2015) from
a structural point of view, Anquetil (Anquetil and
Lethbridge, 1999) or Corazza (Corazza et al., 2016)
from a lexical point of view and Garcia (Garcia et al.,
2011) or Rathee (Rathee and Chhabra, 2017) from a
structural and lexical point of view. However, none
of those approaches specifically focused on mobile
codebase or codebases that use SDKs for building
their UI interfaces.

HyDe combines our previous work, regarding
splitting a mobile codebase into architectural layers,
a deterministic approach where information from the
mobile SDKs is being used for detecting the archi-
tectural layers for a certain component using a set
of rules (Dobrean and Dioşan, 2019a) with a non-
deterministic one for which we previously paved the
way with a study where we have applied Machine
Learning techniques for solving the same problem
(Dobrean and Dioşan, 2020).

3 HyDe: A TWO-STAGE
AUTOMATIC DETECTION OF
ARCHITECTURAL LAYERS IN
MOBILE CODEBASES

Mobile applications are clients, usually, they are built
as monoliths as they are self-contained.

In this study, we are interested in automatically
categorizing the component of a codebase into ar-
chitectural layers, based on the software architecture
used. We are focusing on MVC, as is one of the most
widely used architectural patterns, and is the precur-
sor of other, more specialized architectures. For the
inferring information from the codebases, we are do-
ing a static analysis of its components.

By component, in this work we understand, a
class, a struct, or a protocol, as building blocks of the
codebase. We are interested in all the public and pri-
vate properties, methods, and inherited types (if any)
of those components. Our interest does not revolve
around the body of the functions; we are only in-
terested in their signature (naming and parameters),
nor are we interested in the dependencies between the
components or how they interact.

When developing these kinds of applications,
SDKs are used for displaying information on the
screen, interacting with the user, and using the hard-
ware of those devices (camera, sensors, etc.). The
codebase of those products is split into architectural
layers, and some of those are closely related to the
SDK defined elements (the View and Controller layer
from MVC).

Our proposal is categorized by two important fea-
tures, unsupervised — which means there is no prior
knowledge needed before analyzing a codebase —
and autonomous — no developer involvement needed
after the process is started. Furthermore, HyDe in-
volves a two-step process: firstly, we apply the de-
terministic approach on the entire codebase, and sec-
ondly, on some of the components we run a clustering
algorithm to enhance the categorization of the com-
ponents in architectural layers.

3.1 Pre-processing

To obtain information regarding the components of a
codebase, a precursor step needs to be made, the pre-
processing, where we extract the information required
as input by the proposed approach. This is done by
statically analyzing all the source files of the project;
we are only interested in code source files, so the re-
sources are ignored (a comprehensively presentation
of the pre-processing particularities can be found in

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

38

(Dobrean and Dioşan, 2019a)).
As an outcome of this step, we have the set of

components A = {a1,a2, . . . ,an} where every ai, i ∈
{1,2, . . . ,n} is characterised by:

• name

• type (class, struct, protocol)

• path

• inherited types

• all the private, static, and non-static methods and
properties

3.2 Deterministic Step

In this part of the study, HyDe determines in which
layer should a component reside by looking at the re-
lationship between the components and the SDK. The
mechanism behind this deterministic step is actually
of MaCS (Dobrean, 2019): constructing the topolog-
ical structure of the codebase, analysing the relation-
ships among components and assigning them to the
architectural layers.

3.2.1 Extraction

After the codebase has been preprocessed, MaCS,
firstly, creates the topological structure of the code-
base (a directed graph) in which every node corre-
sponds to a codebase component. The links between
the nodes of the graph represent dependencies be-
tween the components, for instance, if component A
has a property of type B, then we are going to have
a dependency, a link from the component A to the
component B. Unlike a typical graph, the topological
structure created could have multiple links between
(eg. if component A has multiple properties or meth-
ods that have as parameters components of type B).

3.2.2 Categorization

In the categorization part, the codebase is split into ar-
chitectural layers: every component is analyzed and
placed into one of the 3 layers (Model, View, Con-
troller) – since we are only focusing on MVC.

