
Towards Blockchain-based Ride-sharing Systems

Edgar Vazquez and Dario Landa-Silva
COL Lab, School of Computer Science, University of Nottingham, Nottingham, U.K.

Keywords: Ride-sharing, Blockchain, Smart Contracts, Smart Transport Systems.

Abstract: Blockchain technology has been used in finance, health care, supply chain, and transport, with the main goals
of improving security and eliminating the need for a third party to manage transactions in the system. In
blockchain, smart contracts are used to facilitate negotiation between stakeholders. The sharing economy
movement has gained popularity in recent years in various sectors including transport. Ride-sharing has be-
come an important component of sustainable transportation by increasing vehicle utilisation and reducing the
number of vehicles on the road. Current ride-sharing systems are centralised with an intermediary maintain-
ing users’ data and managing transactions between drivers and passengers. This paper proposes the use of
blockchain and in particular smart contracts, to develop decentralised ride-sharing systems. The benefits of
having a distributed approach to maintaining users’ data and managing transactions between users include
more automation, more transparency, better data privacy, and possibly more trust between users.

1 INTRODUCTION

In the past few years, ride-sharing (also known as lift-
sharing, car-sharing or car-pooling) has spread around
the world with many people using this as their means
of transportation (Clewlow and Mishra, 2017) mainly
in USA. The main problems faced by this new tech-
nology include lack of real-time response, data pri-
vacy and community involvement. These problems
are normally related to the centralised environment
where the ride-sharing system is executed. This is be-
cause all data and pre-processing happens in a central
server regulated by a central authority or intermedi-
ary. In some big and largely populated cities, where
people spend long time commuting, ride-sharing has
been adopted rapidly and used by commuters on a
daily basis.

Many commuters use their own cars which brings
several problems. These are: 1) time lost in traffic
congestion (time/comfort cost), 2) fuel waste caused
by driving for longer than necessary (economic cost),
3) higher pollution of the environment caused by gas
emissions (environmental damage cost). Most vehi-
cles on the streets are driven with single or low occu-
pancy. This increases the number of vehicles on the
road at a pace similar to that of the increase in the
number of commuters. Around 3 billion gallons of
fuel are used annually due to traffic congestion (Fag-
nant and Kockelman, 2014). This has an estimated

cost of around $ 160 billion or $ 960 per commuter
(Güneralp et al., 2017). It has been reported that mo-
bility in the USA will increase by a factor of 2.6 by
2050 (Schafer and Victor, 2000).

Ride-sharing solutions can bring benefits like less
wasted time, lower transportation costs, less pollu-
tion, and less stress. Improvements in ride-sharing
systems can help to increase overall human produc-
tivity by reducing up to 40% the number of hours
spent in traffic (Lanctot, 2017). In big cities like Lon-
don, commuting time between home and work has in-
creased by 72% over the past decade (Scott Le Vine
and Humphrey, 2016). Ride-sharing systems can help
to tackle traffic congestion by reducing the distance
that vehicles are driven partially empty. It is also
known that traffic congestion causes emotional stress
(Buckley and O’Regan, 2003).

Centralised ride-sharing systems like Bla Bla Car
have enjoyed some success for intercity ride-sharing
thanks to features like flexibility in ride planning (in
advance or same-day). Centralised ride-sharing sys-
tems have the downside of privacy risks due to data
being shared and replicated often without the knowl-
edge of users. Other issues with centralised ride-
sharing systems are lack of transparency (e.g. in the
fees charged) and regulatory conditions.

There is an opportunity in developing decen-
tralised ride-sharing solutions. In a decentralised ride-
sharing system there is no single source of truth, the

446
Vazquez, E. and Landa-Silva, D.
Towards Blockchain-based Ride-sharing Systems.
DOI: 10.5220/0010323204460452
In Proceedings of the 10th International Conference on Operations Research and Enterprise Systems (ICORES 2021), pages 446-452
ISBN: 978-989-758-485-5
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

data is distributed across the network nodes. Instead,
there is a network made of a lot of nodes connected
to each other in a secure way, sharing and transact-
ing data. Blockchain can help to provide a novel ap-
proach, in which an autonomous system can use data
to match drivers to passengers and execute the trans-
actions involved in the riding service. The blockchain
can help to implement a safe and efficient relationship
between passenger and driver while still allowing to
use data for predicting common patterns and frequent
trips.