We have applied the CoordController approach
(Dobrean, 2019), in which we also detect the Coordi-
nating Controller layer, because it paves the way for
analyzing more complex architectures and codebases.
The Coordinating Controller layer is responsible for
keeping the state of the application and deciding what
is the flow of the application, it is a controller of the
state of the application. Those type of elements have
no direct correspondent in the development SDKs,

however, those should also reside in the Controller
layer of an MVC architecture (Dobrean, 2019).

The architectural layers are constructed in a deter-
ministic fashion by using the following rules:

• All Controller layer items should inherit from
Controller classes defined in the used SDK;

• All View layer items should inherit from a UI
classes defined in the used SDK;

• All the remaining items are treated as Model layer
items.

In addition to these base rules, we have also applied
the one meant to detect the Coordinating Controller
elements:

• All the components which have properties or
methods that manipulate Controller components
(including other Coordinating Controller compo-
nents, also) are marked as Coordinating Con-
trollers.

All the coordinating controller components are also
placed into the Controller layer.

The output of MaCS represents a partition P =
{M,V,C}, where the M, V , and C subsets are
constructed by applying the above rules over A =
{a1,a2, . . . ,an}.

To be able to formalise these decision rules, we
involve the concept of predicate as following: a predi-
cate of type X over two components as predX (el1,el2)
is True if we can apply the action X over el1 and we
obtain el2. The proposed checker system defines the
following predicates:

• predinstanceO f (componenta,Type) = True when
componenta is a variable of type Type;

• predinheritance(componenta,componentb) = True
when componenta (directly) inherits componentb;

• predusing(componenta,componentb)
• predusing(componenta, listComponentb)
• predinheritance(componenta, listComponentb) =

True
With these definitions in place we can represent the
layers using the above stated rules as sets:

Csimple ={ai|predX (ai,SDK’s Controller) = True,
where X ∈ {instanceO f , inheritance},
ai ∈ A}

(1)

Coordinators = {ai|ai ∈ A,∃v ∈ ai.properties and
c ∈C such as predinstanceO f (v,c) = True or
∃m ∈ ai.methods and c ∈C such as
predusing(m,c) = True}

(2)

A Hybrid Approach to MVC Architectural Layers Analysis

39

C =Csimple∪Coordinators (3)

V ={ai|predX (ai,SDK’s View) = True,
where X ∈ {instanceO f , inheritance},ai ∈ A}

(4)

M = A\ (V ∪C) (5)

After the categorization process is finished, the sys-
tem yielded the first assignment of the components
into architectural layers. By using MaCS approach,
the View layer is determined with high accuracy, the
Controller layer has a good accuracy as well, as the el-
ements which inherit from an SDK defined Controller
are being detected.

The major downside of a pure deterministic detec-
tion is the fact that the heuristics used for determin-
ing the Model and Coordinating Controller compo-
nents do not always yield great results; it can happen
that certain elements from either the Controller or the
Model to be wrongly categorized.

3.3 Non-deterministic Step

Trying to improve the detection accuracy, HyDe in-
volves a second stage when a clustering algorithm is
run onto the output layers of the first step in order to
better categorize the elements of the codebase.

We have already conducted some experiments on
a clustering approach only (from scratch) for solving
the same problem (splitting a codebase into architec-
tural layers) in (Dobrean and Dioşan, 2020). While
the clustering algorithm is the same, the process used
in this study is rather different as we are focusing on
only a part of the codebase for applying the cluster-
ing algorithm and one of the most important parts in a
clustering process, the feature detection is completely
new and different than our previous approach CARL
(Dobrean and Dioşan, 2020).

Clustering is one of the most commonly used Ma-
chine Learning techniques for finding similarities in
collections and splitting the items into groups that
have similar features.To better split the codebase into
architectural layers, a clustering process is applied on
the layers in which the accuracy obtained in the first
step was not satisfactory – the Model and the Con-
troller layer.

What we try to achieve with this step of the pro-
cess is filtering better the elements from the Model
and Controller layer, to lower the percentage of
wrongly categorized components. We know that Con-
troller elements and Model elements have certain par-
ticularities that were not caught using the previously
described rules. However, a clustering algorithm can
find particularities in data that are less obvious.

HyDe is applying the clustering process only to
the Model and Controller layer (M and C partitions)
obtained from the deterministic approach, the View
(V) being ignored. The View layer is ignored as the
detection precision for this layer is 100% (Dobrean
and Dioşan, 2019a), see Table 2. Therefore the set of
analysed elements is represented by

E = M∪C = {ai1 ,ai2 , . . . ,aik},
where ai j is a component from set A (see problem def-
inition) and denotes a component that was identified
as either as a Model or Controller element by the De-
terministic step, and k represents the number of com-
ponents in E.

3.3.1 Feature Extraction

Feature extraction from raw input data is an essential
stage before applying the clustering algorithm. Based
on the chosen feature set, a clustering algorithm can
yield good or bad results, even if it is applied to the
same data collection.

From the pre-processing stage, we have informa-
tion regarding every component from the codebase.
In addition, due to the deterministic process, we also
have information regarding the initial categorization
of the components in architectural layers.

We have applied HyDe to one of the mid-sized
codebases (E-Commerce) for which we had the
ground-truth constructed and we have analyzed mul-
tiple features of the codebase such as:

• Levenshtein distance between the components
name

• Whether a component inherits from a Model com-
ponent (from the output of the deterministic step)

• Whether a component is using a Controller or
Model component (it has properties or methods
that use Controller or Model items from the deter-
ministic step output)

• Whether a component is using a Controller com-
ponent (it has properties or methods that use Con-
troller items from the deterministic step output)

• Whether a component is a class or another type of
programming language structure (such as structs,
protocols, extensions)

• Whether a component is included in the Con-
troller components (from the output of the deter-
ministic step)

• Number of common methods between the ana-
lyzed components

• Number of common properties between the ana-
lyzed components

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

40

We have applied a trial and error approach to the set of
the features above mentioned to find out which con-
figuration yields the best results on the benchmark ap-
plication. After different tries, we have concluded that
the best results on the benchmark application come
from the following set of features.

Two features take into account the already ob-
tained assignments in the first step of our proposed
system:

• Whether a component is included in the set of
Controller components (from the output of the de-
terministic step). We associate a score θ if the
component is included in the Controller layer and
0 otherwise. The score value has no influence over
the detection process because, by normalisation, a
Boolean feature is created.

F1(ai) =

{
θ, if ai ∈C
0, otherwise

(6)

• Whether a component is using a Controller com-
ponent (it has properties or methods that used
Controller items from the deterministic step out-
put). We associate a score of 1 if the component
uses another component from the Controller layer
and 0 otherwise.

F2(ai) =

{
1, if predusing(ai,C) = True
0, otherwise

(7)

In addition to those two rules, for every pair of com-
ponents from the analyzed set (E) we compute the fol-
lowing values for the feature set of a component:

• a feature that emphasises the similarity of two
components’ names

F3(ai) = [NameDist(ai,ai1),

NameDist(ai,ai2),

. . . ,NameDist(ai,aik)]

(8)

where NameDist(ai1 ,ai2) is the Levenshtein dis-
tance (Levenshtein, 1966) between the names of
component ai1 and component ai2 .

• a feature based on how many properties two com-
ponents have in common

F4(ai) = [CommProp(ai,ai1),

CommProp(ai,ai2), . . . ,CommProp(ai,aik)]
(9)

where CommProp(ai1 ,ai2) is the number of com-
mon properties (name ant type) of component ai1
and component ai2 .

• a feature based on how many methods two com-
ponents have in common

F5(ai) = [CommMeth(ai,ai1),

CommMeth(ai,ai2), . . . ,CommMeth(ai,aik)]

(10)

where CommProp(ai1 ,ai2) is the number of com-
mon methods (signature, name, and parameters)
of component ai1 and component ai2 .

The output of this feature extraction phase is repre-
sented by the matrix that encodes all five feature sets,
M = F1 ∪F2 ∪F3 ∪F4 ∪F5. In fact, a (3× k+ 2)× k
matrix, that contains the feature set for every compo-
nent in the codebase is constructed.