Current ride-sharing systems could be vulnerable
when transmitting information or processing it in the
system. Blockchain could help with both the security
of the application and stability of the system. Hence,
incorporating a blockchain layer to the current ride-
sharing framework could help to maintain anonymity
among users and preserve integrity of the data.

In a typical client-server web application, all
clients such as mobile phones, tablets or laptops make
requests to a central authority (server) where all trans-
actions are served. The server responds to all requests
from the clients normally through an API (applica-
tion programming interface). The API is responsible
for extracting data from the central database and ap-
plying the business logic to it. Hence, a couple of
problems arise as explained next:

• All the information of the users, such as names,
personal address and payment data are saved in a
database on the server. As a consequence, the data
could be changed or removed entirely.

• The source code of the API can be updated at
any time by anyone. This could result in bad
practices, for example, the company could benefit
some drivers more than others.

In this study, we propose a ride-sharing system
combined with blockchain as a solution to tackling
the excess of vehicles on the road. The method-
ology proposed uses blockchain technology from a
new perspective, that is, a decentralised blockchain-
based ride-sharing application. For this, we leverage
the power of smart contracts to mitigate the problems
of classic client-server architectures. The smart con-
tracts are deployed on the Ethereum Network to guar-
antee the stability of the network.

We explore ways to mitigate the current problems
of Blockchain technology, such as the slow transac-
tion time for writing and reading on the blockchain
and the high computational expenses per transaction
for writing in Ethereum. This proposal is an effort
to develop smart ride-sharing systems and contribute
to the realisation of intelligent transportation systems
for smart cities.

2 METHODOLOGY

For a ride-sharing system, benefits from using the
blockchain can be realised in the transactions between
drivers and passengers where usually an intermedi-
ary is required in centralised systems. This interme-
diary mechanism in systems like Uber guarantees that
the driver is paid and that the passenger gets the ride.
However, all rules and conditions for the operation of
the system and the transactions between drivers and
passengers are stipulated by the intermediary.

The proposed methodology uses smart contracts
and a cryptography protocol in order to automate
the transactions between drivers and passengers in a
decentralised manner. The mechanism to eliminate
the intermediary in blockchain is a smart contract,
which is a self-executing contract, implemented in
computer code, that includes the terms and condi-
tions of the contract between the parties. Processes
that run outside or within the blockchain are called
off blockchain and on blockchain respectively. In the
proposed methodology, the smart contracts execu-
tion are on blockchain while other processes are off
blockchain as explained below. The protocol ZKP
(Zero-Knowledge Proof) is a method where one actor
(the prover) can prove to another one (the verifier) the
knowledge of a certain value without revealing any in-
formation other than the fact that they know the value.

The process in the proposed decentralised ride-
sharing system is as follows:

1. The passenger publishes a ride request on the
blockchain through a smart contract. The pick-
up and drop-off information is saved using spatial
cloaking, a technique to blur a user’s exact loca-
tion into a spatial region in order to preserve pri-
vacy (Chow, 2008).

2. The matching algorithm runs off the blockchain to
determine which drivers’ destinations match the
spatial location cloaked.

3. The matched drivers are invited to post a travel of-
fer. The price is posted to all matched drivers in
order to create a fair bid system. The route of each
driver is encrypted using the public key of the pas-
senger to ensure that only the passenger can see
the location of the driver.

4. To promote trust between both passenger and
drivers, the passenger picks the preferred offer,
posts a ZKP-based smart contract with a deposit
fee and posts a smart contract with a budget to
guarantee the trip.