3.3.2 Clusterization

For the clusterization algorithm, we have found out
that the Agglomerative Clustering (Murtagh, 1983)
works best for this type of problem – a hierarchical,
bottom-up approach. Since we are analyzing only the
Model and the Controller layer, the number of clusters
used for this step is set to two. One of the most im-
portant features of a clustering algorithm is the mea-
surement of similarities between the clusters, our ap-
proach uses the Euclidian distance (Huang, 2008).
The five computed features, described in the previous
section, are normalized and then they are fed to the
clustering algorithm.

The last step of the process is assigning respon-
sibilities to the output clusters. HyDe does that by
looking at the output clusters and deciding which one
is the Controller cluster based on the number of com-
ponents that inherit from an SDK defined Controller
component.

With this final step, HyDe has categorized the
codebase in the final architectural layers. The View
layer is identical to the one obtained from the deter-
ministic step of the proposal, the Controller one is de-
termined in the last phase after the clustering has been
applied and the group which contained the most ele-
ments that inherited from a Controller type was identi-
fied, while the Model is represented by the other clus-
ter from the clusterization process output. A sketch of
our system is depicted on Figure 1.

In case of more specialised architectures, where
there are multiple other architectural layers, some
heuristics should be used for assigning architectural
layers to the output clusters. Those heuristics are
closely related to the particularities of the analysed
software architecture as well as the purpose of its
composing architectural layers.

A Hybrid Approach to MVC Architectural Layers Analysis

41

Figure 1: Overview of the HyDe workflow.

4 PERFORMANCE EVALUATION

To validate the performance of our approach, we are
using the following metrics for analyzing the result of
the HyDe against a ground truth obtained by manu-
ally inspecting the codebase by two senior developers
(with a development experience of over five years):

• accuracy: Acc =
NAllLayers

DetectedCorrectly
NallComponents

• precision for the layer X : PX =
NX

DetectedCorrectly
NX

TotalDetected

• recall for the layer X : RX =
NX

DetectedCorrectly
NX

GroundTruth
,

where:

• NX
DetectedCorrectly: is the number of component de-

tected by the system which belong to the X layer
and are found in the ground truth for that layer;

• NX
TotalDetected : is the number of component de-

tected by the system as belonging to the X layer;

• NX
GroundTruth: is the number of component which

belong to the X layer in the ground truth.

In addition to those metrics, we are also interested in
the performance of the process not only from a soft-
ware engineering point of view but also from a Ma-
chine Learning perspective. To analyze the ML per-
formance of our approach we have used the following
metrics:

• Silhouette Coefficient score (Rousseeuw, 1987)
and

• Davies-Bouldin Index (Davies and Bouldin,
1979).

The Silhouette Coefficient measures how similar is
a component of a cluster compared to the other ele-
ments which reside in the same cluster compared to
the other clusters. The range of values for this score
is [-1;1] where a high value means that the compo-
nent is well matched in its own cluster and dissimilar
when compared to other clusters. We have computed
the mean Silhouette Coefficient score over all compo-
nents of each codebase.

Davies-Bouldin Index is defined as the average
similarity measure of each cluster with its most sim-
ilar cluster. The similarity is represented by the ra-
tio of within-cluster distances to between-cluster dis-
tances. The Davies-Bouldin Index indicates how well
was the clustering performed; the minimum value for
this metric is 0, the lower the value the better.

Both of these metrics provide insightful informa-
tion regarding the clustering performance: the Sil-
houette Coefficient score indicates how well are the
components placed, while the Davies-Bouldin Index
expresses whether or not the clusters were correctly
constructed.

The Machine Learning perspective was applied to
the output data obtained from the entire HyDe pro-
cess, when computing these metrics we looked at the
final result, and we’ve viewed the output architectural
layers as clusters, even some of them might come
from a deterministic step (View layer in our partic-
ular case). By computing these metrics, we can also
understand the structural health of the codebase, how
related are the components between them, and how
high is the degree of differences between architectural
layers.

5 NUMERICAL EXPERIMENTS

Our analysis focuses on MVC, a widely used architec-
tural pattern (Vewer, 2019) for mobile development.
Our experiments are run on the iOS platform; how-
ever, they can be replicated on other platforms that
use SDKs for building their user interfaces.

For validating our proposal, we have compiled a
list of questions for which we search answers with
our experiments:

• RQ1: How can the deterministic approach and the
non-deterministic one be combined?

• RQ2: How effective and performant is the HyDe
approach?

• RQ3: What are the downsides of using a hybrid
approach for architectural layers detection?

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

42

5.1 Analysed Codebases

We have conducted experiments on eight different
codebases, both open-source and private, of different
sizes:

• Firefox: the public mobile Web browser (Mozilla,
2018),

• Wikipedia: the public information application
(Wikimedia, 2018),

• Trust: the public cryptocurrency wallet (Trust,
2018),

• E-Commerce: a private application,

• Game: a private multiplayer game.

• Stock: a private trading application,

• Education: a private education application for par-
ents,

• Demo: the Apple’s example for AR/VR (Apple,
2019)

We were interested in MVC codebases, as this is one
of the most popular software architecture used on
client applications. iOS applications implement the
MVC pattern more consistently than Android, as Ap-
ple encourages developers to use it through examples
and documentation (Apple, 2012). To our knowledge,
there is not a selection of repositories used for analyz-
ing iOS applications, that is why we have manually
selected the codebases. The selection was performed
to include small, medium, and large codebases. In
addition, we have included both private source and
open source codebases as there might be differences
in how a development company and the community
write code. Companies respect internal coding stan-
dards and styles that might not work or are different
than the ones used by open-source projects.

Table 1: Short description of investigated applications.
Application Blank Comment Code No. of components
Firefox 23392 18648 100111 514
Wikipedia 6933 1473 35640 253
Trust 4772 3809 23919 403
E-Commerce 7861 3169 20525 433
Game 839 331 2113 37
Stock 1539 751 5502 96
Education 1868 922 4764 105
Demo 785 424 3364 27

Table 1 presents the sizes of the codebase, blank –
refers to empty lines, comment – represents com-
ments in the code, code states the number of code
lines, while the number of components represents the
total number of components in the codebase.

5.2 Empirical Evaluation

After the experiments were conducted on all of the
codebases, we have analyzed the results based on the
3 questions which represent the base for this study.

5.2.1 RQ1: How Can the Deterministic
Approach and the Non-deterministic One
be Combined?

For constructing a system that would yield good re-
sults and involve a hybrid approach, it is clear that the
only way to do it is to apply the non-deterministic ap-
proach after the deterministic one. These approaches
can work well together if we leverage the best parts
from both of them and try to improve the methods
where they lacked.

From (Dobrean and Dioşan, 2019a) it is clear that
the deterministic approach works really well for the
layers for which there are rules strong enough to de-
termine the components with high accuracy. In the
case of the current study, MaCS was able to iden-
tify with high accuracy the View layer. When ana-
lyzing custom architectures, a deterministic approach
might yield great results on other architectural layers
as well, but for the purpose of this study, we have fo-
cused only on MVC.

The non-deterministic approach which was in-
spired by (Dobrean and Dioşan, 2020) works well for
finding similarities between components without us-
ing heuristics.

With those ideas in mind, we have concluded that
the best way for those approaches to function well
together and achieve good results is to apply the de-
terministic method for identifying the layers, and af-
terwards to apply the non-deterministic approach to
those layers for which the deterministic approach did
not work that well. The second stage of HyDe could
be considered as a filter, enhancing the detection re-
sults.

To summarise, we have applied the determin-
istic approach first and obtained the components
split into architectural layers based on the rules
used by MaCS, afterward we have applied the non-
deterministic method for the layers in which MaCS
results were not confident – the Model and Controller
layers.

5.2.2 RQ2: How Effective and Performant is the
HyDe Approach?

We have applied the HyDe approach to 8 codebases of
different sizes, to cover multiple types of applications
from a size perspective, but also from functionality
and the domain they operate in perspectives.