5. The driver posts a smart contract with a deposit
fee as a commitment to the offer.

Towards Blockchain-based Ride-sharing Systems

447

6. The smart contract acts as the verifier of the trans-
action. The smart contract uses ZKP to determine
the outcome of the contract as follows:

(a) If the passenger does not show up or cancels
the ride request, the smart contract will auto-
release the passenger’s deposit fee to the driver.

(b) If the driver does not show up at the time sched-
uled or cancels the ride offer, the smart contract
will auto-release the driver’s deposit fee to the
passenger.

(c) When the driver successfully validates arrival at
the pick-up location and the passenger is there,
the smart contract will auto-release the passen-
ger’s deposit fee to the driver as initial partial
payment and the driver’s deposit fee will be re-
turned to the driver.

7. Once the ride starts, a new smart contract auto-
matically transfers partial payments to the driver
in lapses between 5 and 10 minutes as the travel
progresses.

8. Once the ride is over, the smart contract works
as the validator that the trip has been completed
successfully and then it pays the service fee to the
driver.

Since smart contracts only work with data in the
blockchain, trusted entities validate external data be-
fore adding it to the blockchain. This validation is
done outside the blockchain, hence data provided by
the user, such as latitude and longitude, is assumed to
be valid for the purpose of this paper (Cascudo and
David, 2017).

The implementation architecture for the proposed
system is based on the following:

• The blockchain network proposed here must be
public and permissive, so that anyone can read and
write transactions within the network. It must also
allow the exchange of some currency and be able
to execute smart contracts. Ethereum is the rec-
ommended network since it complies with these
features.

• Passengers and drivers use their smartphone to
communicate with the blockchain. The model as-
sumes that in addition to GPS and internet con-
nection, the phones support peer-to-peer wireless
communication.

• Some location based service provider helps to en-
sure that the driver has reached the ride starting
point.

The four key mechanisms in the above methodol-
ogy are described next. These are: generating trip
data, smart deposit contract, matching process and
smart transparent payment contract.

2.1 Generating Trip Data

To protect user’s privacy, we implement cloaking, a
generalisation technique that obfuscates precise lo-
cation information by considering spatial regions.
(Amiri et al., 2019). Also, the exact departure and
destination times of the trip are generalised in five-
minute intervals. Basically, cloaking has the effect of
obfuscating the user’s location information.

For driver d, the ride offer can be represented by
(1) where (L(d)

0 ,T (d)
0) represents the location and time

of the trip origin and (L(d)
n ,T (d)

n) represents the loca-
tion and estimated time of arrival of the trip destina-
tion. In between, there is a sequence of intermedi-
ate locations and their corresponding times. This se-
quence of pairs (location,time) correspond to points
in the planned route for driving from the origin to the
destination.

R(d) =
{
(L(d)

0 ,T (d)
0),,(L(d)

n ,T (d)
n)

}
(1)

The driver d generalises his exact location and
time of the trip by (2) where (C(d)

0 ,T (d)
0) represents

the generalised information of (L(d)
0 ,T (d)

0). This sim-
ply means that A(d) corresponds to the obfuscated ver-
sion of R(d).

A(d) =
{
(C(d)

0 ,T (d)
0),,(C(d)

n ,T (d)
n)

}
(2)

For passenger p, the ride request can be denoted
by (3) where (L(p)

0 ,T (p)
0) represents the location and

time of the trip origin and (L(p)
1) represents the loca-

tion of the trip destination.

R(p) =
{
(L(p)

0 ,T (p)
0),(L(p)

1)
}

(3)

Similar to the driver, the passenger’s information
is generalised by (4) so that A(p) represents the obfus-
cated information.

A(p) =
{
(C(p)

orig,T
(p)

orig,C
(p)
dest)

}
(4)

All the above trip data is generated off the
blockchain.