A Hybrid Approach to MVC Architectural Layers Analysis

43

The proposed approach achieved good results on
the analyzed codebases with three codebases that
achieved over 90% accuracy with the highest one at
97%. The average accuracy for the analyzed set of
applications was 85% as seen in Table 2.

The layer which came from the determinis-
tic approach and was left unaltered by the non-
deterministic step, the View layer, has achieved a per-
fect precision score on all the analyzed codebase, in-
dicating that HyDe does not produce false positives
(it does not label as View components those that, con-
form the ground-truth, they belong to other layers).
In respects to recall, the same layer achieved lower
scores on some of the codebases, this was mainly
caused by the fact that those codebases used exter-
nal libraries for building their UI interfaces, and they
did not rely solely on the SDK for implementing those
features.

In the case of the other layers which were altered
by the deterministic step, the precision and recall were
heavily influenced by the way the codebase was struc-
tured, naming conventions, and coding standards.

The proposed method worked best for the Game
codebase which was a medium-sized application. For
larger codebase which had higher entropy due to their
dimensions and used external libraries the method did
not work as well.

For some of the smallest codebases, the method
achieved the worst results, this is because the non-
deterministic step did not have enough data to make
accurate assumptions as the codebases were rather
small.

From a View layer precision point of view, HyDe
achieves perfect results, all the detected View layer el-
ements are indeed views, there are no false positives.
In respect to the recall of the View layer, the results
are not perfect, there are some false negatives, this is
because the analyzed codebases use external libraries
for implementing certain UI elements and those li-
braries were not included in the analysis process.

In respect to performance, we have computed the
Mean Silhouette Coefficient, the Davies-Bouldin In-
dex as well as the Homogeneity and Completeness
scores.

The Mean Silhouette Coefficient had the best val-
ues in the case of medium-sized codebases where the
distinction between the 3 output layers was more pro-
nounced as seen in Table 3. In the case of the large
codebases, the accuracy was worse as we had many
types of components in each architectural layer. The
value for the smallest codebase was also poor, this is
because it had small number of components.

As seen in Table 3, the results for the Davies-
Bouldin Index were hand in hand with the ones for

the Mean Silhouette Coefficient: the best performing
codedbases were the medium-sized ones, the largest
and smallest ones achieved worst results due to the
same reasons that affected Silhouette metric.

In case of Homogeneity and Completeness, Table
3, HyDe did achieve good results for the medium-
sized and small-sized codebase. The scores were bet-
ter for the codebases which had a naming convention
and coding standards in place.

5.2.3 RQ3: What Are the Downsides of using a
Hybrid Approach for Architectural Layers
and Components Detection?

The most important downside of using a hybrid ap-
proach is that based on the analyzed codebase and the
architecture it implements, the workflow might need
to be adjusted in two places:

• the rules for the deterministic part of the process;
• the feature selection for the non-deterministic

step.
In addition to those, an analysis would have to be
conducted on the output of the deterministic step to
identify the layers which should be feed to the non-
deterministic step.

Another downside would be that this method only
works if the deterministic step yields really good re-
sults for at least some of the layers, otherwise this part
of the process becomes irrelevant.

From a computational performance point of view,
the proposed approach is also heavier on the process-
ing part as a simple singular process as it is composed
of two separate steps; this also applies to the run time,
as this is increased due to the same reasons.

In respect to the results, our proposal’s main
downside is the fact that for the output clusters from
the non-deterministic step a manual analysis of those
might be needed to match a cluster to an architectural
layer if no heuristics can be found in the case of more
specialized or custom architectural patterns.

Our proposed approach remains automatic in the
case of more specialized software architectures, as it
does not need the ground truth of the codebase. The
feature extraction process needs to be enriched with
information regarding the particularities of the ana-
lyzed architecture, in order for the process to yield
good results.

6 THREATS TO VALIDITY

Once the experiments were run and we’ve analyzed
the entire process we have discovered the following
threats to validity:

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

44

Table 2: Results of the process in terms of detection quality.

Codebase Model precision Model recall View precision View recall Ctrl precision Ctr recall Accuracy
Firefox 0,97 0,77 1,00 1,00 0,47 0,91 82,71
Wikipedia 0,79 0,74 1,00 0,66 0,74 0,95 80,00
Trust 0,86 0,89 1,00 0,70 0,66 0,72 82,86
E-commerce 1,00 0,80 1,00 1,00 0,81 1,00 90,97
Game 0,95 1,00 1,00 1,00 1,00 0,92 97,22
Stock 0,80 0,77 1,00 0,59 0,78 0,93 79,09
Education 0,87 0,95 1,00 1,00 0,92 0,90 93,60
Demo 0,91 0,77 1,00 1,00 0,25 0,67 78,79

Table 3: Results in terms of cohesion and coupling.
Codebase Mean Silhouette Coef. Davies-Bouldin Index
Firefox 0,64 0,61
Wikipedia 0,67 0,51
Trust 0,68 0,52
E-commerce 0,63 0,58
Game 0,86 0,20
Stock 0,81 0,28
Education 0,80 0,29
Demo 0,52 1,55

Table 4: Homogeneity and Completeness on the analyzed
codebases.

Codebase Homogeneity score Completeness score
Firefox 0,60 0,63
Wikipedia 0,50 0,56
Trust 0,20 0,18
E-commerce 0,66 0,73
Game 0,74 0,79
Stock 0,40 0,50
Education 0,17 0,31
Demo 0,80 0,90

• Internal: the selection of features for the non-
deterministic step was found using a trial and er-
ror approach, there might be another set of fea-
tures that yield a better result. The selection of
features can be improved by measuring the en-
tropy of a feature for finding out its importance.
Another reason for concern is the fact that in this
approach we are only looking at the codebase, ig-
noring the external libraries used, and that can
lead to wrongly detected components. This can
be improved by also running the process on the
libraries used by the analyzed codebase. We’ve
also applied ML specific metrics to the results, in-
cluding the View layer which was an output of the
deterministic step. This might represent a threat to
validity in respect to the results for the Silhouette
Coefficient and Davies-Bouldin Index.

• External: Our study has focused only on Swift
codebases on the iOS platform; other platforms
and programming languages might come with
their particularities which we have not encoun-
tered in the current environment. Furthermore,

this study focuses on MVC alone. In the case
of more specialized architectures, the rules from
the deterministic step might need to be adjusted
as well as the features selection involved in the
non-deterministic phase.

• Conclusions: The experiments were run on a
small number of applications that might have
some bias, more experiments should be conducted
to strengthen the results.

7 CONCLUSIONS AND FURTHER
WORK

With HyDe we have shown that a hybrid approach be-
tween a deterministic method and a non-deterministic
one can be successfully applied in the domain of soft-
ware architecture recognition with great results on
medium-sized applications. Not only that it works
well on mobile codebases, but this work can also be
applied to other platforms and types of applications
which use SDKs for building UI interfaces.

HyDe leads the way of automatically splitting
codebase components into architectural layers by
only analyzing syntactical aspects of the codebase. It
represents the major piece into a software architecture
checker system, that can highlight the architectural is-
sues early in the development phase. This proposal
combines successfully a deterministic approach that
can detect certain architectural layers with a high de-
gree of confidence with a non-deterministic approach
that offers it flexibility for analyzing more specialized
architectural patterns or even custom ones.

We believe that the accuracy of the system can be
greatly improved by also taking into consideration the
external libraries, especially for large projects which
use external libraries developed by the same teams
using the same coding standards and conventions, as
well as configuring the heuristics and features with re-
spects to a certain type of mobile application (for in-
stance medium-sized applications that are clients for
other backend services). It will be also investigated
if the detection performance could be improved by

A Hybrid Approach to MVC Architectural Layers Analysis

45

considering some features that reflect the specificities
of the body components, as for the current approach,
HyDe only took into consideration the signature of the
methods, properties, and inherited types.

We plan to integrate HyDe into a software archi-
tecture workflow that could be used by developers as
well as managers to have a detailed status of the ar-
chitectural health of a mobile codebase. In additions,
HyDe system would also be valuable to students or
beginners as it could provide insightful information
on how the code should be structured and help them to
respect architectural guidelines in real-world projects.