2.2 Deposit Smart Contract

Algorithm 1 shows the procedure for the deposit
smart contract. The class first initialises the basic
variables for the operation of the contract. These in-
clude the blockchain addresses for the driver and the
passenger. In order to maintain anonymity, the pas-
senger and driver are auto-assigned a pair of private

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

448

and public temporary keys (Kprivate,Kpublic) and an
address within blockchain (lines 3-4). The array Ai in
line 8 contains the blockchain addresses representing
the signatures of elements in the set. Then, when the
smart contract is created, the constructor in line 9 as-
signs the driver’s address to the contract and initialises
the rest of the variables (the generalised location in-
formation C(p)

orig,C
(p)
dest and time T (p)

orig).
Lines 14-19 implement the DriverDeposit proce-

dure which first validates that the driver arrived on
time at the place of origin for the trip and that the
trip has not yet expired. Once the validation is com-
plete, the deposit is assigned to the contract. Lines
20-23 implement the FineForDriver procedure for the
case of the driver not arriving on time, hence return-
ing the balance to the passenger. Finally, lines 24-
27 implement the ProofOfArrival procedure which
validates that the driver reached the origin. This is
where the ZKP function is executed to validate the
arrival time and location. If the validation is success-
ful, the driver receives the fee for the service. Also
during the proofOfArrival procedure, the passenger
is notified using web sockets, so that the smart con-
tract can evaluate if the trip request matches their path
(A(p) ∈ A(d)

k).
Finally, the driver uses the passenger’s public key

to encrypt all the information about the trip. This in-
formation will be useful for the next phase during the
ride.

2.3 Matching Process

In order to find a match between the passenger and
drivers, three algorithms from the literature have been
compared. These are: (a) a Distance Greedy Heuristic
approach, (b) a Time Greedy Heuristic approach and
(c) a Data Structure approach.

The three algorithms have been configured with
the following restrictions: (1) vehicle capacity, (2)
maximum passenger wait time, and (3) maximum de-
tour for the ride request. The objective function (5)
seeks to minimise passenger timeout (Jaeyoung Jung
and Park, 2012). Here, Tp is a fine for a dropped re-
quest, Pr is the number of rejected requests, T T (Pc

i)
passenger travel time and WT (Pc

i) is the passenger
waiting time.

C = Tp ·Pr +∑
iεI

T T (Pc
i)+∑

iεI
WT (Pc

i) (5)

The Distance Greedy Heuristic simply finds the
available vehicle that is closest to the trip origin (Tao
and Chen, 2007). The Time Greedy Heuristic finds the
vehicle that minimises waiting and travel times (San-
tos and Xavier, 2013). The Data Structure approach

Algorithm 1: Pseudocode for Deposit Smart Contract.

1: contract Deposit
2: uint public Balance . The Balance for

deposits
3: int64 address passenger
4: int64 address driver
5: uint public driverD . The driver deposit
6: uint public passengerD
7: address [] location
8: address [] Ai
9: procedure CONSTRUC-

TOR(driver, location,Ai)
10: this.driver← driver
11: this.location← location
12: this.Ai← Ai
13: this.driverD← driverD
14: procedure DRIVERDEPOSIT(driverD)
15: if block.timestamp≥ expiration return;
16: if msg.sender 6= driverAddress return;
17: if msg.value 6= driverD return;
18: if now≥ acceptanceDeadline return;
19: driverD← driverD
20: procedure FINEFORDRIVER(driverD)
21: if block.timestamp≤ expiration return;
22: if msg.sender 6= passenger return;
23: trans f er(balance, passenger) . Send

back the money
24: procedure PROOFOFARRIVAL(σ) . Where

σ is lat, lng
25: if msg.sender 6= driverAddress return;
26: if ZeroKnowledge.Veri f ier(σ) then
27: trans f er(balance,driver) . Pay fare

to driver
28:

is more elaborate as it generates nodes for the ride
offers and then finds the shortest route for the trips
(Xingshen Song and Jiang, 2019). The algorithm also
uses the inverted index strategy to organise and access
the data efficiently.