REFERENCES

Anquetil, N. and Lethbridge, T. C. (1999). Recovering soft-
ware architecture from the names of source files. Jour-
nal of Software Maintenance: Research and Practice,
11(3):201–221.

Apple (2012). Model-view-controller. https://apple.co/
3a5Aox9link.

Apple (2019). Placing objects and handling 3d interaction.
https://apple.co/3tJw8v2link.

Corazza, A., Di Martino, S., Maggio, V., and Scanniello,
G. (2016). Weighing lexical information for software
clustering in the context of architecture recovery. Em-
pirical Software Engineering, 21(1):72–103.

Daoudi, A., ElBoussaidi, G., Moha, N., and Kpodjedo, S.
(2019). An exploratory study of mvc-based architec-
tural patterns in android apps. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Comput-
ing, pages 1711–1720. ACM.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separa-
tion measure. IEEE transactions on pattern analysis
and machine intelligence, (2):224–227.

DeLong, D. (2017). A better MVC.
https://davedelong.com/blog/2017/11/06/
a-better-mvc-part-1-the-problems/link.

Dobrean, D. (2019). Automatic examining of software ar-
chitectures on mobile applications codebases. In 2019
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pages 595–599. IEEE.

Dobrean, D. and Dioşan, L. (2019a). An analysis system
for mobile applications MVC software architectures.
pages 178–185. INSTICC, SciTePress.

Dobrean, D. and Dioşan, L. (2019b). Model View Con-
troller in ios mobile applications development. pages
547–552. KSI Research Inc. and Knowledge Systems
Institute Graduate School.

Dobrean, D. and Dioşan, L. (2020). Detecting model view
controller architectural layers using clustering in mo-
bile codebases. pages 196–203. INSTICC.

Galster, M. and Angelov, S. (2016). What makes teaching
software architecture difficult? In 2016 IEEE/ACM
38th International Conference on Software Engineer-
ing Companion (ICSE-C), pages 356–359. IEEE.

Garcia, J., Popescu, D., Mattmann, C., Medvidovic, N., and
Cai, Y. (2011). Enhancing architectural recovery us-
ing concerns. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE
2011), pages 552–555. IEEE.

Huang, A. (2008). Similarity measures for text document
clustering. In Proceedings of the sixth new zealand
computer science research student conference (NZC-
SRSC2008), Christchurch, New Zealand, volume 4,
pages 9–56.

Levenshtein, V. I. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710.

Li, Z. (2020). Using public and free platform-as-a-service
(paas) based lightweight projects for software archi-
tecture education. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing: Software Engineering Education and Training,
pages 1–11.

Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D.,
Medvidovic, N., and Kroeger, R. (2015). Comparing
software architecture recovery techniques using accu-
rate dependencies. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE Int. Conf. on, volume 2,
pages 69–78. IEEE.

Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R.
(1999). Bunch: A clustering tool for the recovery and
maintenance of software system structures. In Pro-
ceedings IEEE International Conference on Software
Maintenance-1999 (ICSM’99).’Software Maintenance
for Business Change’(Cat. No. 99CB36360), pages
50–59. IEEE.

Mitchell, B. S. and Mancoridis, S. (2008). On the evaluation
of the bunch search-based software modularization al-
gorithm. Soft Computing, 12(1):77–93.

Mozilla (2018). Firefox iOS application. https://github.
com/mozilla-mobile/firefox-ioslink.

Murtagh, F. (1983). A survey of recent advances in hierar-
chical clustering algorithms. The Computer Journal,
26(4):354–359.

Rathee, A. and Chhabra, J. K. (2017). Software remodular-
ization by estimating structural and conceptual rela-
tions among classes and using hierarchical clustering.
In International Conference on Advanced Informatics
for Computing Research, pages 94–106. Springer.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.

Trust (2018). Trust wallet iOS application. https://github.
com/TrustWallet/trust-wallet-ioslink.

Vewer, D. (2019). 2019 raport. https://iosdevsurvey.com/
2019/link.

Wikimedia (2018). Wikipedia ios application. https://
github.com/wikimedia/wikipedia-ios/tree/masterlink.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

46