2.4 Payment Smart Contract

The smart contracts can also be used to implement a
more transparent and dynamic payment system. It has
been shown than in some conventional ride-sharing
systems dishonest drivers can report longer distances
than the actual travelled distance (Zhao et al., 2018).
There can also be issues if the full fee is paid at the
start or the end of the trip (Singh et al., 2020).

The proposed payment smart contract ensures that
the travelled distance is sent periodically by the driver
through the passenger’s private key. Once the pas-
senger confirms the travelled distance, the process

Towards Blockchain-based Ride-sharing Systems

449

ProofOfDistance in algorithm 2 releases the fee to the
driver. Hence, the driver is paid only for the elapsed
journey at any time and the corresponding partial in-
formation is saved in the blockchain. The variables
and functions within the payment smart contract are
very similar to those of the deposit smart contract.

Algorithm 2: Pseudocode for Payment Smart Contract.

1: contract Payment
2: address payable passenger
3: address payable driver
4: uint public distance
5: procedure CONSTRUCTOR(driver,distance)
6: this.driver← driver
7: this.distance← distance
8: procedure PROOFOFDISTANCE(distance)
9: if msg.sender 6= riderA return;

10: while totalDistance≤ distance do . Pay
only for distance traveled

11: trans f er(balance∗distance,driver)
12: totalDistance← this.totalDistance−

distance
13: procedure GETFUNDS . Return the money

to the passenger in case the waiting time runs out
14: if current.block.timestamp ≤

expirationTime return;
15: if current.block.owner 6= message.sender

return;
16: trans f er(balance, passenger) . Send

back the money to passenger
17:

3 EVALUATION EXPERIMENTS
AND RESULTS

Preliminary experiments were conducted in order
to evaluate the performance of the proposed decen-
tralised ride-sharing approach based on blockchain
smart contracts. We implemented the smart contracts
in the Ethereum network and then executed some ex-
periments to evaluate computational effort and re-
sponse time.

3.1 Computational Effort

Running blockchain calculations such as Proof of
Work (PoW) or in this case zero-knowledge proof
(ZKP) requires a lot of processing power due to
the complex mathematical and cryptographic calcu-
lations.

In Ethereum, the term gas is used to quantify
the fixed cost of performing each transaction in the

blockchain. This mechanism is not different from the
used by cloud computing companies such as Google
Cloud Platform (GCP) and Amazon Web Services
(AWS). For example, for an add operation Ethereum
charges 3 gas and for a multiplication it charges 5 gas
(Wood et al., 2014).

Two costs are involved in measuring the overall
cost for the on blockchain operations in the proposed
system. Transaction cost is the gas cost of sending
information to the blockchain. It includes the base
cost, the cost of contract deployment and the cost of
every byte. Execution cost is the gas spent on running
the code on the blockchain.

Currently in traditional ride-sharing systems, the
driver must pay a commission of approximately 25%
of the trip fee depending on the platform used. For
the proposal to be viable, we assume that the price for
each trip in dollars must be below the 25% commis-
sion. At present, 1 ether = 1,000,000,000 gwei (109)
or 1 gwei = 0.000000001 ether. The Ether price is
$206 as of May 24th, 2020 (Gas,). Then, 1 million
gas is approximately 2 dollars. For testing purposes,
the smart contracts have been pre-compiled and exe-
cuted at run time, so that contracts use less gas.

The purpose in this subsection is to measure the
cost of executing the proposed smart contracts within
the Ethereum network. This will allow to assess the
economic viability of running a decentralised ride-
sharing within the blockchain as proposed here.

We generated 10 trips requests, all with the same
origin and destination. For each trip there is always
only one driver available within the travel area. The
first 5 trips were analysed from the driver’s perspec-
tive and the other 5 trips from the passenger’s perspec-
tive. The cost for each smart contract process on the
blockchain was measured. This was done by setting
breakpoints before and after the 4 main driver opera-
tions on the blockchain.

Figure 1 and Figure 2 show the average cost in
terms of gas for the smart contract procedures of the
driver and passenger respectively. Transferring the
deposit to the driver and publishing a request are the
most expensive processes with almost 900K gas con-
sumption. The average total of computing a trip is
5,890,000 gas, which converted to dollars it would be
approximately 12 USD.

3.2 Response Time

The response time is influenced by the speed at which
the matching is done to identify suitable drivers for a
ride request. In order to evaluate the matching algo-
rithms, 5 different sample data sets were generated.
A data sets includes a ride request and a number of

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

450

Pos
t R

eq
ue

st

Rea
d Offe

rs

Exe
cu

te
Proo

f of
Dist

an
ce

Tran
sfe

r Dep
os

it

4

6

8

10 9.8 9.8

6

9.3

7.3

3.8 4

8.9

G
as

co
st

(K
)i

n
·1

05

Transaction Execution

Figure 1: Average cost of executing the driver smart con-
tract procedures in Ethereum.

ride offers from drivers, this number can be 50, 100,
500, 1000 or 10,000. This means that for a passenger
posting a ride request, the number of drivers in the
system can be as small as 50 or as large as 10,000,
hence influencing the speed at which a match can be
found. For each of the 5 data sets, the three matching
algorithms outlined in subsection 2.3 were executed
off the blockchain. This means that here we only
compare which matching algorithm performs better
on finding a match for the given ride request.

Figure 3 shows that response times increase with
the number of ride offers or drivers, but even for the
10,000 case the time does not exceed 0.4 seconds.
For cases of smaller number of ride offers (50 and
100) the three algorithms perform similarly. More-
over, distance-greedy and data-structure exhibit simi-
lar performance across all cases, while for the larger
10,000 case, time-greedy algorithm is faster.

We decided to use time-greedy in the complete
process and now focus on evaluating the response
time for the on blockchain and off blockchain opera-
tions. Table 1 shows the response times for each of the
steps in the proposed approach and using time-greedy
for the matching. After adding the off blockchain and
on blockchain processes we can see that the com-
plete process takes from around 4 seconds to little
over 7 seconds depending on the number of drivers
or ride offers. It is important to note that the pro-
posal here is to use Ethereum since the mining pro-

Pay
Dep

os
it

Veri
fy

ZKP

2

3

4

5

6

7

4

6.9

2.4

6.1

G
as

co
st

(K
)i

n
·1

05
Transaction Execution

Figure 2: Average cost of executing the passenger smart
contract procedures in Ethereum.

50 100 500 1000 10000

0

0.1

0.2

0.3

0.4

Rides

R
es

po
ns

e
tim

e
(s

ec
s)

data-structure distance-greedy time-greedy

Figure 3: Response time performance of the matching algo-
rithms running off blockchain.

cess takes seconds instead of minutes as happens in
Bitcoin blockchain for example.

4 CONCLUDING REMARKS

Ride-sharing can help to make mobility smarter and
transport more efficient for communities around the
world. The increasing number of smartphones, the
continuous growth of internet access and the high ve-
hicular density in cities have made solutions such as
ride-sharing more appealing. Existing ride-sharing
systems use a centralised approach where a third party

Towards Blockchain-based Ride-sharing Systems

451

Table 1: Response time for each transaction step processing
a ride request while using a time-greedy heuristic for the
ride matching.

Transaction Steps 50 Drivers 100 Drivers
(1) Generate ride data 0.88128 0.622171
(2) Post ride request 1.366758 1.539878
(3) Post ride offer 1.408167 2.577480

(4) Verify ZKP 0.081271 1.029151
(5) Find ride match 0.008072 0.031726

Total time (secs) 3.745548 5.800406

500 Drivers 1000 Drivers 10000 Drivers
0.58353 0.865349 1.785475

1.685635 1.419069 1.967857
1.733291 1.907547 1.227874
1.964220 2.659049 1.888619
0.100041 0.267208 0.294342
6.066717 7.118222 7.164167

manages data and transactions between drivers and
passengers. This paper proposes the idea of imple-
menting ride-sharing systems in a decentralised man-
ner by using blockchain smart contracts.

The decentralised ride-sharing approach outlined
here was implemented in Ethereum and experiments
were conducted to evaluate the feasibility of the pro-
posed solution. Smart contracts are implemented to
execute deposits by drivers and passengers as well
as payment as the ride service goes on. It is argued
that these mechanisms help to improve transparency
of transactions, privacy of users data and accountabil-
ity in the system. A deposit smart contract guaran-
tees against drivers or passengers not keeping their
side of the ride agreement. The payment smart con-
tract implements partial payment of the fee as the trip
progresses and ensures the full payment once the ride
service is completed. All this implemented in a se-
cure manner and without the need of an intermediary
or 3rd party as in traditional centralised ride-sharing
systems.

REFERENCES

ETH gas station. https://ethgasstation.info/. Accessed:
2020-05-25.

Amiri, W. A., Baza, M., Banawan, K., Mahmoud, M., Alas-
mary, W., and Akkaya, K. (2019). Privacy-preserving
smart parking system using blockchain and private in-
formation retrieval.

Buckley, F. and O’Regan, B. (2003). The psychologi-
cal effects of commuting in dublin. Buckley, Finian
and O’Regan, Brendan (2004) The psychological ef-
fects of commuting in Dublin. LInK Working Paper
Series. (Paper No. 07-04). The Learning, Innovation
and Knowledge Research Centre, Dublin City Univer-
sity, Ireland.

Cascudo, I. and David, B. (2017). Scrape: Scalable ran-
domness attested by public entities.

Chow, C.-Y. (2008). Cloaking Algorithms for Location Pri-
vacy, pages 93–97. Springer US, Boston, MA.

Clewlow, R. R. and Mishra, G. S. (2017). Disruptive trans-
portation: The adoption, utilization, and impacts of
ride-hailing in the United States. resreport UCD-ITS-
RR-17-07, Institute of Transportation Studies, Univer-
sity of California, Davis.

Fagnant, D. J. and Kockelman, K. M. (2014). The travel
and environmental implications of shared autonomous
vehicles, using agent-based model scenarios. Trans-
portation Research Part C: Emerging Technologies,
40:1–13.

Güneralp, B., Zhou, Y., Ürge Vorsatz, D., Gupta, M., Yu,
S., Patel, L., Fragkias, M., Li, X., and Seto, K. (2017).
Global scenarios of urban density and its impacts on
building energy use through 2050. Proceedings of the
National Academy of Sciences, 114:8945–8950.

Jaeyoung Jung, R. J. and Park, J.-Y. (2012). Design and
modeling of real-time shared-taxi dispatch algorithms.

Lanctot, R. (2017). Accelerating the future: The economic
impact of the emerging passenger economy. Technical
report, Strategy Analytics.

Santos, D. and Xavier, E. (2013). Dynamic taxi and
ridesharing - a framework and heuristics for the op-
timization problem. pages 2885–2891.

Schafer, A. and Victor, D. G. (2000). The future mobility of
the world population. Transportation Research Part
A: Policy and Practice, 34(3):171–205.

Scott Le Vine, J. P. and Humphrey, A. (2016). Commuting
trends in england 1988 - 2015.

Singh, G., Dwesar, R., and Kumar, S. (2020). Uber’s bumpy
ride in china. The CASE Journal, ahead-of-print.

Tao, C. and Chen, C. (2007). Heuristic algorithms for
the dynamic taxipooling problem based on intelligent
transportation system technologies. In Fourth Interna-
tional Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2007), volume 3, pages 590–595.

Wood, G. et al. (2014). Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yel-
low paper, 151(2014):1–32.

Xingshen Song, Yuexiang Yang, Y. J. and Jiang, K. (2019).
Optimizing partitioning strategies for faster inverted
index compression.

Zhao, S., Luo, X., Ma, X., Bai, B., Zhao, Y., Zou, W.,
Yang, Z., Au, M. H., and Qiu, X. (2018). Exploiting
proximity-based mobile apps for large-scale location
privacy probing.

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

452

